

MATH 2113 - Assignment 9

Due: Apr. 1

1. Determine if each of the following sets are rings under regular addition and multiplication:

- (a) $S = \{a + \sqrt{3}b\}$
- (b) $S = \{a + \sqrt{3}b + \sqrt{5}c\}$

where a, b, c are rational numbers in both cases.

2. (a) Prove $(-a) \cdot b = -(a \cdot b)$. (Part of (f), page 6.)

(b) Let (S, \oplus, \circ) be a structure where $S = \mathbb{R}$, and \oplus, \circ are defined by

$$\forall x, y \in S, \quad x \oplus y = x + y - 1; \quad x \circ y = x + y - xy.$$

Is this structure a ring? Explain.

3. Let $(S, +, \cdot)$ be a ring. Prove

- (a) $a \cdot (b - c) = a \cdot b - (a \cdot c)$.
- (b) $(b - c) \cdot a = b \cdot a - (c \cdot a)$.

4. Let $(S, +, \cdot)$ be a ring.

- (a) Prove that a unit in the ring cannot also be a divisor of zero.
- (b) If $a, b \in S$ are units, is $(a + b)$ a unit? Prove your claim.

5. Below are tables for a ring with elements $\{s, t, x, y\}$. Using the axioms for a ring, fill in the missing entries in the multiplication table.

Is this a commutative ring? Does it have a unity? Are there any units? Is the ring an integral domain or a field? Prove your claims.

+	<i>s</i>	<i>t</i>	<i>x</i>	<i>y</i>
<i>s</i>	<i>s</i>	<i>t</i>	<i>x</i>	<i>y</i>
<i>t</i>	<i>t</i>	<i>s</i>	<i>y</i>	<i>x</i>
<i>x</i>	<i>x</i>	<i>y</i>	<i>s</i>	<i>t</i>
<i>y</i>	<i>y</i>	<i>x</i>	<i>t</i>	<i>s</i>

·	<i>s</i>	<i>t</i>	<i>x</i>	<i>y</i>
<i>s</i>	<i>s</i>	<i>s</i>	<i>s</i>	<i>s</i>
<i>t</i>	<i>s</i>	<i>t</i>	?	?
<i>x</i>	<i>s</i>	<i>t</i>	?	<i>y</i>
<i>y</i>	<i>s</i>	?	<i>s</i>	?

6. Let $\alpha = 2^{\frac{1}{3}}$. Prove that

$$(\{a + b\alpha + c\alpha^2\}, +, \cdot)$$

for a, b, c rational, is a ring under the usual addition and multiplication.

7. Let $R = (S, +, \cdot)$ be a ring which is not a field. Is it possible for R to have a subring which is a field? Either prove that this is not possible or give an example of a ring with divisors of zero which has a subring which is a field.

8. Let D be an integral domain. Prove that if $a^2 = 1$ then $a \pm 1$. Is this true in a ring also? Prove it, or give a counter example.

9. Exercise 2, Section 1.6, page 8 of the notes. (Note the definitions in exercise 1.)

10. Let S be a set, and $P(S)$ the power set of S . Prove that $(P(S), \Delta, \cap)$ is a ring, where Δ is the symmetric difference, and \cap is set intersection. Is this a ring? Prove your claim.