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6.6.4 - Using the definition, we find that
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6.6.13 - Using the definition we can calculate
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6.6.20 - For a base case, we consider n=0. Since
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we find that the statement is true for this case. Then, for n = k the inductive
hypothesis becomes
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Finally, we would like to prove the case where n = k + 1:
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Which is what is desired.

6.6.21 - We start be using the definition to get
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Now, we know that the numerator is a multiple of p since we could write it
as p(p — 1)!. Also, the denominator is a product of integers all of which are
less than p. Since p cannot be divided by any integer less than itself, we can
determine that -2=15 = & is also an integer. But then we have that
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Which implies that it is indeed a multiple of p. Equivalently, p divides the
quantity.

6.7.6 - Using the binomial theorem we can calculate:
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6.7.25 - Clearly, we can rewrite the formula and apply the binomial theo-
rem as follows:
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6.8.3 - a) Since A and B are mutually exclusive, we know that P(ANB) = 0.
Therefore, we apply the general union formula to get P(AU B) = P(A) +
P(B) — P(ANB) =04+ 0.2 —0 = 0.6.

b) First we note that since AU BUC = S we have P(AUBUC(C) = 1.
Then if we apply the general union formula, we get

1=P(AUBUC)=P(AUB)+ P(C)-—P((AUB)NC)

We now use result of part a) and the fact that P((AU B)NC') > 0 to arrive
at
1 <06+ P(C)

Therefore, we conclude that P(C') > 0.4. Hence, it is impossible for P(C) =
0.2.

6.8.17 - We start by noting that there are = 10 ways to pick two
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balls from the urn. This table summarizes the outcomes, their probabilities
and sum appearing on the balls.

Outcome | Number of Outcomes | Probability | Payoff
{1,2} 2 Do = % ag =3
{1,8} 2 D1 = % a; =9
{2,2} 1 P2 = 15 as =4
{2,8} 4 ps=2% |az=10
{8,8} 1 Py = % ay = 16




Now, we apply the formula for expected values to get:

1 1 1 1 2 1 42

iy = — 3 oy 9 - 4 by 10 - 16 - —

S = 5(8) + 500) + 154+ £ 10) 4 15(16) = 2
Therefore, the expected sum of the numbers printed on the balls is 4—52 = 8.4.

6.9.2 - If we rearrange the definition for conditional probability to solve for
P(XNY), we get

P(XNY)=P(Y)-P(X|Y) = G) (%) B %

6.9.14 - a) There are 180 parts altogether, and 100 are from the first fac-
tory, so the probability of choosing one from the first factory is g.

b) Clearly, the rest of the parts must be from the second factory, so the
4

probability is 1 — g =3
c) We can use the addition rule along with the results from the first two
parts. There is a g probability that a chosen part is from the first factory
and a 5% probability that it is defective. Therefore, the probability of both of
these things occurring is g% = 2%' We can apply the same logic for the parts
from the second factory to get 5% = 4—15. Finally, we apply the addition rule
(since a part can be from one factory, but not both) to get the probability
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of defective part to be g5 + ;= = 35-

d) Using the definition of conditional probability we let X be the event that
the part came from the first factory and let Y be the event that the part is

defective. Now, P(X NY) = g and P(Y) = . Therefore,

P(X|Y):%:%:_



