

CSCI/MATH 2113 January-April, 2005 Assignment 9, Answers.

1. Show whether each of the following sets under regular addition and multiplication is a ring.

(a) $S = \{a + \sqrt{3}b\}$ where a, b are in \mathbb{R} .

Answer: These are a subset of the real numbers, of a specific form, and therefore all the axioms hold as for real numbers. The additive inverse of $a + \sqrt{3}b$ is $-a - \sqrt{3}b$. All we have to check is closure under $+$ and \cdot . The sum of $a + \sqrt{3}b$ and $c + \sqrt{3}d$ is $(a + b) + (c + d)\sqrt{3}$, which is in the set.

The product

$$(a + \sqrt{3}b)(c + \sqrt{3}d) = (ac + 3bd) + \sqrt{3}(ad + bc),$$

and so S is closed under multiplication.

(b) $S = \{a + \sqrt{3}b + \sqrt{5}c\}$ where a, b, c are in \mathbb{R} .

Answer: As in (a), the axioms are satisfied, but this time S is not closed under \cdot . For example, the product of $\sqrt{5}$ (which is $a = b = 0, c = 1$) and $\sqrt{3}$ (which is $a = c = 0, b = 1$) is $\sqrt{15}$, which is not in S . Therefore we do not have a ring.

2.

(a) Prove $(-a) \cdot b = -(a \cdot b)$. (Part of (f), page 6.)

Answer: From the other part of (f), page 6, we have $(c) \cdot (-d) = -(c \cdot d)$, since the equation is true $\forall a, b$. In this equation put $c = -a$ and $d = -b$. Then we get $(-a) \cdot (b) = -(-a \cdot -b) = --(a \cdot b)$, by (e), page 6, which is $(a \cdot b)$ as required.

(b) Let (S, \oplus, \circ) be a structure where $S = \mathbb{R}$, and \oplus, \circ are defined by

$$\forall x, y \in S, \quad x \oplus y = x + y - 1; \quad x \circ y = x + y - xy.$$

Is this structure a ring? Explain.

Answer: The structure is closed since the elements of S are real numbers and the result of each of the binary operators are also real. Hence we have to verify that the axioms hold.

(a) \oplus is symmetric and so addition is commutative.

(b) Addition is associative since

$$x \oplus (y \oplus z) = x \oplus (y + z - 1) = x + y + z - 1 - 1.$$

and

$$(x \oplus y) \oplus z = (x + y - 1) \oplus z = x + y - 1 + z - 1 = x \oplus (y \oplus z).$$

(c) There is an additive identity, namely 1, since $x \oplus 1 = x + 1 - 1 = x$.

(d) There is an additive inverse for all elements in S . Since $x \oplus y = x + y - 1$, then $x \oplus y = 1$ if and only if $y = 1 + 1 - x$.

(e) \circ is associative:

$$x \circ (y \circ z) = x \circ (y + z - yz) = x + y + z - yz - x(y + z - xy) = x + y + z - xy - xz - yz + xyz.$$

The final expression is symmetric in x, y, z and so we will get the same expression from $(x \circ y) \circ z$.

(f) The distributive rules hold. Here is the proof of

$$x \circ (y \oplus z) = (x \circ y) \oplus (x \circ z).$$

The other distributive law is proven similarly.

$$x \circ (y \oplus z) = x \circ (y + z - 1) = x + y + z - 1 - xy - xz + x.$$

$$x \circ y \oplus x \circ z = (x + y - xy) \oplus (x + z - xz) = x + y + z + x - xy - xz - 1.$$

Hence the distributive law holds.

3. Let $(S, +, \cdot)$ be a ring. Prove

$$(a) a \cdot (b - c) = a \cdot b - (a \cdot c).$$

Answer: Since $a \cdot (b - c) = a \cdot b + a \cdot (-c)$ and $a \cdot (-c) = -(a \cdot c)$ (section 1.3, page 6, (f)), then $a \cdot (b - c) = a \cdot b - (a \cdot c)$.

$$(b) (b - c) \cdot a = b \cdot a - (c \cdot a).$$

Answer: Here $(b - c) \cdot a = b \cdot a + (-c) \cdot a = b \cdot a - c \cdot a$, using question 2, above.

4. Let $(S, +, \cdot)$ be a ring.

(a) Prove that a unit in the ring cannot also be a divisor of zero.

Answer: If a is a unit, then a^{-1} exists. Now if a is a divisor of zero it follows that

$$\exists b \quad a \cdot b = z, \quad a \neq z, b \neq z.$$

But then $z = a^{-1} \cdot z = a^{-1} \cdot a \cdot b = b$, and so $b = z$, which is a contradiction. Therefore a cannot be a divisor of zero.

(b) If $a, b \in S$ are units, is $(a + b)$ a unit? Prove your claim.

Answer: No, $a + b$ need not be a unit. In the ring \mathbb{Z}_6 , 1 and 5 are both units ($5^{-1} = 5$), but $(1+5)$ is 0, not a unit.

In general, if a ring has a unity, u , then both u and $(-u)$ are units, and $u + (-u) = z$.

5. Below are tables for a ring with elements $\{s, t, x, y\}$. Using the axioms for a ring, fill in the missing entries in the multiplication table.

Is this a commutative ring? Does it have a unity? Are there any units? Is the ring an integral domain or a field? Prove your claims.

+	<i>s</i>	<i>t</i>	<i>x</i>	<i>y</i>
<i>s</i>	<i>s</i>	<i>t</i>	<i>x</i>	<i>y</i>
<i>t</i>	<i>t</i>	<i>s</i>	<i>y</i>	<i>x</i>
<i>x</i>	<i>x</i>	<i>y</i>	<i>s</i>	<i>t</i>
<i>y</i>	<i>y</i>	<i>x</i>	<i>t</i>	<i>s</i>

·	<i>s</i>	<i>t</i>	<i>x</i>	<i>y</i>
<i>s</i>	<i>s</i>	<i>s</i>	<i>s</i>	<i>s</i>
<i>t</i>	<i>s</i>	<i>t</i>	?	?
<i>x</i>	<i>s</i>	<i>t</i>	?	<i>y</i>
<i>y</i>	<i>s</i>	?	<i>s</i>	?

Answer:

+	<i>s</i>	<i>t</i>	<i>x</i>	<i>y</i>
<i>s</i>	<i>s</i>	<i>t</i>	<i>x</i>	<i>y</i>
<i>t</i>	<i>t</i>	<i>s</i>	<i>y</i>	<i>x</i>
<i>x</i>	<i>x</i>	<i>y</i>	<i>s</i>	<i>t</i>
<i>y</i>	<i>y</i>	<i>x</i>	<i>t</i>	<i>s</i>

·	<i>s</i>	<i>t</i>	<i>x</i>	<i>y</i>
<i>s</i>	<i>s</i>	<i>s</i>	<i>s</i>	<i>s</i>
<i>t</i>	<i>s</i>	<i>t</i>	<i>x</i>	<i>y</i>
<i>x</i>	<i>s</i>	<i>t</i>	<i>x</i>	<i>y</i>
<i>y</i>	<i>s</i>	<i>s</i>	<i>s</i>	<i>s</i>

First compute, $x \cdot x$.

$$x \cdot (x + t) = x \cdot y = y \text{ according to the addition table.}$$

Therefore $x \cdot x + x \cdot t = y = x \cdot x + t$ according to the multiplication table.

Therefore $x \cdot x + t = y$, and so $x \cdot x = y + (-t) = y + t = x$.

Now, compute $y \cdot t$.

$$(y + x) \cdot t = t \cdot t = t.$$

Therefore $y \cdot t + x \cdot t = t$. Hence $y \cdot t + t = t$. Therefore $y \cdot t = s$.

Compute $y \cdot y$.

$$y \cdot (t + x) = y \cdot y \cdot y. \text{ Also:}$$

$$y \cdot (t + x) = y \cdot t + y \cdot x = y \cdot t + s.$$

Hence $y \cdot y = y \cdot t = s$.

Compute $t \cdot x$.

$$(y + t) \cdot x = x \cdot x = x. \text{ Also:}$$

$$(y + t) \cdot x = y \cdot x + t \cdot x = s + t \cdot x. \text{ Therefore}$$

$t \cdot x + s = x$. That is, $t \cdot x = x$.

Finally, compute $t \cdot y$.

$$(x + t) \cdot y = y \cdot y = s. \text{ And: } (x + t) \cdot y = x \cdot y + t \cdot y. \text{ Therefore}$$

$x \cdot y + t \cdot y = s$. That is, $x \cdot y = -t \cdot y$. Therefore $t \cdot y = -y = y$.

6. Let $\alpha = 2^{\frac{1}{3}}$. Prove that

$$(\{a + b\alpha + c\alpha^2\}, +, \cdot)$$

for $a, b, c \in \mathbb{R}$, is a ring under the usual addition and multiplication.

Answer: These are simply a subset of the real numbers. The zero is $a = b = c = 0$. Therefore the axioms hold. There is also a unity, 1. We only have to verify closure.

The sum of $a + b\alpha + c\alpha^2$ and $d + e\alpha + f\alpha^2$ is $(a + d) + (b + e)\alpha + (c + f)\alpha^2$, which is also in the set. Therefore we have closure under +.

The product of $a + b\alpha + c\alpha^2$ and $d + e\alpha + f\alpha^2$, using the fact that $\alpha^3 = 3$, is

$$(ad + 3bf + 3ce) + (ae + bd + 3cf)\alpha + (af + cd + be)\alpha^2,$$

which is still in the set. Therefore this is a ring.

7. Let $R = (S, +, \cdot)$ be a ring which is not a field. Is it possible for R to have a subring which is a field? Either prove that this is not possible or give an example of a ring with divisors of zero which has a subring which is a field.

Answer: Take \mathbb{Z}_6 . This is not a field since $2 \cdot 3 = 0 \bmod 6$. But within the ring, there is a subring $\{0, 2, 4\}$ which is a field mod 6. The unity is 4.

Note: If a ring has a unity and divisors of zero, then any subring which includes the unity will have divisors of zero. (*Why?*).

8. Let D be an integral domain. Prove that if $a^2 = 1$ then $a = \pm 1$. Is this true in a ring also? Prove it, or give a counter example.

Answer: If $a^2 = 1$ then $a^2 - 1 = z$, and therefore $(a - 1) \cdot (a + 1) = z$. Hence, since D is an integral domain (with no divisors of zero) we must have $a = 1$ or $a = -1$.

This is not true in a general ring. Take, for example, \mathbb{Z}_8 , with $a = 3$. Then $a^2 = 9 = 1 \bmod 8$. But $(a - 1)(a + 1) = 2 \cdot 4 = 0 \bmod 8$, and $a \neq 1, a \neq -1$.

9. Exercise 2, Section 1.6, page 8 of the notes. (Note the definitions in exercise 1.)

Answer: (a) Let the ring be finite, size k . Then form $e, e + e, e + e + e, \dots, ke$. These are all distinct, for if $je = ie, i < j \leq k$ then $(j - i)e = z$, and so the characteristic is finite. If they are distinct then one of these k elements must be z , i.e. $je = z$ for some $j \leq k$. That is, the characteristic is finite.

(b) Using the same arguments as in (a), if a is in the finite ring, and the size of the ring is k , then there is some $j \leq k$ such that $je = a$. Then $na = nje = (nj)e = (jn)e = j(ne = z)$, where we are using the properties of integers.

(c) Take \mathbb{Z}_6 , and look at the element 2. The characteristic is 6. But $3 \cdot 2 = 0$ in this ring.

10. Let S be a set, and $P(S)$ the power set of S . Prove that $(P(S), \Delta, \cap)$ is a ring, where Δ is the symmetric difference, and \cap is set intersection. Is this a ring? Prove your claim.

Answer: We have to show that the axioms are satisfied. The set is clearly closed under Δ and \cap .

- (a) $A\Delta B = (A \cup B) - (A \cap B) = (B \cup A) - (B \cap A) = B\Delta A$, by the properties of \cap and \cup .
- (b) The associative axiom holds because of the set theoretic properties of Δ .
- (c) The additive identity is ϕ since $A\Delta\phi = A$.

- (d) The additive inverse of A is A itself. Recall the example in class where the “plus” of the ring was \cup . It was not possible to define an additive identity. But here $A\Delta A = \phi$.
- (e) $A \cap (B \cap C) = (A \cap B) \cap C$ is a property of \cap .
- (f) $A \cap (B\Delta C) = (A \cap B)\Delta(A \cap C)$ was an assignment example in csci 2112. I will do this in a tutorial if necessary.