
MATH 2113 - Midterm Solutions

February 18

1. A bag of marbles contains 4 which are red, 4 which are blue and 4
which are green.

a) How many marbles must be chosen from the bag to guarantee that
three are the same colour?

We can apply the pigeonhole principle where the pigeons are the mar-
bles and the holes are the colours. Since there are 3 colours, to guar-
antee 3 of the same colour, we need 3(2)+1 = 7 pigeons (marbles).

b) If you draw three marbles at random from the bag, what is the
probability that they are the same colour?

It makes no difference what colour is drawn first. From that point,
3 marbles left are the same colour (of the 11 remaining) so the prob-
ability the second is the same colour as the first is 3

11
. For the third

marble, we must pick one of the two remaining from the available 10 so
this has probability 2

10
. Therefore, the probability of picking all three

the same colour is 3
11

2
10

= 3
55

.

c) How many marbles must be chosen from the bag to guarantee that
there is at least one of every colour?

This time, we can see that it is possible to choose 8 where only two
colours are represented (all red and blue for example) but any 9 marbles
will contain all colours of marbles. Therefore, the minimum required is
9.

d) If you draw three marbles at random from the bag, what is the
probability that they are all different colours?



As before, the first marble drawn does not matter. To choose one
that is of a different colour is 8

11
. Then there are only 4 marbles left

of the colour not yet represented, so the probability of drawing one of
them is 4

10
. Therefore, the probability of drawing marbles of all three

colours is 16
55

.

2. For how many integers from 1 to 9999 is the sum of their digits equal
to 9?

For all such integers, we recognize that this is the same as solving the
problem of counting the number of solutions to x1 + x2 + x3 + x4 = 9
where xi ≥ 0. We could write the digits x1 through x4 in order to
create a number between 1 and 9999. Using the result from class, we

get that there are

(

9 + 3
9

)

= 220 solutions. Therefore, there are 220

positive integers less than 10000 which have this property.

3. a) Define P (A|B).

P (A|B) =
P (A ∩ B)

P (B)

b) Prove that if P (A) = P (B) then P (A|B) = P (B|A)

P (A|B) =
P (A ∩ B)

P (B)
=

P (A ∩ B)

P (A)
= P (B|A)

c) Define what it means for A and B to be independent events.

A and B are independent if they satisfy P (A|B) = P (A), or equiv-
alently, P (A ∩ B) = P (A) · P (B).

Suppose there are three suppliers of computer parts X,Y and Z. Where
5% of X’s products are superior quality, 10% of Y ’s products are supe-
rior quality and 15% of Z’s products are superior quality. A particular
store gets 50% of its parts from X, 30% from Y and 20% from Z.



d) If a unit is purchased, what is the probability that it is superior
quality?

We will let S be the even that a unit is of superior quality. Since
the superior product must have come from one of the three suppliers,
we can deduce that

P (S) = P (S ∩ X) + P (S ∩ Y ) + P (S ∩ Z)

= (0.05)(0.5) + (0.1)(0.3) + (0.15)(0.2)

= (0.025) + (0.03) + (0.03)

= 0.085

e) If a unit in the store is found to be superior quality, which supplier
is most likely to have come from?

For each of the three suppliers, we calculate the appropriate condi-
tional probabilities:

P (X|S) =
P (X ∩ S)

P (S)
=

0.025

0.085
.
= 0.2941

P (Y |S) =
P (Y ∩ S)

P (S)
=

0.03

0.085
.
= 0.3529

P (Z|S) =
P (Z ∩ S)

P (S)
=

0.03

0.085
.
= 0.3529

So, the superior quality unit is most likely from either Y or Z (each
with the same probability).

4. a) Define the mathematical expression ”n choose r”.

(

n

r

)

=
n!

r!(n − r)!

b) Prove Pascal’s identity:
(

n + 1
r

)

=

(

n

r

)

+

(

n

r − 1

)



As seen in class, there are at least 2 or 3 ways to prove this identity. I
will present my favourite here:

Suppose there are n + 1 people in a room (one of whom is Bob). We
want to find out how many ways there are to make a group of r of them.

Of course, this is equal to

(

n + 1
r

)

. We could also count the number

of ways as follows: If we make a group without Bob, there are

(

n

r

)

combinations. If we include Bob, we must choose r − 1 more from the

remaining n giving

(

n

r − 1

)

combinations. Since every group either

contains Bob or it doesn’t, we must have counted exactly the same
number of combinations. Therefore,

(

n + 1
r

)

=

(

n

r

)

+

(

n

r − 1

)

5. Let D = {1, 2, 3, ..., 52} and define s : D → D by

s(x) =











2x − 1 if 1 ≤ x ≤ 26

2x − 52 if 27 ≤ x ≤ 52

a) Is s a well defined function?

We can easily check that s is defined for all x ∈ D and that for
1 ≤ x ≤ 26, 1 ≤ s(x) ≤ 51. Also, for 27 ≤ x ≤ 52 we get that
2 ≤ s(x) ≤ 52. Therefore, s is well defined.

b) Is s one to one?
c) Is s onto?

If s(x) is odd then we can calculate that x = s(x)+1
2

and if s(x) is even

then we can calculate that x = s(x)+52
2

. Since this defines the inverse of
s, we have found the inverse and conclude that s is one to one and onto.



d) Find an expression for s ◦ s.

We simply apply the function twice. Since s(x) could be more or less
than 26, we are going to get 4 cases instead of just two.

(s ◦ s)(x) =



















































4x − 3 if 1 ≤ x ≤ 13

4x − 54 if 14 ≤ x ≤ 26

4x − 105 if 27 ≤ x ≤ 39

4x − 156 if 40 ≤ x ≤ 52

6. Let D = {1, 2, 3, ..., 52} and let c be a constant such that 1 ≤ c ≤ 52.
Define fc : D → D by

fc(x) =











x − c if x > c

x + 52 − c if x ≤ c

a) Prove that fc is a well defined function.

fc is defined for all x. In each of the two cases 1 ≤ x − c ≤ 52 when
x > c and 1 ≤ x + 52 − c ≤ 52 when x ≤ c.

b) Prove that fc is one to one for all c.

As we did in question 5, each case is a linear function which will be
one to one. But it could be the case that fc(x1) = fc(x2) if x1 > c and
x2 ≤ c. But in this case we get that

fc(x1) = fc(x2)

x1 − c = x2 − c + 52

x1 = x2 + 52

This of course is impossible since the xs are chosen from D which only
has values from 1 to 52. Therefore, it must be the case that fc is one



to one.

c) Prove that fc is onto for all c.

Since fc is a map between sets of the same size and fc is also one
to one, we can conclude that it must also be onto.

d) Find an expression for f−1
c

.

f−1
c

(x) =











x + c if x ≤ 52 − c

x − 52 + c if x > 52 − c

To double check you could compute (f−1
c

◦ fc) to show that it is the
identity, though this is not required.


