
1. Rings and Fields

1.1. Introduction to Rings. The operations of addition and multiplica-
tion in real numbers have direct parallels with operations which may be
applied to pairs of integers, pairs of integers mod another positive integer,
vectors in Rn, matrices mapping Rn to Rm, polynomials with real or integer
coefficients, etc. The properties of the operations may be slightly different
in each application, but there remains a subset of the properties of + and ·,
(addition and multiplication), which are common to all these examples. We
will first define an abstract object called a Ring on which certain operations
are possible which satisfy given properties. A ring will turn out to be a gen-
eralization of the real or complex numbers, and many other sets on which
two operations are defined.

Definition: A Ring is a non-empty set, S on which two binary operations,
from S × S to S,are defined, denoted by + and ·, such that

(1) ∀a, b ∈ S, a + b ∈ S, a · b ∈ S,

and ∀a, b ∈ S the following properties of + and · hold:

(a) a + b = b + a. (+ is commutative.)
(b) a + (b + c) = (a + b) + c. (+ is associative.)
(c) ∃z ∈ S, a + z = z + a = a. (There is an additive identity z.)
(d) ∀a ∈ S, ∃b, a+b = b+a = z. (There is an additive inverse denoted

by −a.)
(e) ∀a, b, c ∈ S, a · (b · c) = (a · b) · c. (· is associative.)
(f) ∀a, b, c ∈ S, a · (b + c) = a · b + a · c. (· is distributive over +.)

Also, ∀a, b, c ∈ S, (b + c) · a = b · a + c · a.

The ring, with the two operations, is denoted by (S, +, ·). The conditions
given in (1) are expressed by saying that S is closed under the operations +
and ·.
Definitions:

(a) If · is commutative (S, +, ·) is a commutative ring.
(b) If ∀a, b ∈ S we have a · b = z ↔ (a = z) ∨ (b = z) then (S, +, ·)

has no divisors of zero. If ∃a, b, a, b 6= z and a · b = z then a, b are
called divisors of zero.

(c) If ∃e ∈ S such that ∀a ∈ S, a ·e = e ·a = a then e is a multiplicative
identity, or unity. If ∃a, b ∈ S which satisfy a · b = e, then a, b are
called units.

1.2. Examples of Rings. Given a non-empty set S, with operations de-
fined in it, we have an Algebraic Structure. We now discuss examples of
algebraic structures which are Rings.

What is interesting is the properties of +, · which exist in arithmetic over
R but are not required here. For example:
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+ a b c

a a b c

b b c a

c c a b

· a b c

a a a a

b a b c

c a c b

Figure 1. A ring of three elements

+ s t v w x y

s s t v w x y

t t v w x y s

v v w x y s t

w w x y s t v

x x y s t v w

y y s t v w x

· s t v w x y

s s s s s s s

t s t v w x y

v s v x s v x

w s w s w s w

x s x v s x v

y s y x w v t

Figure 2. A commutative ring of 6 elements

(i) It is not assumed that · is commutative.
(ii) There need not be a multiplicative identity, that is an element e ∈ S

such that ∀a ∈ S a · e = a.
(iii) There may not exist a multiplicative inverse for all a 6= z; that is

there may be elements a 6= z for which no b exists with a · b = e,
even if a multiplicative identity e exists.

(iv) No concept of ordering is necessary.

We now look at several examples of rings.

(1) (R, +, ·)), where R is the set of real numbers. Similarly, (Z, +, ·),
where Z is the set of integers; and (Q, +, ·), where Q is the set of
rationals.

(2) A finite ring with S = {a, b, c} whith +, · defined by the tables in
1. Here a plays the role of zero, b is the multiplicative identity,
every element other than a has a multiplicative inverse, there are no
divisors of zero, and −b = c. Multiplication is commutative.

(3) A finite ring with S = {s, t, v, w, x, y}. (See Figure 2.) Here s

plays the role of zero, and t is the multiplicative identity. The only
elements that have a multiplicative inverse are t, y, and there are
divisors of zero. For example w · v = v · x = q · x = s. Multiplication
is commutatative.

(4) Let (Z, +, ◦), where Z is the set of all integers, be an algebraic
structure, with + being the usual integer addition, and with ◦ being
defined by

a ◦ b = a + a · b + b,

where · is the usual integer multipication. Is (Z, +, ◦) a ring?
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Since the addition operation is the usual operation on integers we
can assume axioms (a), (b) hold. Axiom (c) holds with z = 0. Axiom
(d) holds with -a as the additive inverse.

For axiom (e) note that

a ◦ (b ◦ c) = a ◦ (b + b · c + c)

= a + a · (b + b · c + c) + b + b · c + c.

This simplifies to a + b + c + a · b + a · c + b · c + a · b · c. Also

(a ◦ b) ◦ c = (a + a · b + b) ◦ c

= a + a · b + b + (a + a · b + b) ◦ c + c.

This also simplifies to a + b + c + a · b + a · c + b · c + a · b · c. Hence
axiom (e) holds. What about axiom (f)?

In each of the following examples, show that (S, +, ·) is in fact a ring. Check
to see if it is a commutative ring, whether there is a unity, and if there are
any units.

(4) Arithmetic mod m ∈ Z. The integers mod m are {0, 1, 2, . . . , m−1},
and are denoted by Zm. If a, b ∈ Zm then a + b = c mod m, and
a · b = d mod m.

Properties (a),(b),(e),(f), are properties carrying over from regular
integer arithmetic. The additive identity is 0. The additive inverse
of n where 0 < n ≤ m− 1 is m− n, since (m− n) + n ≡ 0 mod m.
The additive inverse of 0 is 0.

Multiplication is commutative as in integer arithmetic.

There is a unity, namely 1. The question of the existence of units
is a bit less obvious. If m is prime, then for any a ∈ Zm, ∃b ∈ Zm

with a · b = 1 mod m. To see this, if a is an arbitrary integer in the
range 1 ≤ a ≤ m−1, and we form a ·k, for k = 1, 2, . . . , m−1 we get
m−1 integers mod m. If any two of these are equal, say k ·a = j ·a,
with j < k, then a · (k − j) = 0 mod m. This is impossible, since m

has no factors, and so the m− 1 values are distinct. Therefore there
is one k such that k · a = 1 mod m. Therefore every integer in the
range [1, m − 1] is a unit. (Proof in class.)

If, however, m is composite then there exists divisors of zero, which
are not units. But if a is relatively prime to m, then a is a unit.
(Proof in class.)

For example, the addition and multiplication tables for Z5 are in
Figure 3.

If we identify {s, t, v, w, x, y} in Figure 2 with {0, 1, 2, 3, 4, 5}, then
we get the table for Z6. Note that 5 has an inverse, namely itself,
but 2,3,4 are divisors of zero.
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+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Figure 3. The ring of integers mod 5

In Z8 all odd integers are units and all even integers are divisors of
zero.

(5) The set of {a + b
√

3 | a, b ∈ Z}.
Addition of these objects is just like working with ordered pairs (a, b).
The

√
3 is just a symbol. Therefore requirements (a), (b), (c), (d)

hold. But the multiplication properties need to be looked at.

(a + b
√

3) · (c + d
√

3) = (ac + 3bd) + (ad + bc)
√

3

so that multiplication gives objects which are still in the set. The
properties of multiplication are inherited from those of integer mul-
tiplication. Hence multiplication is commutative.

There is a unity, namely 1 + 0
√

3. But are there units? Consider

1

a + b
√

3
=

a − b
√

3

a2 − 3b2
.

Then a + b
√

3 is a unit only if a
a2

−3b2
and b

a2
−3b2

are both integers.

This leads to 6 units, namely ±1,±2 ± 1
√

3.

Are there any divisors of zero? That is, are there values of a, b, c, d

such that (a + b
√

3) · (c + d
√

3) = 0? If so, then it follows that

ac + 3bd = 0; ad + bc = 0.

Therefore

acd = −3bd2; ∴ cad = −3bd2; ∴ c(−bc) = −3bd2.

Therefore c2 = 3d2, provided b 6= 0. If b = 0 then it is easy to show
that one of the multiplicands = 0. Now assume that c, d have no
common factors. (We can cancel any common factor.) But c2 = 3d2

means that 3|c2, i.e. 3|c, and so 32|c2. Therefore 3|d2 and 3|d, which
is not possible since we have removed all common factors of c, d.
Therefore there are no divisors of zero.

(6) The set of m × n matrices Rn to Rm.

Multiplication may not even be defined. It is necessary to have
n = m before we can multiply two such matrices.
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The ring properties all hold for m×m matrices over the real numbers.
The unity is the identity matrix. Units are the invertible matrices.
Multiplication is not commutative.

(7) The set {a + bi | a, b ∈ R, i2 = −1}. These are the set of complex
numbers.

The ring properties can be shown as in example (5). The unity is 1,
and every non-zero complex number has an inverse. Multiplication
is commutative.

(8) The set of 2 × 2 matrices given by

a

[

1 0
0 1

]

+ b

[

0 1
−1 0

]

where a, b ∈ Z5.

Write these objects as aI + bJ . Then note that J2 = −I, that is J

plays a role somewhat like i in example (4).

There is a unity, namely I. Since 5 is prime in Z5 every element of
this set is a unit.(This kind of structure will be called a field.) It is
easy to verify that multiplication of these elements is commutative.
We can write the inverse of aI + bJ formally as (a2 + b2)−1(aI − bJ)
which is in the set since (a2 + b2)−1 is in Z5.

(9) The set as in (5) but with a, b ∈ Z5.

(10) S = P (U), the set of subsets of a set U . Define + as ∪ and · as ∩.

(11) The set of 2 × 2 integer matrices with determinant +1 or -1.

1.3. Properties of Rings. Some properties of arithmetic in rings, follow-
ing from the axioms, are now developed.

(a) If a+ b = a+ c then b = c. If b+a = c+a then b = c. (Cancellation
Laws.)

If a + b = a + c then we can add −a to both sides of the equation to
get b = c.

(b) The zero element is unique.

If z1 and z2 are both additive identities, then from the definition

z1 + z2 = z1; z1 + z2 = z2,

the first because z2 is an additive identity, and the second because
z1 is an additive identity. Hence z1 = z2.

(c) The additive inverse of a, namely −a is unique.

If b and c are additive inverses of a then a + b = 0 = a + c, by
definition. Hence by the cancellation law, b = c.
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(d) If b is the additive inverse of a then −b = a.

Since a + (−a) = 0 = b + (−b), where b = −a, then cancelling (−a)
and b gives a = −b.

(e) (−a) · (−b) = a · b.
(f) a · (−b) = (−a) · b = −(a · b)
(g) If a unity exists it is unique.

If u1 and u2 are both unity, then

u1 = u1 · u2 = u2

the first equality holding because u2 is a unity, and the second be-
cause u1 is a unity.

(h) If a unity exists and x is a unit, then the multiplicative inverse of x

is unique.

Let a, b both be multiplicative inverses of x. Then xa = xb = 1.
Premultilpying by a gives axa = axb and so, since ax = 1, a = b.

1.4. Integral Domains and Fields. Definitions:

(i) A commutative ring with a unity, in which there are no divisors of
zero is called an Integral Domain.

(ii) If (S, +, ·) is an integral domain and every non-zero element is a
unit (i.e. has an inverse), then (S, +, ·) is called a Field. (Note: If
(S, +, ·) is a field then it is an integral domain.)

The simplest common example of a field is the set of real numbers, R.
The integers fail to be a field because the only units are +1 and -1. But
the integers themselves form an integral domain, since the product of two
integers is zero if and only if at least one of the integers is zero.

Which of the examples in section 1.2 are integral domains or fields?

Examples:

(12) The set of even integers is an integral domain, but not a field.
(13) The set R+ × R+ with +, · defined by

(a, b) + (c, d) = (a + c, b + d); (a, b) · (c, d) = (ac − bd, ad + bc).

1.5. Subrings and Ring Isomorphisms. Definition: Two rings, (S1, +, .)
and (S2, +, .) are isomorphic if there is a one-to-one and onto mapping f :
S1 → S2 such that

∀a, b ∈ S1, f(a + b) = f(a) + f(b); f(a · b) = f(a) · f(b).

We write S1
∼= S2.

For example, the ring with elements a, b, c in example (2) of section 1.2 is
isomorphic to Z3, and the ring in example (3) of section 1.2 is isomorphic
to Z6.
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+ s v x

s s v x

v v x s

x x s v

· s v x

s s s s

v s x v

x s v x

Figure 4. Subring of the ring in Figure 2, isomorphic to Z3.

+ s w

s s w

w w s

· s w

s s s

w s w

Figure 5. Subring of the ring in Figure 2, isomorphic to Z2.

In Figure 2, there is a subset {s, v, x} which forms a ring on its own. This
is a subring of the original ring. It is isomorphic to Z3, and shown in Figure
4. The original ring is isomorphic to Z6, and so we might wonder if there
is a subring which is isomorphic to Z2. There is, in fact, namely the ring
based on the elements {s, w}, given in Figure 5.

(14) Let S1 be the above ring of 3 elements, and let S2 be the ring with
2 elements. Now define a ring S over S1 × S2 as follows.
(a) Addition, denoted by ⊕ is defined by

∀(a, b), (c, d) ∈ S1 × S2, (a, b) ⊕ (c, d) = (a + b, c + d).

(b) Multiplication, denoted by ⊗ is defined by

∀(a, b), (c, d) ∈ S1 × S2, (a, b) ⊗ (c, d) = (a · b, c · d).

Show that (S,⊕,⊗) is a ring. Is it isomorphic to Z6?

(15) If S1, S2 are two rings, with S1
∼= S2, under the isomorphism f :

S1 → S2, then:
(i) f(zS1

) = zS2
where zS1

, zS2
are the zero elements in S1, S2.

(ii) If a unity, eS1
, exists in S1 then there is a unity, eS2

in S2, and
f(1S1

) = 1S2
.

(iii) If S1, S2 each have a unity, and is a ∈ S1 is a unit, then f(a) is
a unit in S2, and f(a−1) = f(a)−1.

(16) Let (S, +, ·) be a finite ring, with n elements, a0, a1, a2, . . . , an−1,
where a0 is the zero. If an element a satisfies a2 = a, then a is said
to be idempotent. If for some positive integer k, ak = a0, then a is
said to be nilpotent. Show that
(i) If a 6= a0 and a is idempotent then a cannot be nilpotent.
(ii) If a 6= a0 and a is nilpotent, then a is a divisor of zero.
(iii) In an integral domain, the only nilpotent element is the zero

element, and the only idempotent element is the unity.
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Definition: Let (S, +, ·) be a ring, and let T ⊆ S be a subset of S. Then
(T, +, ·) is a subring of (S, +, ·) if

(i) ∀a, b ∈ T, a + b ∈ T, a · b ∈ T and
(ii) ∀a ∈ T, −a ∈ T .

A second characterisation of a subring of a given ring is

∀a, b ∈ T, a − b ∈ T, a · b ∈ T.

We have to prove that these two characterisations are equivalent. Suppose
that T ⊆ S and that the elements of T satisfy the conditions of the definition
of a subring. Then ∀a, b ∈ T we know that −b ∈ T , and so a + (−b) ∈
T , which states that a − b ∈ T . Hence the definition implies the second
characterisation.

Now, suppose that the elements of T satisfying the second condition. Then
∀a, b ∈ T, a − b ∈ T . Hence if a is in T , then a − a ∈ T and so z ∈ T .
Hence z − a = −a ∈ T , hence −a ∈ T . Also, for any b ∈ T , −b ∈ T , and so
a − (−b = a + b ∈ T . Therefore T satisfies the requirements of a subring.

1.6. Exercises.

(1) Let (S, +, ·) be a ring with unity. For any integer n ≥ 0, define na

where a ∈ S, to be a + a + . . . + a, a added to itself n times. 0a is
interpreted as z. Define (−n)a to be n(−a) for n ≥ 0. Let m, n be
non-negative integers. Prove:
(a) (n + m)a = ma + na.
(b) n(ab) = (na)b = a(nb).
(c) m(na) = (mn)a.

(2) The characteristic of a ring (S, +, ·) is the smallest positive integer
n such that n · e = z where e is the multiplicative identity, and z is
the additive identity.
(a) If S is finite prove that the the characteristic is finite.
(b) If a ∈ S is an element of a finite ring with characteristic n then

na = z.
(c) Give an example of a finite ring with characteristic n in which

there is an element a with ma = z for some m < n. (Hint: look
at the examples we have done.)

(3) Let Zm be the ring of integers mod m. What is its characteristic?
Show that every element of Zm is either a unit, or a divisor of zero.

(4) If (S, +, ·) is a finite integral domain, prove that the characteristic is
a prime number. (Hint: see exercise (2).)

(5) Let the operations ⊕ and ⊗ be defined on Z, the set of integers, by

a ⊕ b = a + b + a · b; a ⊗ b = a + b + 1,
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where + and · are the usual operations on Z. Is (Z,⊕,⊗) a ring
under these operations?

(6) Is the set of all odd integers an integral domain?

(7) Let S be the set of all rational numbers p
q
, where p is an integer,

and q is of the form 2a, where a ≥ 0 is integer. Is S a ring? Is it an
integral domain? Is it a field?

(8) Which elements in the ring (Z12, +, ·) are units? Prove your claim.
If this set is U , is U a subring of Z12?

(9) If (S, +, ·) is a ring, and if a is a nilpotent element, prove that 1 + a

and 1 − a are units.

(10) Is {0, 2, 4, 6, 8} a subring of Z10? If so, construct the addition and
multiplication tables.


