
2. An Introduction to Group Theory

2.1. Definitions. In this section we introduce the concept of a group.

Definition 1. A Group, G, is a set of elements on which an operation * is
defined satisfying

(a) ∀A, B ∈ G, A ∗ B ∈ G. A ∗ B is unique. That is G is closed
under ∗.

(b) ∀A, B, C ∈ G, A ∗ (B ∗C) = (A ∗B) ∗C. That is, * is associative.
(c) ∃I ∈ G, ∀A ∈ G, A ∗ I = I ∗ A = A. I is the identity in G.
(d) ∀A ∈ G, ∃B ∈ G, A ∗ B = B ∗ A = I. B is the inverse of A, and

will be denoted by A−1.

The identity is unique. For, if I1, I2 are two identities,

I1 = I1 ∗ I2 = I2.

The first equality comes from the fact that I2 is an identity, and the second
comes from the fact that I1 is an identity.

The inverse is also unique. If A has two inverses, B, C then

A∗B = I. ∴ C∗(A∗B) = C; ∴ (C∗A)∗B = C; ∴ I∗B = C; ∴ B = C.

Definition 2. If ∀A, B ∈ G we have A ∗ B = B ∗ A then G is called an
Abelian group. If a given pair A, B ∈ G satisfies A ∗ B = B ∗ A, they are
said to commute.

Examples

(1) Any ring (S, +, ·) with * being +. The identity is z, the zero element,
and the inverse of a non-zero element a ∈ S is −a. The resulting
group is Abelian because addition in a ring is commutative.

(2) The set 1, 2, . . . , p − 1 for any prime p with * being modular multi-
plication. The identity is 1, and the inverse of an element a ∈ Zp is
p where pa + qm = 1.

(3) Z under addition. This is an infinite Abelian group.
(4) Let p be a prime. Let (1/p, a/p, b/p) be a point in 3-dimensions,

where a, b are integers with 1 ≤ a, b ≤ p − 1. Then the set of points

{ ({k/p}, {ka/p}, {kb/p}), k ∈ Z }
where {x} = fractional part of x, form an Abelian group under
addition. For an arbitrary prime p, this is a finite group.

(5) Let A be an n × s matrix of integers. Then the set of all integer
linear combinations of the rows of A give an Abelian group under
addition. This is also called a lattice. It is an infinite group.

(6) The set of n × n integer matrices whose determinant is ±1. If A is
such a matrix, then A−1 = (1/det(A)) ·Adj(A), where Adj(A) is the
matrix whose elements are determinants of (n− 1)× (n− 1) minors
of A, and are therefore integers. Therefore the set of matrices with
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* I A B C
I I A B C
A A I C B
B B C I A
C C B A I

* I A B C
I I A B C
A A B C I
B B C I A
C C I A B

Figure 1. Two groups of size 4

determinant ±1 is closed under multiplication and inverse. This is
another infinite group. It is a non-Abelian group.

(7) Let S = {I, A, B, C}. In how many ways can a group of size 4 be
constructed from these elements? Two possibilities are shown in
Figure 1. It will be shown later that these are the only groups of
size 4.

Are these isomorphic? The definition of isomorphic for groups is
essentially the same as for rings.

Definition 3. Two groups G1, G2 are isomorphic if there is a one-to-
one and onto function f : G1 → G2, such that

∀A, B ∈ G1, f(A ∗ B) = f(A) ∗ f(B).

This implies that f(I1) = I2, and f(A−1) = (f(A))−1. The above
two groups cannot be isomorphic because every element in the first
one is its own inverse. This is not the case in the second one. How-
ever, the second group is isomorphic to the Abelian group of integers
mod 4, under addition. Simply take f : {I, A, B, C} = {0, 1, 2, 3}.
(Prove this.) See also exercise (1) in Section 2.5.

Any two finite groups can be represented by a table, as in the two
groups in Figure 1. Then two groups of the same size are isomor-
phic if there exists a permutation of the rows and columns of the
representating table for one which results in the table for the other.

How many non-isomorphic groups of size 3 are there? How many of
size 2?

2.2. Axioms for Finite Groups. If G is a finite group then the four
axioms for a group may be replaced by three. The first two are the same,
but axioms (c), (d) may be combined into one axiom, namely:

∀A, B, C ∈ G, (A ∗ C = B ∗ C) ∨ (C ∗ A = C ∗ B) → A = B.

To prove that this gives the same definition of a group we must show that
the above statement implies that the axioms (c), (d) in the first definition
hold.
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Proof: Let X ∈ G be arbitrary. Let the elements of G be {A1, A2, . . . , Ak},
one of which is X. For each j, 1 ≤ j ≤ k, form X ∗Aj . There are k of these
products, and every one must be distinct. For if X ∗ Aj = X ∗ Am then by
the above axiom, Aj = Am. Therefore if Z is an arbitrary element of G, one
of the products must be Z. That is X ∗ Aj = Z, for some j.

Similarly there is an integer m, 1 ≤ m ≤ k with Am ∗X = Z. With Z = X,
this says that there are two elements U, V such that U ∗ X = X ∗ V = X.
Then for arbitrary Z:

Z ∗ V = Am ∗ X ∗ V = Am ∗ X = Z; U ∗ Z = U ∗ X ∗ Aj = X ∗ Aj = Z.

Therefore U ∗ Z = Z ∗ V = Z for all Z ∈ G. Therefore U ∗ V = U = V .
Hence U is the identity.

In addition, for some j, X ∗ Aj = U , and for some m, Am ∗ X = U , so that
X has a left and right inverse. Let these be E, F . Then

E ∗ X = U ; X ∗ F = U ;

∴ E ∗ X ∗ F = U ∗ F = F ;

∴ F = E ∗ (X ∗ F ) = E ∗ U = E.

That is each element has a unique inverse. This argument relies on G being
finite.

What is being shown here is that, in the case of a finite group, the axioms
given in Section 2.1 are not independent.

2.3. The Order of an Element. Let G be a finite group. If A ∈ G, then
we can write A∗A = A2, and in general A∗A∗. . .∗A (k terms) can be written
as Ak. Denote A0 by I and A1 by A. The usual rules for exponents hold;
for example Aj ∗ Ak = Aj+k. By extension of this definition we will define
A−k to mean (A−1)k. Let G be finite of size n. Then form the products

A0, A1, A2, A3, . . . , An.

There are n+1 of these, and only n elements in G. Therefore by the pigeon
hole principle two of them must be the same. That is, there are two distinct
integers j, k, 0 ≤ j, k ≤ n such that Aj = Ak. Assume that j < k. (One
must be less that the other.) Then by multiplying both sides by A−j we get
Ak−j = I.

Definition 4. Let G be an arbitrary. The smallest non-negative integer t
such that At = I is called the order of A in the group G. If G is finite, the
number of elements in G is called the order of the group.

Definition 5. If G is a group of order n, and A is an element of order n in
the group, then G = A0, A1, A2, A3, . . . , An−1, and A is called a generator

of G.
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In the first of the two examples of groups of order 4 given in Section 2.1 all
the elements have order 2. In the second example, A and C have order 4,
and C has order 2. A requirement for two groups to be isomorphic is that
they each have the same number of elements of a given order.

Examples

(8) If A has order t, and Aq = I, then t|q. For suppose that

q = at + r, 0 < r < t. ∴ I = Aq = Aat+r = Aat ∗ Ar = (At)a ∗ Ar = Ar

since At = I. Therefore Ar = I, which is a contradiction since r < t
and t is the smallest power of A to give I. ∴ r = 0, and q = at, i.e.
t | q.

(9) If the group G has m elements, and if there is an element with order
m, then for every k which divides m there is an element of order k.
If an element A of G has order t, then t|m.

First, if A ∈ G is an element of the group its order is ≤ m. If
the order was t > m, then A0, A1, A2, . . . , At−1 would be t distinct
elements in G, which is impossible since G contains only m < t
elements. Therefore the order, t, of A is ≤ m. If k|m then m

k
is an

integer, and A
m

k has order k.

Suppose that A has order t < m. Then

A1 = {A0 = I, A1, A2, . . . , At−1}

consists of t distinct elements of G. Since t < m there is an element
of G, say B1 such that B1 /∈ A1. Then

A2 = {B1, B1 ∗ A, B1 ∗ A2, . . . , B1 ∗ At−1}

gives t more distinct elements, none of which is in A1, that is the
sets A1, A2, . . . , Ar form a partition of G. (Why?) We can continue
this process so long as the set A1 ∪A2 ∪ . . .∪Ar is not the whole of
G. Each set Aj contains t distinct elements not in any other set Ai.
Therefore the number of elements of G is a multiple of t.

Hence, the order of an element divides the order of the group.
(10) There is only one group (up to isomorphism) of size p for p a prime.

These are groups in which every element is a power of one element, of
the form {I, A, A2, A3, . . . , Ap−1}. This is because the non-identity
elements can have order p only. Such a group is called cyclic.

(11) If G has 4 elements, then every non-identity element may have or-
der 2 or 4 only. If one element A is order 4, then the group is
{I, A, A2, A3}, the cyclic group of size 4. This is the second group
in example (7), Section 2.1.

If there is an element of order 2, say A, then the remaining 2 elements
must also have order 2, since if either has order 4 then the group is
the cyclic group. This is the first group in example (7), Section 2.1.
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* I A A2 B BA AB
I I A A2 B BA AB
A A A2 I AB B BA

A2 A2 I A BA AB B
B B BA AB I A A2

BA BA AB B A2 I A
AB AB B BA A A2 I

Figure 2. A non-Abelian group of order 6

There is only one group with 2, 3, 5 elements. How many 6 element
groups are there? One example is given in Figure 2. This represents
the group of rotations and reflections of an equilateral triangle.

2.4. Subgroups of Groups. Let G be a finite group with n elements. Let
A = {A1, A2, . . . , Ap} be a subset of the elements of G. If B is a second
subset of G, containing {B1, B2, . . . , Bq} then we define

A ∗ B = {X| X = Ar ∗ Bs, 1 ≤ k, 1 ≤ q}.

Definition A subgroup of a group G is a subset, H, of G which obey the
group axioms. That is, H is closed under *, I ∈ H, and if X ∈ H, then
X−1 ∈ H.

Examples

(12) The cyclic group of size 6, generated by Aj , j = 0, 1, 2, 3, 4, 5 has a
subgroup of size 2 containing {I, A3}. There is also a subgroup of
size 3 containing {I, A2, A4}. Verify that there are subgroups of sizes
2,3 in the non-abelian group of size 6. Both of these are cyclic (see
exercise (10) in 2.5).

(13) In the first group in example (7), Section 2.1, {I, A}, {I, B}, {I, C}
are subgroups. The second group in example (7) is cyclic, with
A2 = B and A3 = C. It also has a subgroup of order 2, namely
{I, B}.

Theorem Let H ⊆ G. Then H is a subgroup if and only if H ∗ H = H.

For example, if G is the cyclic group of size 6 and H = {I, A2, A4}, then
H ∗ H = {I, A2, A4, A2,
A4, A6, A4, A6, A8} = H, since A6 = I.

Proof:

Only if: Let H be a subgroup of G. Form H ∗ H. Since H contains I, then
H ∗H contains I. If A ∈ H then I ∗A ∈ H ∗H. Therefore H ⊆ H ∗H. But
since H is a group H ∗ H ⊆ H. Therefore H ∗ H = H.
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If: Now suppose that H ∗ H = H Let H = {A1, A2, . . . , Ap}. Form the
products A1 ∗ Aj , j = 1, 2, . . . , p. These all remain in H, and they are
distinct Why?. Therefore for some j, A1 ∗ Aj = A1. Therefore one element
in H is I. In addition, since the p elements produce every element in H, then
for some k, A1 ∗Ak = Aj , the identity. Therefor, A−1

1
is in H. Therefore H

is a subgroup of G.

Given a subgroup H and an element, P of G, not in H, then K = P ∗H∗P−1

is a subgroup isomorphic to H. It may actually coincide with H. In fact, if
P ∈ H then P ∗ H ∗ P−1 = H. (Why?)

Proof If A, B ∈ K then ∃C, D ∈ H, A = P ∗ C ∗ P−1, D = P ∗ D ∗ P−1.
Then

A∗B = P ∗C ∗P−1∗P ∗D∗P−1 = P ∗C ∗I ∗D∗P−1 = P ∗C ∗D∗P−1 ∈ K.

Hence K is closed under *.

Also, since I ∈ H, then P ∗I ∗P−1 = I ∈ K. And finally, if P ∗A∗P−1 ∈ K,
then its inverse is P ∗ A−1 ∗ P−1. (exercise)

The isomorphism is

f(A) = P ∗ A ∗ P−1.

We can now give a characterization of sets H ⊆ G which are groups.

Theorem: H is a subgroup of G if and only if ∀P ∈ G the set P ∗ H ∗ P−1

is a subgroup.

Proof Let K = P ∗ H ∗ P−1. Then, by an earlier theorem, K is a subgroup
if and only if K ∗ K = K. But

K∗K = P∗H∗P−1∗P∗H∗P−1 = P∗H∗I∗H∗P−1 = P∗H∗H∗P−1 = P∗H∗P−1 = K.

2.5. Exercises.

(1) Prove that the second group in Figure 1 is isomorphic to the non-zero
elements of Z5 under multiplication.

(2) Derive a group of order 7. Explain how you get this.
(2) Find all subgroups of Z

+
13

under multiplication.
(4) Find all subgroups of Z13 under addition.
(5) Let S = R

+×R. Define the binary operator ◦ on S by (u, v)◦(x, y) =
(ux, vx+y). Prove that S is a group under ◦. Is it Abelian? Explain.

(6) Find all elements of order 12 in the cyclic group Z12 under addition.
(7) Find all the elements of order 10 in Z40.
(8) Find all the units in the ring (Z14, +, ·). Prove that these form a

group under multiplication.
(9) Prove that Z6 under + is isomorphic to Z7 under ×. Are these

groups cyclic? Explain. If they are cyclic, find an element whose
order is 6.

(10) Prove that any subgroup of a cyclic group is cyclic.
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