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Abstract
A popular universal gate set for quantum computing with qubits is Clifford+T , as this can be readily
implemented on many fault-tolerant architectures. For qutrits, there is an equivalent T gate, that,
like its qubit analogue, makes Clifford+T approximately universal, is injectable by a magic state,
and supports magic state distillation. However, it was claimed that a better gate set for qutrits
might be Clifford+R, where R = diag(1, 1, −1) is the metaplectic gate, as certain protocols and
gates could more easily be implemented using the R gate than the T gate. In this paper we show
that when we have at least two qutrits, the qutrit Clifford+R unitaries form a strict subset of the
Clifford+T unitaries, by finding a direct decomposition of R ⊗ I as a Clifford+T circuit and proving
that the T gate cannot be exactly synthesized in Clifford+R. This shows that in fact the T gate is
at least as powerful as the R gate, up to a constant factor. Moreover, we additionally show that it is
impossible to find a single-qutrit Clifford+T decomposition of the R gate, making our result tight.
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1 Introduction

Most theoretical work on quantum computing has focussed on qubits, two-dimensional
quantum systems. However, many proposed physical types of qubits are actually restricted
subspaces of higher-dimensional systems, where the natural dimension can be much higher.
The restriction to qubits is made for two reasons: the difficulty of precisely controlling
quantum systems and the reliance on analogy to classical computers where two-valued bits
reign supreme. However, as quantum control continues to improve, researchers have revisited
this design choice. In some cases, higher-dimensional qudits appear to be the superior option.
For example, using the otherwise wasted subspace of a quantum system as a qudit drastically
increases a device’s information density compared to a qubit-based counterpart. Interest
in qudit algorithms and physical implementations has risen recently, due to the potential
advantages in runtime efficiency, resource requirements, computational space, and noise
resilience in communication [23].

For qudits to make a good foundation for a quantum computer, we need methods to
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achieve fault-tolerance. In qubit-based protocols, one popular paradigm is to rely on the
Clifford+T gate set. This gate set consists of the efficiently simulable Clifford gates that
can be implemented directly on many error correcting codes, and the T gate that can be
implemented by distilling and injecting magic states [8]. Analogous constructions have been
developed for qudits of all dimensions, each one relying on a specific generalization of the
Clifford+T gate set [9].

In this paper we focus on the case of qutrits, three-dimensional quantum systems. Qutrits
permit the qutrit Clifford+T gate set, which can be implemented fault-tolerantly on qutrit
error correcting codes, analogous to the qubit setting [12]. The Clifford+T gate set is
however not the only proposed universal fault-tolerant gate set for qutrits. In a series of
papers [12, 11, 5, 4, 3, 6] and a patent [7], the non-Clifford qutrit gate of choice is the R
gate, also referred to as the FLIP gate, reflection gate, or metaplectic gate. It is defined
as R := diag(1, 1,−1). This gate was defined in Ref. [1], where it was shown to admit a
magic state distillation and injection protocol. As a non-Clifford gate it achieves approximate
universality when added to the Clifford gate set [16], as explicitly proved in Ref. [12, Theorem
2]. It can be implemented in a framework of certain weakly-integral non-abelian anyons via
braiding and topological measurement [11, 12].

While the definition of the R gate looks very simple, containing only 1’s, 0’s and a −1, it
is in fact nowhere in the qutrit Clifford hierarchy [10]. This is because for qutrits, Clifford
gates are based on the third root of unity ω = ei2π/3. Despite this fact, the R gate can
still be injected into a qutrit circuit using a repeat-until-success procedure [1]. The R state
has a magic state distillation protocol, after which such a repeat-until-success injection
protocol can be applied to realise the R gate [1] fault-tolerantly. Another construction of R
is by a measurement-assisted repeat-until-success protocol requiring two ancillary qutrits to
probabilistically realize it out of Clifford gates [11]. The R gate has been suggested to be
“more powerful in practice” than the T gate by Bocharov, Roetteler, and Svore [6]. They
computed the cost of approximating the third level of the Clifford hierarchy in the Clifford+R
(which they refer to as the metaplectic) gate set, and claimed that constructing the R gate in
the Clifford+T gate set requires multiple ancillae and repeat-until-success circuits.

In this paper we demonstrate that, contrary to these previous assertions, T is strictly
more powerful than R. We show that while no single-qutrit Clifford+T circuit composes
to an R gate unitarily1, rather unexpectedly the R gate is exactly constructible through a
unitary two-qutrit Clifford+T circuit with T -count 39, which we construct in Section 3. This
demonstrates that R ∈ Clifford+T . Additionally, we prove that the converse is not true,
i.e. that T /∈ Clifford+R, and hence Clifford+R ⊊ Clifford+T . This directly implies any
Clifford+T computation can be exactly implemented through Clifford+T gates with constant
overhead, whereas there exist Clifford+T circuits whose implementation via Clifford+R must
strictly increase with the desired precision.

This result might seem to contradict the fact that R does not belong anywhere in the
Clifford hierarchy, while every Clifford gate and the T gate belongs to the third level C3.
But recall that while C1 and C2 are closed under composition, this is no longer true for the
higher levels of the Clifford hierarchy. In particular, it is not true that any circuit built out
of Clifford+T gates is a unitary that belongs to C3.

The paper is structured as follows. We cover all the basics on qutrit quantum computation
and gate synthesis in Section 2. Then in Section 3 we show how to build the R gate as a
two-qutrit unitary using only Clifford+T gates and we prove that it is not possible to do

1 Unless explicitly stated, we mean “single-qutrit” circuit to be ancilla-free.
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this using just single-qutrit Clifford+T gates. We finish by demonstrating that T is not an
element of Clifford+R so that Clifford+R is in fact a strict subset of Clifford+T . We end
with some concluding remarks in Section 4.

2 Qutrit Clifford+T

A qubit is a two-dimensional Hilbert space. Similarly, a qutrit is a three-dimensional Hilbert
space. We will write |0⟩, |1⟩, and |2⟩ for the standard computational basis states of a qutrit.
Any normalised qutrit state can then be written as

|ψ⟩ = α |0⟩ + β |1⟩ + γ |2⟩ (1)

where α, β, γ ∈ C and |α|2 + |β|2 + |γ|2 = 1.
For a comprehensive overview of quantum computing based on qudits, we refer to the

2020 review by Wang, Hu, Sanders, and Kais [23]. A qudit quantum processor has been
experimentally demonstrated on ion trap systems [20] and superconducting circuits [2, 24, 26].

2.1 Pauli gates and permutation gates
Several concepts for qubits extend to qutrits, or more generally to qudits, which are d-
dimensional quantum systems. We are concerned with the qudit generalizations of Paulis
and Cliffords.

▶ Definition 1. For a d-dimensional qudit, the Pauli X and Z gates are defined as

X |k⟩ = |k + 1⟩ Z |k⟩ = ωk |k⟩ (2)

where ω := e2πi/d such that ωd = 1, and the addition |k + 1⟩ is taken modulo d. We define
the Pauli group as the set of unitaries generated by compositions and tensor products of the
X and Z gates. We write Pd

n for the Pauli group on n qudits [16, 17].

For qubits this X gate is just the NOT gate while Z = diag(1,−1). For the duration of this
paper we will work solely with qutrits, so we take ω to always be equal to e2πi/3.

For a qubit there is only one non-trivial permutation of the standard basis states, which
is implemented by the X gate. For qutrits, this grows to five non-trivial permutations of
the basis states. We call these τ gates and we specify them as τL where L is a permutation
of the elements {0, 1, 2} written in cycle notation. For example, τ(02) is the permutation
which maps |0⟩ 7→ |2⟩, |1⟩ 7→ |1⟩, and |2⟩ 7→ |0⟩. The five non-trivial permutations are then
τ(01), τ(12), τ(02), τ(012), and τ(021) along with the trivial identity permutation I = τ(0)(1)(2).
Compositions of these operators are given by τL · τM = τL·M with L ·M the composition of
permutations. Note that τ(012) = X and τ(021) = X†.

2.2 Exact synthesis and number rings
One natural question to ask when given a set of gates is to determine which operations can
be implemented as a circuit over those gates. This is called the exact synthesis problem. One
frequently useful notion in addressing exact synthesis is computing the matrix representations
of the set of gates in the computational basis and characterizing the number ring to which
their entries belong. A number ring is a set of numbers which explicitly contains 0 and 1
and is closed under the operations of addition and multiplication. For example, the integers
Z form a number ring.
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We can extend number rings by considering what happens when we introduce new numbers
to the number ring. When we extend the number ring R by α we write R[α] for the ring
of formal sums

∑
j rjα

j where rj ∈ R. Generally, we extend by an α which is the root of
some monic polynomial whose coefficients come from R. If that polynomial has degree p,
then all powers of α which are greater than p − 1 and appear in an element of R[α] can
be reduced via that polynomial. For example, the third root of unity ω solves the monic
polynomial 1 +ω+ω2 = 0 over the integers so that we define Z[ω] = {a+ bω | a, b ∈ Z}. Any
higher-order powers of ω which might appear in an element of Z[ω] can be reduced through
its polynomial as for example, ω2 = −1 − ω and ω3 = 1.

Another common way to modify number rings is to introduce new denominators by
localizing a ring. For a number ring R we can take any multiplicatively-closed subset µ of R
which contains 1 but not 0 and introduce that set of numbers as denominators:

µ−1R =
{ r

m

∣∣∣ r ∈ R and m ∈ µ
}
.

▶ Definition 2. The ring of triadic fractions is the number ring defined by localizing Z at
the set µ = {3k | k ∈ N}, which we denote as T := µ−1Z = {a/3k | a ∈ Z, k ∈ N}.

The use of number rings to help solve the exact synthesis problem stems from the following
statement, attributable to many authors in the field but perhaps most notably Kliuchnikov,
Maslov, and Mosca [18]:

▶ Lemma 3. Let G = {G1, · · · , Gk} be a quantum gate set. For all j ∈ {1, . . . , k}, let each
Gj have the computational basis matrix representation Mj up to a complex global phase such
that Mj is a matrix with entries in the number ring R. Up to a global phase, the matrix
representation for any circuit over G only has entries in the number ring R.

It is important to note that Lemma 3 only suffices to exclude operations from being
representable over a given gate set. To show that a circuit with entries in a particular number
ring implies expressibility over a certain gate set is generally equivalent to providing a full
solution to the exact synthesis problem.

▶ Example 4. Any qutrit Pauli operation in the computational basis has entries from the
number ring Z[ω]. This follows directly from Lemma 3 and the fact that P3

n is generated
by X and Z.

One interesting aspect of Z[ω] (and number rings which contain roots of unity in general)
is that it contains elements which square to non-square integers. In particular, (ω − ω2)2 =
(ω2 − ω)2 = −3. Note the minus sign here, which is important as ±

√
3 ̸∈ Z[ω]. Due to the

ubiquity of the Pauli group and the natural appearance of ω, when working with circuits
over qutrits it has become increasingly customary to use ±(ω − ω2) = ±i

√
3 in place of

√
3

when possible. We make use of this replacement frequently (see, e.g., the Hadamard gate
defined below).

2.3 Clifford gates
Another concept that translates to qutrits (or more general qudits) is that of Clifford unitaries.

▶ Definition 5. Let U be a unitary acting on n qudits. We say that U is Clifford when every
Pauli is mapped to another Pauli under conjugation by U . I.e., for any P ∈ Pd

n we have
UPU† ∈ Pd

n.



A. Glaudell, N.J. Ross, J. van de Wetering, L. Yeh 5

Note that the set of n-qudit Cliffords forms a group under composition. For qubits, this
group is generated by the S, Hadamard, and CX gates. The same is true for qutrits, for the
right generalisation of these gates.

▶ Definition 6. We write Z(a, b) for the phase gate that acts as Z(a, b) |0⟩ = |0⟩, Z(a, b) |1⟩ =
ωa |1⟩ and Z(a, b) |2⟩ = ωb |2⟩ where we take a, b ∈ R.

We define Z(a, b) in this way, taking a and b to correspond to phases that are multiples of ω,
because Z(a, b) will turn out to be Clifford iff a and b are integers. Note that the collection of
all Z(a, b) operators constitutes the group of diagonal single-qutrit unitaries modded out by
a global phase. Composition of these operations is given by Z(a, b) ·Z(c, d) = Z(a+ b, c+ d).

▶ Definition 7. The qutrit S gate is S := Z(0, 1). I.e., it multiplies the |2⟩ state by ω.

For qubits, the Hadamard interchanges the Z basis, |0⟩ and |1⟩, which are the eigenstates
of the Pauli Z, and the X basis, consisting of the states |±⟩ := 1√

2 (|0⟩ ± |1⟩). The same holds
for the qutrit Hadamard. In this case the X basis consists of the following states (where we
recall from above that 1

ω2−ω = i/
√

3):

|+⟩ := 1
ω2 − ω

(|0⟩ + |1⟩ + |2⟩) (3)

|ω⟩ := 1
ω2 − ω

(|0⟩ + ω |1⟩ + ω2 |2⟩) (4)∣∣ω2〉
:= 1

ω2 − ω
(|0⟩ + ω2 |1⟩ + ω |2⟩) (5)

▶ Definition 8. The qutrit Hadamard gate H is the gate that maps |0⟩ 7→ |+⟩, |1⟩ 7→ |ω⟩
and |2⟩ 7→

∣∣ω2〉
. As a matrix:

H := 1
ω2 − ω

1 1 1
1 ω ω2

1 ω2 ω

 (6)

Note that, unlike the qubit Hadamard, the qutrit Hadamard is not self-inverse. In fact,
we have H2 = −τ(12), so that H4 = I. In particular, H† = H3. Furthermore, we note that
just as the Clifford group in qubits generates certain global phases, the relation (SH)3 = −ω
implies that global phases of ±1, ±ω, and ±ω2 naturally appear in the qutrit Clifford group.
The Pauli and S gates we defined all have matrix representations with entries over Z[ω]. We
see that H naturally introduces denominators into our matrices, and so we should localize
Z[ω] to ensure we can characterize circuits which contain H. Since

ωk

ω2 − ω
= ωk(ω − ω2)

3

we can introduce the appropriate denominators by localizing at µ = {3k | k ∈ N} to get the
number ring µ−1Z[ω]. Note that this is equivalent to the number ring T[ω] which consists of
elements a+ bω where a, b ∈ T are triadic fractions.

In Definition 6 we defined the Z phase gate. Similarly, we can define the X phase gates,
that give a phase to the X basis states.

▶ Definition 9. We define the X phase gates to be X(a, b) := HZ(a, b)H† where a, b ∈ R.

We already saw examples of such X phase gates: X = X(2, 1) and X† = X(1, 2).
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Any single-qutrit Clifford can be represented (up to global phase) as a composition of
Clifford Z and X phase gates. In particular, we can represent the qutrit Hadamard as
follows [15]:

H = −Z(2, 2)X(2, 2)Z(2, 2) = −X(2, 2)Z(2, 2)X(2, 2) (7)
H† = −Z(1, 1)X(1, 1)Z(1, 1) = −X(1, 1)Z(1, 1)X(1, 1) (8)

The final Clifford gate we need is the qutrit CX.

▶ Definition 10. The qutrit CX gate is the two-qutrit gate defined by CX |i, j⟩ = |i, i+ j⟩
where the addition is taken modulo 3.

▶ Proposition 11. Let U be a qutrit Clifford unitary. Then up to global phase U can be
written as a composition of the S, H and CX gates [16].

From this it easily follows that the Z(a, b) and X(a, b) gates are Clifford if and only if a
and b are integers.

▶ Corollary 12. Let U be a qutrit Clifford unitary. Then up to a global phase U has a matrix
representation in the computational basis with entries in the number ring T[ω].

Proof. This follows from Proposition 11, the definitions of S, H, and CX, and Lemma 3. ◀

2.4 T gates and qutrit controlled gates
Clifford unitaries don’t suffice for universal computation, so let’s introduce the T gate. For
this we will need the ninth-root of unity. Throughout the remainder of the paper, we define
ζ = e2πi/9.

▶ Definition 13. The qutrit T gate is the Z phase gate defined as T := Z(1/3,−1/3) =
diag(1, ζ, ζ8) [19, 9, 17].

Like the qubit T gate, the qutrit T gate belongs to the third level of the Clifford hierarchy,
can be injected into a circuit using magic states, and its magic states can be distilled by
magic state distillation. This means that we can fault-tolerantly implement this qutrit T gate
on many types of quantum error correcting codes. Also as for qubits, the qutrit Clifford+T
gate set is approximately universal, meaning that we can approximate any qutrit unitary
using just Clifford gates and the T gate [12, Theorem 1].

The T gate introduces the phase ζ into matrix representations of circuits and thus we
should consider extending the previously-defined T[ω] by ζ. Note that ζ is a ninth root of
unity which solves the cubic polynomial

ζ3 − ω = 0 (9)

over T[ω]. In fact, this polynomial has no solutions over T[ω], implying that ζ ̸∈ T[ω] (see
Appendix A). We thus define the number ring T[ζ]:

▶ Definition 14. The extension of T[ω] by ζ is the number ring T[ω][ζ] ∼= T[ζ] defined by

T[ω][ζ] ∼= T[ζ] := {a+ bζ + cζ2 + dζ3 + eζ4 + fζ5 | a, b, c, d, e, f ∈ T}.

Any higher powers of ζ that might appear in an expression for an element of T[ζ] can be
reduced using for instance Eq. (9).



A. Glaudell, N.J. Ross, J. van de Wetering, L. Yeh 7

▶ Lemma 15. Let U be a qutrit Clifford+T unitary. Then up to a global phase U has a
matrix representation in the computational basis with entries in the number ring T[ζ].

Proof. By the definitions of S, H, T , and CX and Lemma 3. ◀

Using T gates, we can construct certain controlled unitaries. When we have an n-qubit
unitary U , we can speak of the controlled gate that implements U . This is the (n+ 1)-qubit
gate that acts as the identity when the first qubit is in the |0⟩ state, and implements U on
the last n qubits if the first qubit is in the |1⟩ state.

For qutrits there are however multiple notions of control.

▶ Definition 16. Let U be a qutrit unitary. Then the |2⟩-controlled U is the unitary |2⟩-U
that acts as

|0⟩ ⊗ |ψ⟩ 7→ |0⟩ ⊗ |ψ⟩ |1⟩ ⊗ |ψ⟩ 7→ |1⟩ ⊗ |ψ⟩ |2⟩ ⊗ |ψ⟩ 7→ |2⟩ ⊗ U |ψ⟩

I.e., it implements U on the last qutrits if and only if the first qutrit is in the |2⟩ state.

Note that by conjugating the first qutrit with X or X† gates we can make the gate also be
controlled on the |1⟩ or |0⟩ state.

A different notion of qutrit control was introduced by Bocharov, Roetteler, and Svore [6]:
Given a qutrit unitary U they define Λ(U) |c⟩ |t⟩ = |c⟩ ⊗ (U c |t⟩). I.e., apply the unitary U a
number of times equal to to the value of the control qutrit, so that if the control qutrit is
|2⟩ we apply U2 to the target qutrits. Note that we can get this notion of control from the
former one: just apply a |1⟩-controlled U , followed by a |2⟩-controlled U2. The Clifford CX
gate defined earlier is in this notation equal to Λ(X).

Adding controls to a Clifford gate generally makes it non-Clifford. In the case of the CX
gate, which is Λ(X), it is still Clifford, but the |2⟩-controlled X is not.

▶ Lemma 17. The |2⟩-controlled X and |2⟩-controlled X† gates can be implemented unitarily
using Clifford+T gates without ancillae, with a T -count of 3.

Proof. The |2⟩-controlled X gate can be constructed by the following 3 T gate circuit:

2

X

=
H X P9 X P9 X P9 X X† H†

ΛΛ Λ X†X

(10)

Here P9 := XTX†. The dashed box shows the construction by Bocharov, Roetteler, and
Svore [6, Figure 6] for a Clifford equivalent gate, that our construction is based on. Taking
the adjoint of Eq. (10) gives the |2⟩-controlled X† gate. ◀

▶ Lemma 18. The |2⟩-controlled versions of the τ(01), τ(02), and τ(12) gates can be imple-
mented unitarily using Clifford+T gates without ancillae, with a T -count of 15.

Proof. The |2⟩-controlled τ(12) gate can be constructed as follows:

2

τ(12)

=
X† X 1 X 1 X

τ(01)1 1 1X XΛτ(01)

X

Λ

(11)

The dashed box shows the Clifford equivalent gate given by Bocharov, Roetteler, and
Svore [6, 4] upon which the construction is based. The |2⟩-controlled τ(01) and |2⟩-controlled
τ(02) gates follow from Clifford equivalence. ◀
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3 Results

Previous implementations of the R gate require either distillation [1] or probabilistic creation
of the diag(1, 1,−1) state [11, 6]; both approaches then necessitate injection by a repeat-
until-success protocol. Here we present a new approach, which implements R unitarily over
the qutrit Clifford+T gate set. As we will discuss later, it is actually impossible to exactly
build the R gate from only single-qutrit Clifford+T gates. However, we can construct the
two-qutrit R ⊗ I unitarily using Clifford+T gates. We will do this2 by showing how to
construct certain |2⟩-controlled gates and then using the following observation.

Our construction will be based on the following idea:

2

−I
= =

R2

−H†

2

−H2

2

−H†
(12)

Note that global phases in gates are usually not relevant, but that they become relevant
when adding control wires to the gate. Here we have a controlled global phase because
the global phase of −1 is applied to the target if and only if the control is in the |2⟩ state.
Therefore, this is an instance of phase kickback: The action of the |2⟩-controlled −I gate is
identical to applying R⊗ I, i.e. the R gate to the control qutrit and identity on the target.

The |2⟩-controlled −H2 = τ(12) was constructed as a Clifford+T circuit decomposition
in Eq. (11). It hence remains to show how we can construct the |2⟩-controlled −H† gate in
Clifford+T . We can build this using the |2⟩-controlled S† gate.

▶ Lemma 19. The |2⟩-controlled S† gate can be constructed unitarily without ancillae, up
to a controlled global phase of ζ, using only Clifford+T gates, with T -count 8.

Proof. The correctness can be verified by direct computation of the following circuit.

2

ζS†
=

τ(01)

2

X† Tτ(01)τ(01)

2

X T †τ(01)

(13)

Alternatively, it is easy to see that this circuit does nothing if the first qutrit is in the |0⟩ or
|1⟩ state, as the τ01 gates cancel, so that the T can cancel with the T †. Otherwise, if the first
qutrit is |2⟩, then the middle permutations combine to τ(01)X

†τ(01) = τ(012) = X. When the
T † is pushed through this, the phases get permuted, and when combined with the T gives
an S gate up to global phase. ◀

▶ Corollary 20. The |2⟩-controlled Z(1, 1) = diag(1, ω, ω) gate can be constructed unitarily
without ancillae, up to a controlled global phase of ζ−2 = ζ7, using only Clifford+T gates,
with T -count 8.

Proof. Use the following circuit:

2

ζ7Z(1, 1)
=

τ(02)

2

ζS†τ(02)

(14)

Its correctness can be verified by direct computation, or by commuting S† and τ(02). ◀

2 Implemented at https://github.com/lia-approves/qudit-circuits/tree/main/qutrit_R_from_T.

https://github.com/lia-approves/qudit-circuits/tree/main/qutrit_R_from_T
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▶ Lemma 21. The |2⟩-controlled −H† gate can be constructed unitarily without ancillae
using Clifford+T gates with T -count 24.

Proof. In the construction given below, we use the decomposition of −H† into alternating Z
and X Clifford rotations of Eq. (8).

2

ζ7X(1, 1)ζ7Z(1, 1)

2

ζ7Z(1, 1)

2
=

S†

−H†

22

X(1, 1)Z(1, 1)

2

Z(1, 1)

2
= (15)

To construct the controlled −H† up to a controlled global phase, we apply Eq. (14), conju-
gating the target by Hadamards for the X rotations per Definition 9. As we require three
such gates, the controlled global phase becomes ζ7·3 = ζ3 = ω; thus, the necessary correction
is the Clifford S† gate on the control qutrit (i.e. |2⟩-controlled ω2I). ◀

We can now construct the R gate in Clifford+T . However, direct substitution of the 24
T -count |2⟩-controlled −H† gate of Lemma 21 into Eq. (12) yields a T -count 63 construction.
We can do better by combining the two iterations of the controlled −H† in a smarter way.

▶ Theorem 22. The qutrit R gate can be constructed unitarily in Clifford+T with T -count 39,
provided there is a borrowed (i.e. returned to its starting state) ancilla available.

Proof. The equality of the circuits below can be verified by direct computation or by noting
that it applies Z(3, 3) = I to the target when the control is |0⟩ or |1⟩, and (H†)2 = −τ(12)
otherwise.

Z(1, 1)

2

ζ7X(1, 1)

2

ζ7Z(1, 1) Z(1, 1)

2

ζ7X(1, 1) Z(1, 1)
=

2

τ(12)

R S†

(16)

To get a circuit for the R gate we simply bring the |2⟩-controlled τ(12) to the other side (as it
is its own inverse). The total T -count of the resulting circuit is then 15 + 3 · 8 = 39. ◀

As we can construct the R gate as a Clifford+T circuit, any unitary that can be exactly
constructed in the Clifford+R gate set can then be exactly (as opposed to approximately)
constructed in the Clifford+T gate set. Although do note that our conversion presently
seems rather inefficient, as the circuit in Eq. (12) requires 39 T gates.

▶ Corollary 23. The Clifford+R gate set is a subset of the Clifford+T gate set.

A natural question to ask now is whether we can do better. Do we really need two qutrits
to write the R gate as a Clifford+T unitary? The answer is yes: it is not possible to construct
the R gate using just single-qutrit Clifford+T gates. This follows from the normal form that
was found for single-qutrit Clifford+T unitaries in Ref. [14]. Since the proof of this is rather
technical we present the details in Appendix B, and just give a sketch here.

The group of 3 × 3 unitary matrices acts on the 8-dimensional real vector space of
traceless Hermitian matrices. This action defines, for each 3 × 3 unitary matrix U , an 8 × 8
real matrix U known as the adjoint representation of U . One can then gather information
about U by studying its adjoint representation U . In particular, it is a consequence of the
normal forms for single-qutrit Clifford+T circuits introduced in Ref. [14] that the adjoint
representation of a single-qutrit Clifford+T operator has a very specific block matrix form
(see Proposition 34 in Appendix B below). It can then be shown by computation that R is
not of the appropriate form and therefore not Clifford+T .
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Another natural question is the converse to Corollary 23: is the T gate included in
Clifford+R? I.e., is the inclusion of Clifford+R within Clifford+T strict? We will show
that this is indeed the case. We begin by considering matrix representations of circuits over
Clifford+R.

▶ Lemma 24. Let U be a qutrit Clifford+R unitary. Then up to a global phase U has a
matrix representation in the computational basis with entries in the number ring T[ω].

Proof. By the definitions of S, H, R, and CX and Lemma 3. ◀

▶ Proposition 25. T ̸∈ Clifford+R

Proof. We have T ∈ Clifford+R if there exists a unitary circuit over Clifford+R which
performs the operation T ⊗ In up to a global phase for some n ∈ N where In is the n-qutrit
identity. In the computational basis, T ⊗ I has a matrix representation with entries from
the set {0, 1, ζ, ζ8}. By Lemma 24, we know that if T ⊗ I permits an exact circuit over
Clifford+R we must have {0, c, cζ, cζ8} ⊂ T[ω] for at least some global phase c ∈ C which
satisfies c∗c = 1. As T[ω] is closed under conjugation, we then also have c∗ ∈ T[ω], and as
it is closed under multiplication we then have c∗cζ = ζ ∈ T[ω]. However, it is well-known
that ζ ̸∈ T[ω], and so there exists no such global phase c (see Appendix A). Hence, no
such suitable c exists. As n was arbitrary, we conclude that no Clifford+R circuit exactly
implements T in the computational basis. ◀

▶ Corollary 26. Clifford+R ⊊ Clifford+T .

4 Conclusion

In summary, we showed that the universal fault-tolerant qutrit Clifford+R gate set is a subset
of Clifford+T , by providing a two-qutrit, T -count 39 unitary Clifford+T construction of the
R gate. We prove that our construction is optimal in the number of qutrits by applying the
single-qutrit Clifford+T normal form of Glaudell, Ross, and Taylor in Ref. [14]. Moreover,
we prove that Clifford+R is a strict subset of Clifford+T by showing that regardless of the
number of ancillae qutrits, the T gate is impossible to exactly synthesize unitarily in the
Clifford+R gate set.

This result is surprising for several reasons. While several papers have studied the
Clifford+R gate set, it was not known that it is a subset of Clifford+T , much less a strict
subset. Therefore, we find evidence that the R gate is not more powerful in practice than
the T gate, contrary to what was previously believed. In fact, we find that Clifford+T is
strictly more powerful than Clifford+R for the reason that Clifford+T can exactly synthesize
every gate in Clifford+R up to a constant factor of overhead, while the converse is not true.
The additional gates Clifford+T can represent might be important, as it was for instance
conjectured in Ref. [4] that not all ternary classical reversible gates can be exactly represented
in Clifford+R, while they can be exactly represented in Clifford+T (a consequence of a
result in forthcoming work [25]). Additionally, our result also means that much of the work
done on Clifford+R can now be directly translated to the Clifford+T setting. For example,
the universal approximate synthesis algorithms of [5, 3] can now also be used to synthesise
Clifford+T circuits. One final observation is that our result also demonstrates a way in
which qutrit Clifford+T is different from that of qubit Clifford+T . While all the one-qubit
Clifford+T circuits that can be constructed with and without ancillae coincide [18], our result
shows that this is not true for qutrits, as the single-qutrit R gate cannot be constructed in
single-qutrit Clifford+T , but can be constructed using one borrowed ancilla.
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A natural starting point for future work is to find a lower T -count decomposition of the
R gate as we have here only attempted preliminary circuit simplification. Beyond continued
search for more optimal decompositions, an alternate approach to ascertain a lower bound
on the T -count necessary to prepare the R state would be through leveraging the resource
theory of non-stabiliser states, for instance the mana [21] and thauma [22] measures of magic.
Alternatively, it might be possible to find a normal form for multi-qutrit Clifford+T unitaries
which is T -optimal, which would then also give us an optimal decomposition of the R gate.

Our results also pave the way to deriving a full characterisation of which qutrit unitaries
can be exactly implemented over the Clifford+T gate set. We conjecture that, as in the qubit
case [13], any qutrit unitary with entries in T[ζ] can be exactly synthesised over Clifford+T .
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Therefore, by equating coefficients of our basis elements on each side we conclude that we
need

a3 − 3ab2 + b3 = 0 (17)
3a2b− 3ab2 = 1. (18)

Note that clearly a, b ̸= 0 if Eq. 18 is to be satisfied. Letting r = a/b ∈ Q, we rearrange
Eq. 17 and find

r3 − 3r + 1 = 0. (19)

Since r ̸= 0, let r = s/t for s, t ∈ Z, s, t ̸= 0, and gcd(s, t) = 1 without loss of generality.
Necessarily, we would have

s3 − 3st2 + t3 = 0. (20)

For any prime p | s, we clearly have p | t3 implying p | t. Similarly, for any prime q | t, we
must have q | s3 and thus q | s. As we have assumed gcd(s, t) = 1, we conclude that no
prime can divide s nor t and so s, t must be units in Z as both are necessarily nonzero. No
combination of s, t = ±1 satisfies Eq. 20, and thus we conclude no r ∈ Q satisfies Eq. 19.
From this, we deduce there are no a, b ∈ Q such that

ζ = a+ bω

and thus ζ ̸∈ Q[ω] =⇒ ζ ̸∈ T[ω].

B The R gate is not a single-qutrit Clifford+T unitary

We start with a set of definitions. These are based on the work done in Ref. [14].

▶ Definition 27. Let K = {2k | k ∈ N}, α = sin(2π/9), and L = {αk | k ∈ N}. We define
the following number rings:

D := K−1Z =
{ a

2k

∣∣∣ a ∈ Z and k ∈ N
}

D[α] = {a+ bα+ cα2 + dα3 + eα4 + fα5 | a, b, c, d, e, f ∈ D}

A := L−1D[α] =
{ a

αk

∣∣∣ a ∈ D[α] and k ∈ N
}

Additionally, we will rely on the following quotient ring:

▶ Definition 28. Let Z3 := Z/(3) be the ring of integers modulo 3.

Using our definitions we can introduce the following ring homomorphism:

▶ Definition 29. Let ρ : D[α] → Z3 be the ring homomorphism defined by ρ(q) = q (mod α)
for q ∈ D[α]. In particular, ρ(1/2) = 2, ρ(3) = 0, and ρ(α) = 0.

To account for powers of α that appear in the denominator of elements of A, we also
introduce the following terminology:

▶ Definition 30. Let q ∈ A. There always exists some k ∈ N for which αkq ∈ D[α]. We
call k a denominator exponent of q, and the least such k is called the least denominator
exponent (LDE). The LDE of a vector or matrix over A is defined as the largest LDE of
their individual elements.
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▶ Definition 31. Let q ∈ A and let k be a denominator exponent of q. Then the k-residue of
q, ρk(q) is defined as

ρk(q) := ρ(αkq) ∈ Z3.

The k-residue of a vector or matrix is defined component-wise.

The rings we introduced will encompass the entries of Clifford+T matrices in a certain
representation called the adjoint representation, which we can describe as follows. Consider
the space H of traceless 3 × 3 Hermitian matrices. This space forms an 8-dimensional real
vector space and can be endowed with an inner product by defining ⟨M,M ′⟩ = Tr

(
M†M ′),

for any M,M ′ ∈ H. As the trace is both cyclic and fixed under transposition of arguments,
we have ⟨M,M ′⟩∗ = ⟨M,M ′⟩ so that inner product of two traceless Hermitian matrices is
necessarily real. It is straightforward to verify that if U is a 3 × 3 unitary matrix, then
conjugation by U defines a linear operator on H.

▶ Definition 32. Let U be a 3 × 3 unitary matrix. We define the linear operator U : H → H
by U(H) = UMU† for every M ∈ H. The operator U is the adjoint representation of U .

The adjoint representation U 7→ U defines a group homomorphism from U(3,C) to
SO(8,R).

For U a Clifford+T operator, we will be interested in the matrix representation of U in
some convenient basis. Following [14], for a single-qutrit Pauli P , we set

P± = P † ± P√
Tr[(P † ± P )2]

in order to define a basis B for H.

▶ Definition 33. Let X and Z be the single-qutrit Pauli operators and let H be the inner
product space of 3 × 3 traceless Hermitian matrices. We define the orthogonal basis B for H
as follows

B = {Z+, X+, (XZ)+, (XZ2)+, Z−, X−, (XZ)−, (XZ2)−}.

If U is a Clifford+T operator, then the matrix for U in the basis B (ordered as in
Definition 33) has several useful properties, as detailed in the following proposition, whose
proof can be found in [14, Remark 4.15, Remark 4.18, and Proposition 4.20].

▶ Proposition 34. Let U be a 3 × 3 unitary matrix and assume that U can be exactly
represented by an ancilla-free single-qutrit Clifford+T circuit. Then, in the basis B, the
operator U has entries in the number ring A. Write

U =
(
A B

C D

)
where A, B, C, and D are 4 × 4 matrices. If the minimal T -count of U restricted to
single-qutrit circuits is k, then the LDE of submatrix A is 2k and the following statements
hold:

If k = 0, then U is a Clifford operator.
If k > 0, then up to generalized row and column permutations over Z3,

ρ2k(A) ∼


0 0 0 0
0 2 2 2
0 2 2 2
0 2 2 2

 and ρ2k+1(C) ∼


0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

 .
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We are now in a position to prove that R cannot be represented over the Clifford+T gate
set without using ancillae.

▶ Proposition 35. The R gate cannot be represented by a single-qutrit ancilla-free Clifford+T
circuit.

Proof. Direct computation yields

R =
(
A B

C D

)
where

A = D = 1
3


3 0 0 0
0 −1 2 2
0 2 −1 2
0 2 2 −1

 and B = C = 0

Thus R is a matrix over A. The LDE of A is 6, and thus we compute

ρ6(A) =


0 0 0 0
0 2 2 2
0 2 2 2
0 2 2 2

 and ρ7(C) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
In particular, ρ7(C) is not equivalent up to generalized row/column permutations to the
matrix

0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

 .
Thus, R cannot be represented by a single-qutrit ancilla-free Clifford+T circuit. ◀
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