MATH 2113 - Assignment 1 Solutions

Due: Jan 14

6.1.4 - The set of all black cards with an even number is

{2, 4, G, 8, 10, 2. 40, Gb, S, 10 }

There are 10 elements in the set and there are 52 in the sample space, so the
probability of this event can be expressed as P(E) = % = é—g = %.

6.1.12 (b) Each of the following sets represent the associated event:

(i) {GBB, BGB, BBG}

(ii) {GGB,GBG, BGG, GGG}

(iii) {BBB}

6.1.19 (b) - The set of outcomes for this event is
{BlBl) BIBQ7 B1W17 BIW27 B1W37 BQBl7 B2B27 BQWh B2W27 B2W3}

We are told from part (a) that there are 25 outcomes in the sample space.
Therefore, the probability of this event is P(E) = %' =2 =2
6.1.19 (c) - The set of outcomes for this event is

(W W, WAWo, WiWs, WoWy, WoWy, WoWs, WalWy, WaWa, W3Ws}

We are told from part (a) that there are 25 outcomes in the sample space.
Therefore, the probability of this event is P(E) = % =3
6.1.22 - The three digit integers are 100 through 999. The first multiple
of 6 is 102 while the last one is 996. We can rewrite these numbers as 102
=96 +(1)(6) and 996 = 96 + (150)(6). Therefore, we have exactly 150 3-
digit numbers which are multiples of 6. There are 900 3-digit numbers, so
1. . . . 150 o 1
the probability that a randomly chosen 3-number is a multiple of 6 is 555 = .
6.1.29 - Using Theorem 6.1.1, we have that n — m + 1 = 87 and n = 326.
Substituting, we find that m = 326 — 87 + 1 = 240.



6.1.32 - Every 7th day is a Sunday, so we can simply divide to find that
there are L@j = 52 Sundays in the year. To count the number of Mondays,
we must first note that a Monday occurs every 7th day starting from Jan-
uary 2nd. Adding the one on January first gives us a total of 1+ L@j =53

Mondays in that year.

6.1.33 - We begin by fixing a particular m and considering the base case for
which n = m. Clearly, there is only one element in our list and n —m + 1 =
m —m + 1 = 1. Therefore, it is true in the base case.

Now assume that the statement holds for the case when n = k.That is
to say that there are kK — m + 1 numbers from m to k inclusive. When
n = k + 1 we consider the numbers from m to k + 1. This is exactly the
numbers m, ..., k, k + 1. By the induction hypothesis, we know that from
m to k there are k — m + 1. So, with one more number added there are
(k—m-+1)4+1=(k+1) —m+1 as desired. Therefore, the statement is
true for n = k4 1. Since m can be any arbitrary integer, by mathematical
induction the statement is always true.

6.2.2 - The tree would look as follows:

In this diagram, the top of the tree represents A having already won two
games. Each time A wins a game we take the left branch, and when B wins,
we take the right branch. Each leaf of the tree represents an outcome.

6.2.15 - The three numbers may be chosen independently and each choice has
30 options. Therefore, using the multiplication rule, there are (30)(30)(30)
= 27000 different combinations possible.



If we don’t allow repeated numbers, we only have 29 choices for the sec-
ond number and 28 for the third. Therefore, there are (30)(29)(28) = 24360
combinations without repeated numbers.

6.2.16 - We can use the multiplication rule for all three parts. In (a) we
find (4)(3)(4)(4) = 192 different PINs. For (b), we get (4)(1)(4)(3) = 48.
Finally, for (c) we note that we have 10, 9,8,7 choices respectively for the
1st, 2nd, 3rd and 4th digits of the PIN. Therefore, there are (10)(9)(8)(7) =
5040 different numeric sequences with no repeated digit.



