MATH 2113 - Assignment 5 Solutions

Due: Feb 16

6.2.20 - a) Using theorem 6.1.1, the number of elements in a list from n to m is $m-n+1$. Therefore, from 1000 to 9999 there are $9999-1000+1=9000$ elements.
b) Since even and odd numbers alternate, half of our list is composed of odd numbers. Therefore, there are 4500 of them.
c) To construct a 4 digit number consisting of distinct digits we have 9 ways to choose the first digit (we can't pick 0), 9 ways to choose the second (we can't repeat the first) then 8 and 7 ways to choose the last two without repetition. Using the multiplication rule, we find that there are $(9)(9)(8)(7)=4536$ numbers in the list that have distinct digits.
d) To construct a 4 digit odd number, we have 5 choices for the last digit. Then we have 8 choices for the first (not 0 or same as last digit), 8 choices for the second and 7 choices for the third. Using the multiplication rule again, we get that there are $(8)(8)(7)(5)=2240$ odd numbers with distinct digits in the list.
e) In each case, we divide by the size of our sample space to compute the probability. Respectively, we get $\frac{4536}{9000}=\frac{63}{125}$ and $\frac{2240}{9000}=\frac{56}{225}$.
$6.3 .10-$ a) The letters in the word THEORY are distinct, so there are $6!=720$ ways to rearrange them.
b) We can consider ' TH ' to be a single letter and find that there are now 5 ! ways to rearrange the 5 letters. We get another 5 ! ways when we consider the case for 'HT'. Therefore, in total, there are $(2)(5!)=240$ such rearrangements.
6.4 .16 - a) Since there are 40 boards and 5 are chosen, we get $\binom{40}{5}=$ 658008 combinations.
b) There are 37 boards without a defect so there are $\binom{37}{5}=435897$ ways to choose 5 boards without any defects. So, all other combinations, must contain at least one defect. Therefore, there are $658008-435897=222111$ ways to choose 5 boards with at least 1 defective.
6.5.13 - First of all, we can change the question by using the substitution $x_{i}=y_{i}-2$. Then we are looking for the number of solutions to the equation $x_{1}+x_{2}+x_{3}+x_{4}=22$ where $x_{i} \geq 0$. Following the example done in class, this is equivalent to putting 3 bars with $22 X$ s to form a string. This can be done in $\binom{22+3}{22}=2300$ ways.
6.8.15 - The expected value can be expressed as:

$$
E(X)=\frac{10000000}{30000000}+\frac{1000000}{30000000}+\frac{50000}{30000000}+\frac{30000000(-0.6)}{30000000} \doteq-0.2317
$$

Therefore, you expect to lose approximately 23 cents on average.
6.9.24 - Since X and Y work independently, the probability they both miss a given error is given by $(0.12)(0.15)=0.018$. Therefore, if a manuscript contains 1000 errors, we can expect to miss $(0.018)(1000)=18$ of them.
7.2 .26 - a) C is one to one. To prove this, we begin by letting $C\left(s_{1}\right)=C\left(s_{2}\right)$ for two strings s_{1} and s_{2}. Then we get that $a s_{1}=a s_{2}$ and we conclude that $s_{1}=s_{2}$.
b) C is not onto. For example, there is no string s for which $C(s)=b$.
7.3.19 - Every three digit integer you pick need only contain one digit (repeated 3 times). We cannot, however, choose 000. Also, every three digit integer must contain at least one of the digits from 1 through 9. Therefore, using the pigeonhole principle, there are 9 holes (digits 1 through 9) so to guarantee two numbers have a digit in common, we need to have chosen 10 three digit numbers.
7.4.24 -

$$
\begin{gathered}
(g \circ f)(x)=g(f(x))=g(x+3)=-x-3 \\
(g \circ f)^{-1}(x)=-(x+3)=-x-3 \\
g^{-1}(x)=-x \\
f^{-1}(x)=x-3 \\
\left(f^{-1} \circ g^{-1}\right)(x)=f^{-1}\left(g^{-1}(x)\right)=f^{-1}(-x)=-x-3
\end{gathered}
$$

We see that $(g \circ f)^{-1}=\left(f^{-1} \circ g^{-1}\right)$.
(7.5.20 and 7.5 .21) - There are many possible answers to these questions. Here are a couple examples of each:

One to one, but not onto:

$$
\begin{gathered}
f(x)=|x| \cdot x \\
g(x)=3 x+2
\end{gathered}
$$

Onto, but not one to one:

$$
h(x)=\left\lfloor\frac{x}{2}\right\rfloor
$$

$$
k(x)=\left\{\begin{array}{cl}
\frac{x}{3} & \text { if } x=3 k \text { for some } k \\
x+1 & \text { otherwise }
\end{array}\right.
$$

