
CSCI/MATH 2113 January-April, 2005 Assignment 9, Answers.

1. Show whether each of the following sets under regular addition and
multiplication is a ring.

(a) S = {a +
√

3b} where a, b are in R.

Answer: These are a subset of the real numbers, of a specific form, and
therefore all the axioms hold as for real numbers. The additive inverse of
a +

√
3b is −a −

√
3by. All we have to check is closure under + and ·. The

sum of a +
√

3b and c +
√

3d is (a + b) + (c + d)
√

3, which is in the set.

The product

(a +
√

3b)(c +
√

3d) = (ac + 3bd) +
√

3(ad + bc),

and so S is closed under mutliplication.

(b) S = {a +
√

3b +
√

5c} where a, b, c are in R.

Answer: As in (a), the axioms are satisfied, but this time S is not closed
under ·. For example, the product of

√
5 (which is a = b = 0, c = 1) and

√
3

(which is a = c = 0, b = 1) is
√

15, which is not in S. Therefore we do not
have a ring.

2.

(a) Prove (−a) · b = −(a · b). (Part of (f), page 6.)

Answer: From the other part of (f), page 6, we have (c) · (−d) = −(c · d),
since the equation is true ∀a, b. In this equation put c = −a and d = −b.
Then we get (−a) · (b) = −(−a · −b) = − − (a · b), by (e), page 6, which is
(a · b) as required.

(b) Let (S,⊕, ◦) be a structure where S = R, and ⊕, ◦ are defined by

∀x, y ∈ S, x ⊕ y = x + y − 1; x ◦ y = x + y − xy.

Is this structure a ring? Explain.

Answer: The structure is closed since the elements of S are real numbers
and the result of each of the binary operators are also real. Hence we have
to verify that the axioms hold.

(a) ⊕ is symmetric and so addition is commutative.
(b) Addition is associative since

x ⊕ (y ⊕ z) = x ⊕ (y + z − 1) = x + y + z − 1 − 1.

and

(x ⊕ y) ⊕ z = (x + y − 1) ⊕ z = x + y − 1 + z − 1 = x ⊕ (y ⊕ z).

(c) There is an additive identity, namely 1, since x⊕ 1 = x + 1− 1 = x.
(d) There is an additive inverse for all elements in S. Since x ⊕ y =

x + y − 1, then x ⊕ y = 1 if and only if y = 1 + 1 − x.
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(e) ◦ is associative:

x◦(y◦z) = x◦(y+z−yz) = x+y+z−yz−x(y+z−xy) = x+y+z−xy−xz−yz+xyz.

The final expression is symmetric in x, y, z and so we will get the
same expression from(x ◦ y) ◦ z.

(f) The distributive rules hold. Here is the proof of

x ◦ (y ⊕ z) = (x ◦ y) ⊕ (x ◦ z).

The other distributive law is proven similarly.

x ◦ (y ⊕ z) = x ◦ (y + z − 1) = x + y + z − 1 − xy − xz + x.

x ◦ y ⊕ x ◦ z = (x + y − xy) ⊕ (x + z − xz) = x + y + z + x − xy − xz − 1.

Hence the distributive law holds.

3. Let (S, +, ·) be a ring. Prove

(a) a · (b − c) = a · b − (a · c).

Answer: Since a · (b − c) = a · b + a · (−c) and a · (−c) = −(a · c)
(section 1.3, page 6, (f) ), then a · (b − c) = a · b − (a · c).

(b) (b − c) · a = b · a − (c · a).

Answer: Here (b− c) ·a = b ·a+(−c) ·a = b ·a− c ·a, using question
2, above.

4. Let (S, +, ·) be a ring.

(a) Prove that a unit in the ring cannot also be a divisor of zero.

Answer: If a is a unit, then a−1 exists. Now if a is a divisor of zero
it follows that

∃b a · b = z, a 6= z, b 6= z.

But then z = a−1 · z = a−1 · a · b = b, and so b = z, which is a
contradiction. Therefore a cannot be a divisor of zero.

(b) If a, b ∈ S are units, is (a + b) a unit? Prove your claim.

Answer: No, a + b need not be a unit. In the ring Z6, 1 and 5 are
both units (5−1 = 5), but (1+5) is 0, not a unit.

In general, if a ring has a unity, u, then both u and (−u) are units,
and u + (−u) = z.

5. Below are tables for a ring with elements {s, t, x, y}. Using the axioms
for a ring, fill in the missing entries in the multiplication table.

Is this a commutative ring? Does it have a unity? Are there any units? Is
the ring an integral domain or a field? Prove your claims.
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+ s t x y

s s t x y

t t s y x

x x y s t

y y x t s

· s t x y

s s s s s

t s t ? ?
x s t ? y

y s ? s ?

Answer:
+ s t x y

s s t x y

t t s y x

x x y s t

y y x t s

· s t x y

s s s s s

t s t x y

x s t x y

y s s s s

First compute, x · x.

x · (x + t) = x · y = y according to the addition table.
Therefore x · x + x · t = y = x · x + t according to the multiplication table.
Therefore x · x + t = y, and so x · x = y + (−t) = y + t = x.

Now, compute y · t.
(y + x) · t = t · t = t.
Therefore y · t + x · t = t. Hence y · t + t = t. Therefore y · t = s.

Compute y · y.
y · (t + x) = y · y · y. Also:
y · (t + x) = y · t + y · x = y · t + s.
Hence y · y = y · t = s.

Compute t · x.
(y + t) · x = x · x = x. Also:
(y + t) · x = y · x + t · x = s + t · x. Therefore
t · x + s = x. That is, t · x = x.

Finally, compute t · y.
(x + t) · y = y · y = s. And: (x + t) · y = x · y + t · y. Therefore
x · y + t · y = s. That is, x · y = −t · y. Therefore t · y = −y = y.

6. Let α = 2
1

3 . Prove that

({a + bα + cα2}, +, ·)
for a, b, c ∈ R, is a ring under the usual addition and multiplication.

Answer: These are simply a subset of the real numbers. The zero is a = b =
c = 0. Therefore the axioms hold. There is also a unity, 1. We only have to
verify closure.

The sum of a + bα + cα2 and d + eα + fα2 is (a + d) + (b + e)α + (c + f)α2,
which is also in the set. Therefore we have closure under +.

The product of a+ bα+ cα2 and d+ eα+ fα2, using the fact that α3 = 3, is

(ad + 3bf + 3ce) + (ae + bd + 3cf)α + (af + cd + be)α2,
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which is still in the set. Therefore this is a ring.

7. Let R = (S, +, ·) be a ring which is not a field. Is it possible for R to
have a subring which is a field? Either prove that this is not possible or give
an example of a ring with divisors of zero which has a subring which is a
field.

Answer: Take Z6. This is not a field since 2 · 3 = 0 mod 6. But within the
ring, there is a subring {0, 2, 4} which is a field mod 6. The unity is 4.

Note: If a ring has a unity and divisors of zero, then any subring which
includes the unity will have divisors of zero. (Why?).

8. Let D be an integral domain. Prove that if a2 = 1 then a = ±1. Is this
true in a ring also? Prove it, or give a counter example.

Answer: If a2 = 1 then a2−1 = z, and therefore (a−1) · (a+1) = z. Hence,
since D is an integral domain (with no divisors of zero) we must have a = 1
or a = −1.

This is not true in a general ring. Take, for example, Z8, with a = 3. Then
a2 = 9 = 1 mod 8. But (a− 1)(a + 1) = 2 · 4 = 0 mod 8, and a 6= 1, a 6= −1.

9. Exercise 2, Section 1.6, page 8 of the notes. (Note the definitions in
exercise 1.)

Answer: (a) Let the ring be finite, size k. Then form e, e+e, e+e+e, · · · ke.
These are all distinct, for if je = ie, i < j ≤ k then (j − i)e = z, and so
the characteristic is finite. If they are distinct then one of these k elements
must be z, i.e. je = z for some j ≤ k. That is, the characteristic is finite.

(b) Using the same arguments as in (a), if a is in the finite ring, and the
size of the ring is k, then there is some j ≤ k such that je = a. Then
na = nje = (nj)e = (jn)e = j(ne = z, where we are using the properties of
integers.

(c) Take Z6, and look at the element 2. The characteristic is 6. But 3 ·2 = 0
in this ring.

10. Let S be a set, and P (S) the power set of S. Prove that (P (S), ∆,∩)
is a ring, where ∆ is the symmetric difference, and ∩ is set intersection. Is
this a ring? Prove your claim.

Answer: We have to show that the axioms are satisfied. The set is clearly
closed under ∆ and ∩.

(a) A∆B = (A ∪ B) − (A ∩ B) = (B ∪ A) − (B ∩ A) = B∆A, by the
properties of ∩ and ∪.

(b) The associative axiom holds because of the set theoretic properties
of ∆.

(c) The additive identity is φ since A∆φ = A.
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(d) The additive inverse of A is A itself. Recall the example in class
where the “plus” of the ring was ∪. It was not possible to define an
additive identity. But here A∆A = φ.

(e) A ∩ (B ∩ C) = (A ∩ B) ∩ C is a property of ∩.
(f) A ∩ (B∆C) = (A ∩ B)∆(A ∩ C) was an assignment example in csci

2112. I will do this in a tutorial if necessary.


