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Abstract

This thesis will present three combinatorial games: Vertex Deletion, Grand Left/Right

and Cookie Cutter. Vertex Deletion is a game played on a graph. One version of the

game is completely solved while the values of games played on complete graphs, paths,

cycles, complete bipartite graphs and stars are examined in others. For a particular

version we also demonstrate a decomposition theorem. We introduce the notion of

even and odd games and show that it relates to both Vertex Deletion and Grand

Left/Right. Cookie cutter is played by removing squares from a grid of a fixed size.

We find a relation between this game and a set of octal games. Starting positions

with one and two rows are completely solved in one version of the game.
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Chapter 1

Theory of Combinatorial Games

1.1 Properties

All three of the games which I will examine are combinatorial games. There are a spe-

cific set of conditions which a game must satisfy in order to qualify as combinatorial.

They are as follows:

• There are two players, typically denoted Left and Right, who move alternately

during the course of the game. By convention, Left is male and Right is female.

• There are clearly defined rules which specify the moves allowed to each player.

• There is complete information. That is, all information regarding the game is

equally available to both players.

• There is no element of chance. Therefore, there is never any use of dice, spinners

or similar devices.

• Under normal play rules, a player who is unable to make a legal move loses

the game. Under misere play rules, a player who cannot move wins the game.

Unless otherwise stated, all games discussed will use normal play.

• There can be at most a finite number of moves allowed in the game. Therefore,

the game must eventually end with one winner and one loser.

1
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Many common games do not qualify as combinatorial since they violate one or more

of these properties. For example, card games such as poker have cards randomly

(hopefully!) assigned. Also, players are only allowed to view they’re own cards and

not those of their opponents. Therefore, there is incomplete information. Games like

chess have no element of chance and complete information but still do not qualify as

combinatorial since the game can end in a draw (stalemate) when a player has no

legal moves or when neither player can force a checkmate. The tools of combinatorial

game theory have been used, however, to analyze such games although some modifi-

cations need to be made. The analysis of games like chess, checkers and go has been

furthered using combinatorial game theory.

The game of Nim is played by two players with several piles of beans. On each

player’s turn, they choose any one of the remaining piles then remove any positive

number of beans from that pile. The person who is unable to do so loses the game.

It is easy to see that this is indeed a combinatorial game since it satisfies all of the

properties listed above. Furthermore, Nim is called an impartial game since from any

particular position either player has the same options.

Partizan games on the other hand allow players to have a different set of options

from a particular position. Domineering is an example of such a game. It is played

by two players with dominoes and a square grid, typically 8×8. The players alternate

placing dominoes on the board so that they cover exactly two adjacent squares with-

out overlapping the edge of the board or dominoes which have already been placed.

When a player cannot place a domino according to these rules, they lose. Left may

only place his dominoes vertically while Right may only place hers horizontally. Given

a particular position during the game, the players will have a different set of options

thus making this a partizan game.

The rest of this chapter aims to describe the theory of combinatorial games. The

theorems presented are taken from [2] and [6]. Some of the proofs are the result of a
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Figure 1.1: A typical game of Domineering in progress

seminar on combinatorial game theory held at Dalhousie University which included

Richard J. Nowakowski, J.P. Grossman, Sarah McCurdy and myself (see also [8]).

1.2 Outcome Classes

The outcome of a combinatorial game is completely dependant on the moves which

are allowed to each player and which player has the privilege (or misfortune) of mov-

ing first. Since combinatorial games have no chance and complete information it is

always possible to determine who will win the game before any moves are made. The

only assumption we must make is that both players play as well as possible. There-

fore, we can partition all games into the following four classes:

L - All games which the Left player will win regardless of who moves first.

R - All games which the Right player will win regardless of who moves first.

P - All games which the second (previous) player will win regardless of whether they

are Right or Left.

N - All games which the first (next) player will win regardless of whether they are

Right or Left.

Clearly, every game must fall into one of these classes and we can also see that the

classes are all disjoint. Here are some examples of positions in Domineering which

are from each class:
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∈ P ∈ R

∈ L ∈ N

Figure 1.2: Domineering positions from each outcome class

1.3 Game Values

Games can be defined recursively in terms of the options that each player has from

a given position. Let G be a game. It is best to think about G as a given game in

a particular position but without knowledge of which player is to play next. Then

G = {GL|GR} where GL is the set of all possible games (positions) that can be

reached if Left moves first. Likewise, GR is the set of all possible games that can be

reached if Right moves first. In this way we recursively define games based on their

Left and Right options. It should be noted that notation is occasionally abused and

we use the symbols GL and GR to mean a specific option rather than the set of all

options for the given player.

Clearly our most basic game in this sense is one in which neither player has any

moves. Then this game has GL and GR both being the empty set. This game is

represented by the symbol 0 = {|}. We may now form three new games:

{0| }, {|0}, {0|0}

We give these games the symbols 1, -1 and ? respectively. We will show later that

there is motivation to name these games using numerical symbols since they share all

the properties of their more familiar counterparts. Following Conway [6], I will now

give definitions for comparing games:

For games G and H,

• G ≥ H if and only if no GR ≤ H and G ≤ no HL. Also, we write G 6≥ H when

G ≥ H is false.

• G ≤ H iff H ≥ G.
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• G = H iff G ≥ H and H ≥ G.

• G > H iff G ≥ H and H 6≥ G. Likewise, G < H iff H > G.

• G||H iff G 6≥ H and H 6≥ G. We say G is fuzzy (or confused) with H in this

case.

• G / H iff G < H or G||H. Likewise, G . H iff H / G.

It is important to note that the symbols 6≥ and < cannot be used interchangeably

because of the notion of two games being confused. Also, equality only refers to the

value assigned to a particular game. It is possible to have games with different options

that are equal according to the definitions above.

The definition of ≥ is recursive in nature since it depends on the comparisons of

the game’s options. Since all games must eventually come to an end, we are reduced

to asking questions about members of the empty set which are trivial. Therefore, ≥

is well defined.

We can now examine the games we have labelled so far to check that they satisfy

the properties shared by their numerical counterparts. For instance, we can check

that 1 > 0 by using the previous definitions and the games that we have labelled 1

and 0.

First we note that 1 > 0 is the same as saying 1 ≥ 0 and 0 6≥ 1. We check that

1 ≥ 0 by recalling that 1 = {0| } and 0 = {|}. 1R and 0L are both the empty set, so

it is trivial that no 1R ≤ 0 and 1 ≤ no 0L. Therefore, 1 ≥ 0 by our definition.

Now, to check 0 6≥ 1 we note that 1L = 0. In particular, that means there exists

an 1L which satisfies 0 ≤ 1L. We can therefore conclude that 0 6≥ 1.

These two properties imply that 1 > 0. Using similar arguments we can show all
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= { | } = 0

=
{ ∣

∣

∣

}

= {0 | } = 1

= { | } = { | 0} = −1

=
{ ∣

∣

∣

}

= {0 | 0} = ?

Figure 1.3: Finding values of Domineering positions

of the properties that we are familiar with using -1, 0 and 1. We also get the follow-

ing comparisons with the game labelled ?:

? > −1 , ? < 1 , ?||0

Definition 1.3.1 A game G is born on day n if it can be expressed as a game with

options which are all born on day n− 1 or less and there is no expression for G with

options which are all born on day n− 2 or less. We define 0 to be born on day 0. We

say the birthday of G is n.

Theorem 1.3.1 [6] For all games G =
{

GL
∣

∣

∣ GR
}

we have

1. G 6≥ GR

2. GL 6≥ G

3. G ≥ G

4. G = G

Proof: We will prove all four statements using induction based on the day a game

is born. We can show that 0 ≤ 0 by applying the above definitions. We will now

proceed by assuming that H ≤ H for all games born before G.

1. Since GR is, by definition, born before G we know that GR ≤ GR and so it

follows that G 6≥ GR.
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2. Since GL is born before G we know that GL ≥ GL and so G 6≥ GR.

3. This follows immediately by applying the first two statements.

4. By the previous statement we know G ≥ G and G ≤ G so by definition G = G.

1.4 Outcomes Revisited

Now that we have the values of games, we can see how these values fit in with our

notion of outcome classes.

Theorem 1.4.1 For all games G, outcome classes are equivalent to sets of games

that satisfy the following relations:

• G ∈ L⇔ G > 0

• G ∈ R⇔ G < 0

• G ∈ P ⇔ G = 0

• G ∈ N ⇔ G||0

Proof: We will prove the result by induction on the birthday of G. We have already

seen that the above properties hold for the games 0, -1, 1 and ? which are all born

by day 1. This will serve as our base case. Now assume the above relations hold for

all games born by day k. We now use our previous definitions to examine the options

each player has in a general game G.

• If G > 0 then we know that all of Right’s options are > 0 and Left’s must have

some option ≥ 0. Thus, Right loses going first since he must move to a game

in L. Also, Left can win going first since he can move to a game in L ∪ P .

Therefore, G ∈ L.

• If G < 0, we use a similar argument to show Right has an option to a game in

R ∪ P , while Left only has options in R. Thus we have that G ∈ R.
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Left plays first, Left plays first,
Left wins Right wins

Right plays first, G > 0 G = 0
Left wins G ∈ L G ∈ P

Right plays first, G||0 G < 0
Right wins G ∈ N G ∈ R

Table 1.1: Summary of Outcome Classes

• If G = 0 then we know that all of Left’s options are /0 which means he would

lose going first. Also, all of Right’s options are .0 which means she also loses if

required to play first. Therefore, the second player will always win and G ∈ P .

• Finally, if G||0 we know that there exists a Left option which is ≥ 0 which

means he can win if he plays first. Likewise, Right must have an option which

is ≤ 0 which would allow her to win if she played first. Therefore, G ∈ N .

1.5 Negatives, Sums and Comparisons of Games

I will now define some further operations on games. The negative of a game can

be thought of intuitively as Right and Left switching roles. Formally, for a game

G = {GL|GR} we define its negative as −G = {−GR| −GL}.

In the game of Domineering, since one player only places dominoes vertically and

the other only places them horizontally we can view the negative of the game as

being the same remaining spaces rotated ninety degrees. For example, consider the

figure below.

Figure 1.4: A game of Domineering and it’s negative

The sum of two games can be thought of as both games sitting side by side. On a

player’s turn they must make a move in one of the two games. Formally, this becomes:
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G + H = {GL + H,G + HL|GR + H,G + HR}

Definition 1.5.1 The disjunctive sum of games G1, G2, ... is G1+G2+ ... On each

player’s turn, they choose a game to play in and make a legal move. When a player

has no legal move in any game, he loses.

Theorem 1.5.1 For any game G, G + (−G) = 0.

Proof: Intuitively, this is the same as playing two identical copies of a game with

the roles of the players reversed for one of them. The second player will win this

compound game, since he can simply copy his opponent’s move in the opposite game

every time it is his turn. Therefore, he cannot possibly be left without a move and

thus eventually wins the game. Since the second player always has a winning strategy,

this game has value 0. Therefore, we arrive at the identity G + (−G) = 0.

Theorem 1.5.2 For any two games G and H, (G = H)⇔ G + (−H) = 0.

Proof: We will again prove the statement by induction on the birthdays of G and

H. By our definition of >, we know that all GL / H and all GR . H. Also, we get

that all HL / G and all HR . G.

Now, when we consider the game G − H we see that Left’s moves are either to

GL −H / H −H = 0 or G−HR / G−G = 0. In either case we find that Right will

win the game so G − H ∈ R ∪ P . Likewise, if Right plays first her options are to

GR−H.H−H = 0 or G−HL.G−G = 0. This time we find that Left will win which

tells us G−H ∈ L∪P . Therefore, G−H ∈ P which in turn tells us that G−H = 0.

This now gives us a method for determining if two games are equal. For any two

games G and H, if it is true that G + (−H) = 0 then we know that G = H. Another

way of saying this is that if G is played with −H and the game is a second player
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G + H

G + (−H)

Figure 1.5: Showing G and H are equal

win, then G and H are equal.

Consider the two games of Domineering shown in Figure 1.5. The games G and H

are clearly not the same, but if we consider G + (-H) we see that each player can

make exactly one legal move. Therefore, whoever goes first will not be able to play

on their next turn. This game is a second player win so it has value 0. We con-

clude that G = H in this case. Note that because equality is a defined relation, it

will be possible to have games which are not the same but which have the same value.

The above result can also be generalized so that it applies to other relations be-

tween G and H. The proofs of these statements are similar in nature and hence

omitted. Therefore, we find that:

• (G > H)⇔ (G−H > 0)

• (G < H)⇔ (G−H < 0)

• (G||H)⇔ (G−H||0)

1.6 Canonical Form of a Game

As previously mentioned, games can take on the same value even when they are not

identical. Fortunately, every game has a simplest canonical form which is identical

for every game which shares the same value. We may simplify games through two

different methods which result in the unique representation.

Definition 1.6.1 Given a game G = {GL1 , GL2 , ...|GR1 , GR2 , ...}, a Left option GL1

is dominated if there exists another Left option GL2 such that GL2 ≥ GL1. Likewise,
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a Right option GR1 is dominated if there exists another Right option GR2 such that

GR2 ≤ GR1.

Lemma 1.6.1 (Deleting Dominated Options) Given a game G = {A,B, ...|X,Y, ...}

along with B ≥ A and Y ≤ X, then G = {B, ...|Y, ...}. In other words, the value of

a game does not change when some or all of its dominated options are removed.

Proof: First, let G = {A,B, ...|X,Y, ...} and H = {B, ...|Y, ...}. Now, using our

definitions we’d like to show that G = H. That means we need to show that G ≥ H

and H ≥ G.

We know that G = G and H = H which implies that Y . H. We also know that

Y ≤ X. Thus X . H and there is no Right option of G which is ≤ H. Also, the Left

options of H are a subset of those of G so there is no Left option of H which is ≥ G.

Therefore, G ≥ H.

Similarly, we know that B / H and B ≥ A. This implies A / H and there is no

Left option of G which is ≥ H. Also, the Right options of H are a subset of those

of G so there is no Right option of H which is ≤ G. Therefore, H ≥ G and we can

conclude that G = H.

Definition 1.6.2 Let G = {GL|GR} be a game. A Left option GL is reversible if

GL has a Right option GLR where GLR ≤ G. Likewise, a Right option GR is reversible

if GR has a Left option GRL where GRL ≥ G.

Lemma 1.6.2 (Bypassing Reversible Options) Given a game G = {H,GL|GR},

if H is a reversible option then G = {HRL, GL|GR}. In other words, we may replace

a reversible move H with all of the Left options of HR.

Proof: Let G = {H,GL|GR} and K = {HRL, GL|GR}. We need to show that

G = K. Consider the game G + (−K). If Left moves to G + (−GR), Right can make

the corresponding move to GR + (−GR) = 0 and win. If Left moves to GL + (−K),

Right can move to GL+(−GL) = 0 and win again. Finally, if Left moves to H+(−K)

Right responds by moving to HR + (−K).
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From this point if Left moves to HRL + (−K) Right moves to HRL + (−HRL) = 0

and wins. Otherwise, Left must move to HR +(−GR). In this case we note that since

HR ≤ G we know that HR + (−G) ≤ 0. This is the same as saying that Right will

win despite any move Left can make to HR + (−GR). Therefore, Left loses when he

plays first and we get that G ≤ K.

Now, following our definitions, since K = K we know that there is no GR ≤ K.

Since H is reversible we know that G ≥ HR. Also, we know that no HRL ≥ HR.

Therefore, there is no HRL ≥ G. Furthermore, there is no GL ≥ G since we know

that G = G. Thus we satisfy the condition to say that G ≥ K.

We can therefore conclude that G = K.

Now, to arrive at the simplest form of the game we can repeatedly remove domi-

nated options and replace reversible options as described above. We still must show

that when there are no further dominated or reversible options, we have arrived at a

unique representation for the game.

Theorem 1.6.3 Every game has a unique representation with no dominated or re-

versible options.

Proof: Suppose G = H and they are both written in a form with no dominated or

reversible options. Since G−H = 0, Right must have a winning move from GL−H.

It cannot be in GL since this would then imply that GLR−H ≤ 0 and thus GLR ≤ G

telling us that GL is reversible. Hence Right’s winning move must be in −H and we

get GL −HL ≤ 0⇔ GL ≤ HL for some HL. Similarly, HL ≤ GL′

for some GL′

. But

then we know that GL ≤ GL′

and thus GL = GL′

otherwise GL is dominated. This

finally gives us:

GL ≤ HL ≤ GL ⇔ GL = HL

Therefore, every Left option of G is also a Left option of H. By symmetry we can see

that G and H must have exactly the same sets of Left and Right options.
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1.7 Numbers

Let D be the ring of dyadic rationals. That is, all numbers of the form a
2k where a, k

are integers.

Definition 1.7.1 For all x ∈ D we define a game G(x) recursively according to the

rules:

• G(0) = { | }

• ∀n ≥ 1, G(n) = {G(n− 1) | } , G(−n) = { | G(−n + 1)}

• ∀k ≥ 1, a odd , G
(

a
2k

)

=
{

G
(

a−1
2k

) ∣

∣

∣ G
(

a+1
2k

)}

The games G(x) are finite numbers which are usually written without the G(). To

show that these games share the same properties as the numbers we are familiar with,

we need to demonstrate games form a group and that G(x + y) = G(x) + G(y) to

conclude that G is a group homomorphism. These proof are omitted but can be found

in [6].

The intuitive notion of a game as a numbers is how many moves advantage there

is to the Left player. When we deal with integers, this is very easy to see. The game

0 = { | } is of no advantage to either player. The game 1 = {0 | } is a one move ad-

vantage for Left. Similarly, negative game values will represent the number of moves

advantage a game has for Right. This fits nicely with our notion of addition. If we

have the compound game 5 + (-3), Left has a 5 move advantage in one component

while Right has a 3 move advantage in the other. Since they alternate turns, Left

will have a 2 move advantage left over when Right runs out of moves. Therefore, this

compound game has a value of 2.

Of course, we also have games like the one in Figure 1.6 with value 1
2

= {0 | 1}.

We would like to have an intuitive notion of what it means for Left to have half a
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=
{

,

∣

∣

∣

∣

}

= {−1, 0 | 1}

= {0 | 1} (since -1 is dominated by 0 for Left)

=
1

2

Figure 1.6: A Domineering game with value 1
2

move advantage. In particular, it is a game such that when there are two copies, it

acts like one move advantage for Left. To verify this, we could check that the game

1
2
+ 1

2
− 1 = 0 by showing that this game in three components is a second player win.

We can now use an alternate definition for birthday that makes use of the canonical

form:

Definition 1.7.2 The birthday of a game is one more than the highest birthday of

its options in canonical form. We define the game 0 = { | } to have been born on day

0.

Definition 1.7.3 The simplest number given a particular condition is the number

with the lowest birthday which satisfies that condition.

Theorem 1.7.1 (Simplicity Rule) If there is some number x such that GL/x/GR,

then G = z such that z is the simplest number satisfying GL / z / GR.

Proof: To show G = z, we can equivalently show that G − z = 0. If Right plays

first, she could move to GR − z, but this is .0 by our choice of z, so Left will win.

Therefore, Right would have to move to G− zL. Again we find that by our choice of

z we know that zL ≤ GL or zL ≥ GR. The latter is impossible since we know that

zL < z / GR. Therefore zL ≤ GL so Left can win by moving to GL − zL ≥ 0.

The simplicity rule gives us a quick way to find the canonical form of a game. It

says that if a number fits between the options of a game, then the game is equal to
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the simplest such number.

1.8 Switches

Now that we have a clear understanding of what numbers are, we can examine some

games where there is no z such that GL / z / GR. Consider the Domineering position

shown in Figure 1.7. In this case, the Left option is greater than the Right option.

Given this position, both players would prefer to play first since it would give them

a free move. Clearly, this game is in the N outcome class.

=
{ ∣

∣

∣

}

= {1 | −1}

Figure 1.7: A Domineering position which is a switch

Definition 1.8.1 A switch is a game of the form {x | y} where x and y are numbers

and x ≥ y.

Previously, we have seen the game ? = {0 | 0} which is the simplest switch. We’d like

to know how to compare these games to the numbers we’ve already seen.

Theorem 1.8.1 (Number Avoidance Theorem) Given a sum of games, one

should never play inside a number unless there is nothing else to do.

The proof of this theorem is rather technical and does not give any insight with

respect to the games I will later present. A full proof can be found in [8].

Lemma 1.8.2 Given a game G = {x | y} where x and y are numbers and x ≥ y,

then for any number z we have that:

if z > x then z > G
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if z < y then z < G

if y ≤ z ≤ x then z||G

Proof: For the first case, we examine the game z−G and show that Left can always

win. If Right plays first, by Theorem 1.8.1 her best move must be to z − x > 0 so

she loses. If Left plays first he can move to z − y > z − x > 0 and therefore wins.

For the second case, we use the same argument to show z − G always has a win-

ning strategy for Right. Finally, when y ≤ z ≤ x we can see that whoever plays first

will win because Left can move to z − y ≥ 0 and Right could move to z − x ≤ 0.

Therefore, in this case z||G.

Lemma 1.8.3 If x, y and z are numbers with x ≥ y, then we get that

{x | y}+ z = {x + z | y + z}

Proof: The proof follows directly from Theorem 1.8.1 and the definition of disjunc-

tive sums.

Lemma 1.8.4 If x and y are numbers with x ≥ y, then

{x | y} = u + {v | −v} = u± v

where u = x+y

2
and v = x−y

2
. This is called centralizing a switch.

Proof: Follows directly from Lemma 1.8.3.

The game {1 | −1} is therefore abbreviated ±1 in most cases. The game {2 | 0} can

be written as 1± 1.

Switches which have been centralized are always in the N class of games, whereas

numbers are always in L,R or P . It should seem intuitive that both players would

prefer to play in a component which is in N so as to have more free moves when the

game becomes a sum of numbers. This is basically what Theorem 1.8.1 previously

told us.
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1.9 Infinitesimals

Definition 1.9.1 A game G is infinitesimal if −z < G < z for all positive numbers

z.

Clearly, one rather trivial infinitesimal game is 0. Another infinitesimal game we’ve

already seen is ?. This can be seen by adding any number z to it. If z is positive,

then z + ? is always a win for Left. Going first, he can move to z and win. If Right

goes first, we know her best move must be to z by Theorem 1.8.1. This is positive, so

she loses. If we let z be a negative number we would similarly find that Right always

wins. Therefore, ? is an infinitesimal game.

There are many other games which are infinitesimal as well. Consider the game

{0 | ?} =↑, pronounced ’up’. It is easy to see that this is a positive game since Left

will win if he goes first or second. We can also check, however, that it is strictly

less than all positive numbers and hence an infinitesimal. The corresponding game

{? | 0} =↓ is called ’down’ and is a win for Right.

An interesting property we now discover is that 0, ?, ↑ and ↓ are representatives from

each of the outcome classes. Despite having only values less than all positive numbers

and greater than all negative numbers, we can still achieve any of the outcomes we

previously defined.

1.10 Nimbers

In the first section, we defined a game called Nim which is played with piles of beans.

It is an impartial game. It is worthwhile to note that all impartial games are either in

the P or N classes. If Left has a winning strategy going first in a particular impartial

game, then Right could adopt the same strategy if she were to move first. Therefore,

Left could not possibly win if he were to move second and thus the game is not in L.

For the same reason, the game cannot be in R either. Since either player could win

by playing first, the game must be in N . If neither player has a winning strategy by
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moving first, then the game is P . As we already know, the only game in P has value

0. We now describe the values which impartial games can take when it is a member

of the N class.

Definition 1.10.1 The nimber ?k is defined as the game equivalent to a game of

nim in which there is one pile with exactly k beans in it.

When you have a game of nim with one pile of k beans, each player’s options are to

move to a single pile with any number of beans from 0 to k − 1. Since these options

are all nimbers, we can define nimbers recursively as follows:

0 = { | }

? = {0 | 0}

?2 = {0, ? | 0, ?}

?k = {0, ?, ?2, ..., ?(k − 1) | 0, ?, ?2, ..., ?(k − 1)}

Definition 1.10.2 Following the Sprague-Grundy theory [10] of impartial games, a

game which has value ?n is said to have G-value n. Every impartial game is equal

to some G-value k.

Definition 1.10.3 Let A be a set of nimbers and let B = {k : ?k ∈ A}. Then

mex(A) is ?i where i is the minimal excluded non-negative integer of B.

Theorem 1.10.1 (Mex-Rule) Let G be a game where the options for both players

are a set S of nimbers. Then G = mex(S).

Proof: Let G be as described. Let ?k = mex(S). To show that G = ?k we need to

demonstrate that the first player may move to any nimber ?i for i < k and that the

second player can force the first player to make such a move if he so desires.

The first part is obvious by the definition of mex. Every value less than k must

be in S otherwise k would not have been the minimal excluded value.
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If the first player chooses to move to a game with value ?i where i > k then by

our definition of ?i, the second player can move to ?k forcing the first player to move

to some ?j where j < k on a subsequent turn. It should be noted that since we have

specified that all combinatorial games must terminate after a finite number of posi-

tions, a player will not be able to indefinitely make moves to larger nimbers. Clearly,

the first player cannot move to a game ?k since this again would violate our definition

of mex. Therefore, it must be the case that G = mex(S).

Intuitively, you can think of a game which has options to larger heaps as being like

nim but allowing the players to sometimes add beans to a pile instead of taking them

away. In this case, the previous theorem states that this is of no advantage since the

other player can simply reply by taking away the beans you just added.

Definition 1.10.4 The nim-sum of two non-negative integers is the exclusive or

(XOR), written ⊕, of their binary representations. This is equivalent to binary addi-

tion without carrying.

3 → (011)2

⊕ 5 → (101)2

6 ← (110)2

Figure 1.8: Example of the nim-sum operation

Theorem 1.10.2 [4] A game of nim is a second player win if and only if the nim-sum

of the sizes of the remaining heaps is 0.

Proof: A game with no beans has nim-sum 0. We then note that when the nim-sum

is 0, the next player must move to a position where the nim-sum is not 0 (as long as

he has a legal move). When a player removes beans from a particular heap it must

change the heap’s binary representation which in turn must change the nim-sum of

all the heaps.

Now we must show that the second player always has a good move when the nim-sum
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9 → (1001)2 (1001)2 → 9
4 → (0100)2 → (0001)2 → 1
11 → (1011)2 (1011)2 → 11

⊕ 3 → (0011)2 (0011)2 → 3 ⊕
5 ← (0101)2 (0000)2 → 0

Figure 1.9: Finding a winning move in a game of nim with four piles

is not 0. To find a good move, we simply examine the binary representations of the

heaps. Choose to play in a heap which has a 1 in the highest order magnitude where

the nim-sum also generates a 1. Reduce this pile so that there are an even number

of 1’s in every order of magnitude, thus creating a nim-sum of 0.

This is a winning strategy for the second player when the initial nim-sum is 0. Also,

by adopting the same strategy, the first player will be able to win any game in which

the initial position does not have a nim-sum of 0.

This theorem can be generalized to show that if G = H + K is the disjunctive sum

of two impartial games, then G(G) = G(H)⊕ G(K) (see [6] or [2]).

1.11 Taking and Breaking Games

Taking and Breaking games ([5] and [2]) are impartial games played with heaps of

beans. The players alternately choose a heap, remove a positive number of beans

from that heap and then possibly splitting the remainder into several heaps. The

number of beans to be removed and the number of heaps that one heap can be split

into are given by the rules of the game.

An octal game is a taking and breaking game whose rules are specified by the

octal code d0.d1d2...du where 0 ≤ di ≤ 7. If di = 0, the player cannot remove i

beans from any heap. If di = δ22
2 + δ02

0 + δ02
0 where δj ∈ {0, 1}, a player is allowed

to remove i beans from a given heap provided that he split the remainder into exactly
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j non-empty heaps where δj = 1. Note that in such games we can never split a heap

into more than 2 heaps.

A subtraction game is a specific type of octal game in which the players can never

split a heap after removing beans. In particular we can use the same definition as

above except that di ∈ {0,3} for all i. The set S = {i : di = 3} is called the sub-

traction set for a particular subtraction game.

It is easy to see that Nim is a subtraction game (and hence an octal game) since

splitting the heap is never allowed and players may take any number of beans from a

heap. Therefore, it is represented as the octal game 0.3333....

When playing an octal game in which there are multiple heaps, we can determine

the G-value of the game by simply taking the nim-sum of the G-values of the individ-

ual heaps. Therefore, to know everything about the game we simply need to know

everything about games which begin with one heap. For a given game, let G(i) be

the G-value of the game played with a heap of size i.

Definition 1.11.1 The G-sequence for a particular octal game is said to be the

sequence G(0),G(1),G(2), ...

Definition 1.11.2 A G-sequence is said to be periodic if there exist N, p such that

G(n + p) = G(n) for all n ≥ N .

The game 0.337 is an example of an octal game where a player may make the following

moves:

• remove 1 or 2 beans from a heap and not split the remainder

• remove exactly 3 beans from a heap and can elect to split the remaining beans

into two heaps.

Theorem 1.11.1 Let a general octal game whose code digits dz = 0 for z > t be

given. If the G-sequence is observed to have a period of length p after the last irregular
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value G(i), then the last value that needs to be computed to verify that the period

persists is G(2i + 2p + t).

Proof: To show that G(2i + 2p + t) is the last value that needs to be checked, we

must show that the set of options when there are 2i + 2p + t + 1 beans is the same as

the set of options when there are 2i + p + t + 1 beans.

Let’s say that we decide to remove exactly j beans. We know that (t − j) ≥ 0

since t is the most we can legally remove on a player’s turn. We may also have the

opportunity to split the pile, making our options the set {G(k)⊕G(2i+2p+t−j+1−k)

: 0 ≤ k ≤ 2i + 2p + t− j + 1}.

We can assume without loss of generality that k ≤ 2i + 2p + t − j + 1 − k and

therefore k ≤ i + p. That is to say, k represents the smaller heap if we choose to split

it. Since we know that 0 ≤ k ≤ i + p then we find that

2i + 2p + t− j + 1− k ≥ 2i + 2p + 1− k

≥ i + p + 1

> i + 1

> i

Which means at most one of the piles falls into the range that may contain irregular

values. Also, since i + p + 1 and i + 1 are both larger than i and differ by exactly p,

we know that G(i + 2p + 1) = G(i + p + 1).

Therefore, it must be the case that:

G(2i + 2p + t + 1) = mex{G(k)⊕ G(2i + 2p + t− j + 1− k)}

= mex{G(k)⊕ G(2i + p + t− j + 1− k)}

= G(2i + p + t + 1)

Which tells us that the sequence of G-values must be periodic for all larger heaps.
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We can now use this theorem to show that the game 0.337 is periodic. We begin by

simply calculating the G-values which form its G-sequence:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
G(n) 0 1 2 3 0 1 2 3 0 1 2 3 0 1

Table 1.2: G-sequence for the octal game 0.337

Notice that it seems to have a period of length 4 and no irregularities. Therefore,

using the previous theorem we see that t = 3, i = 0 and p = 4. Thus, we must be

sure to check up to and including G(2(0) + 2(4) + 3) = G(11). Since our table checks

at least this far, we can be sure that the pattern will continue indefinitely.



Chapter 2

Current Work

The games that I will examine in this thesis tend to take on only a subset of all

possible game values. The following definitions and results are original work and are

motivated by my desire to classify the game values which arise in the games I am

studying. Vertex Deletion and Grand Left/Right have a common property that a

move takes up exactly one ’space’ which remains in the game. It is this property that

prohibits many game values from occurring.

2.1 Introduction to the games

I will now give a brief overview of each of the games I will examine including their

origins and rules for playing.

2.1.1 Vertex Deletion

In this collection of games, Left and Right alternately remove vertices (subject to

some constraints) from a graph. All incident edges are also removed to produce an

induced subgraph of the original. When a player is unable to make a legal move, they

lose the game. Figure 2.1 shows a typical move in the game where a player removes

the vertex labelled c.

24
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a

b d

e

c

→
a

b d

e

Figure 2.1: Typical move in the vertex deletion game

I will examine the game when played on both undirected and directed graphs. For

each type of graph there are three variations for the game based on which vertices

(even or odd degree) players may remove. I will show that some of these variations

actually produce a strict subset of all game values while other variations have ties

to octal games discussed earlier. There will also be discussion of specific classes of

graphs and the game values they produce. In particular we will find graphs with

values that form arithmetic periodic sequences with respect to the number of vertices

they contain. This game originated at the Games At Dal conference which took place

at Dalhousie University in August of 2002.

2.1.2 Grand Left/Right

Grand Left/Right is a game played by two players on a square grid of a predeter-

mined size. It is a partizan game and each player has their own tokens which are

black for Left and white for Right. The players decide on a starting position which

involves placing 2 to 4 tokens on the board in an aesthetically pleasing way before

play begins. On each player’s turn, they select one of the pieces they currently have

z j
j z

z j
j z

Figure 2.2: Possible starting position for Grand Left/Right

on the board and a cardinal direction for it to ’shoot’. The player then marks squares
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in that direction until the next square is occupied by another token, the next square

is one you’ve already marked or you’ve reached the end of the board. At that point

you turn 90 degrees and continue. At some point you will reach a square where after

turning once you still cannot move. Place a new token on this square and erase all

the marked squares. This ends that player’s turn. In this version of the game, Left

always turns his tokens to the right, and Right always turns her tokens to the left.

The game ends when a player cannot make a legal move and thus loses.

Here is an example where Left plays first and chooses his leftmost token to ’shoot’

upward. Its first turn is due to a white token blocking its path. The second turn is

because of the edge of the board. Many of its final turns are because it cannot travel

over a square it has previously occupied.

z j
j z

z j
j z

→

z j
j z
z z z z z z z z
z z z z z z z z
z z z z z z z z
z z z z z z z z
z j

j z

→

z j
j z

z

z j
j z

Figure 2.3: Left makes the first move in a game of Grand Left/Right

The original version of this game was played in the same manner except that a new

piece was placed on every space along the path. In Figure 2.3 the first move would

have ended with the board looking like the middle diagram. The version discussed

in this thesis is more ’playable’ and has the added feature of positions which can be

classified as odd and even much like the Vertex Deletion game. This game was first

posed as a problem by Prof. R. J. Nowakowski during a course in game theory in the

fall of 2002 at Dalhousie University.

2.1.3 Cookie Cutter

In this game, we begin with an x× y grid and a fixed k × k cookie cutter (which we

will refer to as being of size k). On each player’s turn they place the cookie cutter so
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that it covers at least one of the squares of the grid (that is, it may overlap the edges

of the grid). Then all squares (blocks) of the grid covered by the cookie cutter are

removed and play continues with the next player. Naturally, the grid may not always

remain a rectangle during this process. Under normal play, whoever takes the last

block of the grid will win since the next player will not be able to make a legal move.

Since the options of both players are identical we know this is an impartial game and

therefore all the values of positions will be nimbers as described in the first chapter.

→ → → → → ...

Figure 2.4: A possible sequence of moves with a cookie cutter of size 2

We will later show that this game has ties to octal games for which there is a great

deal already known. This game originated in a problem solving course offered at the

University of Waterloo during the summer of 2002.

2.2 New Definitions and Results

Definition 2.2.1 Let E0 and O0 be the set of all even and odd integers respectively.

Let Ek be the set of all games whose options are in Ok−1. Ok is the set of all games

whose options are in Ek−1 with the restriction on the options that the game 0 is not

defined in Ok for any k. An even game is any game in the set Ek for some k while

an odd game is any game in the set Ok for some k.

The restriction given for the sets Ok are a natural consequence of the games under

consideration. For example, in the Vertex Deletion game where players may delete

vertices of opposite parity we will find that games with value 0 can never occur when

there are an odd number of vertices left in the graph.

Lemma 2.2.1 Ek ⊂ Ek+1 and Ok ⊂ Ok+1 for all k.

Proof: We will proceed by induction. First we see that every even integer can be rep-

resented as a game with only odd options: 2n = {2n−1|2n+1}. Likewise, every odd
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number can be represented as a game with only even options: 2n + 1 = {2n|2n + 2}.

Therefore, we know that E0 ⊂ E1 and O0 ⊂ O1.

Now, assume the statement is true up to k. Since Ok−1 ⊂ Ok then we know that the

games in Ek ⊂ Ek+1 since we generate the games in Ek+1 by taking all possible games

formed by taking options from Ok. A similar argument also holds when we consider

Ok+1.

Theorem 2.2.2 The sets Ek and Ok are disjoint for all k.

Proof: Assume there is as a game G that is both even and odd. Let k be the smallest

value such that G is in both Ek and Ok. Then we can write G = {H1|H2} = {K1|K2}

where H1, H2 ∈ Ok−1 and K1, K2 ∈ Ek−1.

Now, we find the simplest form of G by removing its dominated and reversed op-

tions using both representations. If a left or right option of G is dominated, it is

simply removed. If a left option is reversed, it is replaced by the left options of

right’s best response. Therefore, if the left option is an even game, it is again re-

placed by options which are even games. The same holds when we deal with odd

games. Likewise if a reversed right option is an even game, it is replaced by the right

options of left’s best response. As before, if the right option is an even game, it is re-

placed by options which are even games (and again, this holds for odd games as well).

After performing these operations to both of G’s representations we know that both

new representations must have the exact same options since we proved earlier that

this simplest form of a game is unique. Let these two simplest forms be {P |Q}. But

by our process we know that any element of P or Q must be in Ek−1 and Ok−1 which

would contradict that k is the smallest value such that there there is a game in both

Ek and Ok. Therefore, we have that P and Q are both the empty set. But then we

find that G = {|} = 0 which contradicts the fact that 0 never occurs in Ok for any k.

Therefore, such a game G cannot exist and the sets Ek and Ok are disjoint for all k.

It should be noted that examining the simplest form of a game involves deleting
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and bypassing options available to both players. As demonstrated in the previous

proof, this does not affect the property of a game being even or odd. The following

results make use of this fact.

Lemma 2.2.3 If a game G is infinitesimal and positive then

• Left can eventually move to a 0 regardless of whether he plays first or second.

• Left is unable to move to any positive number if Right plays optimally.

Proof: Left will win this game so he, at some point, must move to a position with

value ≥ 0. Assume for a contradiction that Left can at some point move to a game

equal to a number z > 0. Then consider the game G− z
2
. Left will still win this game

since he can move to z − z
2

> 0 which implies G . z
2

and therefore contradicts that G

is infinitesimal.

Lemma 2.2.4 Let G be an infinitesimal game which is fuzzy with 0 but not equal to

?. Then G is not an even or odd game.

Proof: Assume for a contradiction that G is an even or an odd game. We may

assume that G is the game with the earliest birthday such that this is true. We will

examine Left’s options in this game. Similar arguments can be made for the Right

options.

Case 1: Left has an option which is a positive number. That is, GL = z > 0. As

in Lemma 2.2.3, we can see that G− z
2
.0 which implies that G cannot be infinitesimal.

Case 2: G has a positive infinitesimal Left option. That is, 0 < GL < z. Then

by Lemma 2.2.3 we know a 0 position can be reached by playing first or playing

second. Recursively, this tells us either G has options where one is even and another

is odd or G has an option from which a position of value 0 can be reached by playing

first or second. At some point we reach a game which is not even or odd which tells

us that G cannot be even or odd.
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From cases 1 and 2 we conclude that Left has no options which are positive. We

know that since G||0, Left can win going first. Since he has no options greater than

0, he must have an option equal to 0.

Case 3: Left has negative options. That is, GL < 0. This cannot occur because

these options are dominated (Left must have an option to 0) and hence removed.

Case 4: Left has an option which is fuzzy with 0. That is, GL||0. If this option

is ? then G is not an even or odd game since he has options to 0 and ? which are

even and odd respectively. If the option is not ?, then we must have a game with an

earlier birthday which satisfies the above properties. This cannot occur due to our

original assumption about G.

Finally, if G has no other options besides 0, then we find that G = {0 | 0} = ?

which is again a contradiction. Therefore, such a game G does not exist.

Theorem 2.2.5 The sets Ek and Ok do not have any games with values that contain

fractions or any infinitesimals besides 0 and ?.

Proof: By Lemmas 2.2.3 and 2.2.4 we know that infinitesimals besides 0 and ?

require that a 0 option exists at both an even and odd number of steps from the

outset of the game. Therefore, we would have 0 in both Ek and Ok for some k which

cannot happen. Thus, we cannot have infinitesimal values besides 0 and ? which are

even or odd.

Fractions in their simplest form only have other fractions or integers as their op-

tions (by our definition of numbers). Also, by our definition of simplicity (Definition

1.7.3), we know that if a game has a fractional value, its options can differ by at most

1. Recursively we can show that if a fraction has integer options it is not even or odd

since the options must be consecutive and hence one option is even and the other

is odd. If a fraction has options which are not both integers when in simplest form,
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then it must have a fractional option. This option is not even or odd, so the game

itself is not even or odd.

As we’ve seen before, the game {0 | 1} has value 1
2
, so you may be inclined to think

that G = {0 | 1?} has the same value. In this case we see that if we play the game

{0 | 1?} − 1 we see that second player always wins and hence G = {0 | 1?} = 1. The

reason for this is that Right’s option to 1? is reversible and replaced by the empty

set. Therefore, we get that {0 | 1?} = {0 | } which is the simplest form of the game

1.

We can construct rather strange looking games which satisfy the conditions of being

even or odd. For instance, 3 and 1 are both odd integers so {3 | 1} is an even game.

Since 0 is also an even game, we can construct {{3 | 1} | 0} which is an odd game

(having only even games as options). It is values like these that appear in games like

Vertex Deletion and Grand Left/Right.



Chapter 3

Vertex Deletion

It should be noted that throughout this section I will abuse notation and use G to

refer to both a graph and the value of the game played on that graph.

First I will examine the game when played on an undirected graph. When both

players remove only even degree vertices we will find that the game is completely

solved. The version when both players remove only odd degree vertices has many

positions with low G-values but is not solved in general. The most interesting version

is when Left removes even degree vertices and Right removes odd degree vertices. We

will show that the graphs fall into the partition of even and odd games as discussed

in chapter 2. We will also find that there are no graphs which have negative value

and that some classes of graphs form sequences of game values. Finally, I will present

a decomposition that allows for the simplification of some graphs when determining

their value.

I will then proceed to analyze the game when played on directed graphs. In this

case neither of the impartial versions are completely solved but we do find graphs

which correspond to a particular octal game. In contrast to the game played on

undirected graphs, I will show that we may have directed graphs with negative values

when Left removes even in-degree vertices and Right removes odd in-degree vertices.

32
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3.1 Undirected Graphs

3.1.1 Even/Even

In this version of the game, both Left and Right play on an undirected graph and

can only remove vertices which have even degree. Since both players have the same

options from a given position, this is an impartial game. Therefore, the values we can

obtain are limited to 0 and the nimbers ?n for any positive integer n.

Lemma 3.1.1 If |V (G)| is odd then G ∈ N .

Proof: If |V (G)| is odd then by Theorem A.2.3 there must be a vertex of even

degree. Therefore, there exists some legal move in G. On each of the first player’s

subsequent turns there will again be an odd number of vertices. Thus, on each of

their turns, a legal move exists. Since the first player will always have a legal move,

the game can only end if the second player is unable to move. Since there are finitely

many vertices in G eventually the second player will be unable to move causing them

to lose. Therefore, the first player will always win regardless of the moves he makes

throughout the game and thus G ∈ N .

Lemma 3.1.2 If |V (G)| is even then G ∈ P .

Proof: If the first player has a legal move it must be to a graph with an odd number

of vertices. So, by Lemma 3.1.1 the next player (which is the second player in the

original game) will win. Since the first player can never win we get that G ∈ P .

Theorem 3.1.3 When both players can remove only even degree vertices, the game

is trivial and we have that:

G =







0 if |V (G)| is even

? if |V (G)| is odd

Proof: By Lemma 3.1.2 we know that when |V (G)| is even, the game has value 0.

When |V (G)| is odd, the only options available to each player are to games of value

0. Therefore, the game must have the form G = {0|0} = ?.
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3.1.2 Odd/Odd

In this version of the game, both players may only remove vertices which have odd

degree. Much like the Even/Even version, both players have the same options from

a particular position which makes this an impartial game as well.

Lemma 3.1.4 The path on n vertices, Pn has value







? if n is even

0 if n is odd

Proof: As long as n > 1 we know our path has exactly two vertices which are of

degree 1 (the endpoints). When an endpoint is removed, we are left with a path with

one fewer vertex. Therefore, on each player’s turn a legal move must exist until there

is a single vertex left over. The last vertex has degree 0 and hence cannot be removed

by either player. Thus P1 = 0. Since this is the only ending position for the game,

when there are an even number of vertices the first player will win and when there

are an odd number of vertices the second player will win. This gives us the values

listed in the statement of the Lemma.

Here are a list of the values for games played on some other graphs:

Kn and Sn (star on n vertices) all have value







? if n is even

0 if n is odd

The value of Km,n is







? if n and m are both odd

0 otherwise

Many graphs found thus far have value ? or 0. At the time of writing, there are

only 2 known graphs with value ?2. They are shown here:
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There are no known connected graphs that have value ?n for any n ≥ 3. We can

however use the disjunctive sum of two connected graphs with values ? and ?2 to

create a graph with value ?3 (by the mex-rule).

3.1.3 Even/Odd

In this version of the game, Left may only remove vertices of even degree and Right

may only remove vertices of odd degree. Since the players no longer have the same

set of moves, this is a partizan game.

Lemma 3.1.5 If |G(V )| is odd, then G ∈ L ∪N .

Proof: For G ∈ L ∪ N we must show that Left has a winning strategy by moving

first. Since Left removes the even degree vertices, we know by Theorem A.2.3 that he

always has a legal move when |G(V )| is odd. On each of his subsequent turns, there

will again be an odd number of vertices. Thus, after each of his opponent’s turn he

must have a legal move. Therefore, he must eventually make the last move and win

the game.

Lemma 3.1.6 If |G(V )| is even, then G ∈ L ∪ P .

Proof: If Right plays first, he must move to a position which has an odd number of

vertices. By Lemma 3.1.5 this is in L∪N so Right will lose. Therefore, G cannot be

in R or N .

Corollary 3.1.7 For any graph G, G 6< 0.

Proof: By applying Lemmas 3.1.5 and 3.1.6 we can determine that all graphs are

in L ∪N ∪ P . In other words, G /∈ R and thus G 6< 0.

Theorem 3.1.8 If a graph G has an odd number of vertices, G ∈ Ok for some k (G

is an odd game). Likewise, if G has an even number of vertices, G ∈ Ek for some k

(G is an even game).
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Proof: The graph on 0 vertices has value 0 and is hence an even game. Also, the

graph with 1 vertex has value 1 and is therefore an odd game. Assume that all graphs

on 2k vertices are even games. Then we know that every option from a graph G on

2k + 1 vertices is even since a legal move for either player is to delete exactly one

vertex. Also, by Lemma 3.1.5, we know G 6= 0. Therefore G is an odd game. Now, we

know that all graphs on 2k+1 vertices are odd games so a graph on 2k+2 vertices can

only have odd options. Therefore, it must be an even game. By induction, we now

know that all graphs with an odd number of vertices are odd games and all graphs

with an even number of vertices are even games.

Theorem 3.1.9 The complete bipartite graphs have the following values:

K2n+1,2m+1 = 0

K2n,2m =























0 if n > 0,m > 0

2n if m = 0

2m if n = 0

K2n,2m+1 =























{2n|0} if n > 0,m = 0

2m + 1 if n = 0

? otherwise

Proof: Beginning with the graph K2n+1,2m+1 we see that Left has no legal moves

since all vertices will have odd degree which implies K2n+1,2m+1 /∈ L. Also, this graph

has an even number of vertices so by Lemma 3.1.6 it must be in L ∪ P . Therefore,

the game must be in P and has value 0.

Now, K2n,2m = {K2n−1,2m, K2n,2m−1| } when n > 0 and m > 0. But then we see

that from either of Left’s options, Right can move to K2n−1,2m−1 which has value 0.

Therefore, the first player can never win and this graph has value 0. If n = 0 or

m = 0, then K2n,2m is just a set of isolated vertices which is the disjunctive sum of

2m, respectively 2n, games of value 1.
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Finally, for the game K2n,2m+1, if n = 0 this is a game with 2m + 1 isolated vertices

which has value 2m+1. If n > 0 we see that K2n,2m+1 = {K2n,2m|K2n−1,2m+1}. Right’s

option always has value 0 and Left’s option has value 0 when m > 0 and has value

2n when m = 0. Therefore, K2n,2m+1 = {0|0} = ? for m > 0 and K2n,2m+1 = {2n|0}

for m = 0.

Definition 3.1.1 An arithmetic periodic sequence with period p and saltus s has

terms tn such that tn+p = tn + s.

Theorem 3.1.10 The value of the games played on the paths Pn form an arithmetic

periodic sequence with the following values:

Pk =























k
3
± 1 if k ≡ 0 mod 3

k+2
3

if k ≡ 1 mod 3

k−2
3

if k ≡ 2 mod 3

Proof: We proceed by induction and begin with the base case:

P1 = {0| } = 1 = 1+2
3

P2 = {|1} = 0 = 2−2
3

P3 = {2|0} = 1± 1 = 3
3
± 1

Now we assume the sequence holds up to 3k. For any path Pn, Left’s options are of

the form Pi + Pj where i + j = n− 1, i ≥ 1, j ≥ 1. Right’s only option is to Pn−1.

For P3k+1 we begin by calculating Left’s options. We know that i + j = 3k. If

i ≡ 1 (mod 3) and j ≡ 2 (mod 3) then by the induction hypothesis, this option has

value
i + 2

3
+

j − 2

3
=

3k

3
= k

If i ≡ 0 (mod 3) and j ≡ 0 (mod 3) then by the induction hypothesis, this option has

value
i

3
± 1 +

j

3
± 1 =

3k

3
= k
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Right’s only option is to P3k which has value k ± 1. Therefore P3k+1 = {k|k ± 1} =

k +1 = (3k+1)+2
3

= P3k−2 +1 as required. (Note that {k | k ± 1}− (k +1) = 0: If Left

moves to k − (k + 1) = −1, Right wins and if Right moves to (k ± 1)− (k + 1) then

Left responds to (k+1)-(k+1)=0 and wins.

For P3k+2 we begin by calculating Left’s options. We know that i + j = 3k + 1.

If i ≡ 0 (mod 3) and j ≡ 1 (mod 3) then by the induction hypothesis, this option has

value
i

3
± 1 +

j + 2

3
=

3k + 3

3
± 1 = (k + 1)± 1

If i ≡ 2 (mod 3) and j ≡ 2 (mod 3) then by the induction hypothesis, this option has

value
i− 2

3
+

j − 2

3
=

3k − 3

3
= k − 1

Right’s only option is to P3k+1 which has value k + 1. Therefore P3k+2 = {(k + 1)±

1, k−1|k +1} = k = (3k+2)−2
3

= P3k−1 +1 as required. (Note that k−1 ≤ (k +1)±1)

Finally, we examine P3k+3 and begin with Left’s options. We know that i+j = 3k+2.

If i ≡ 1 (mod 3) and j ≡ 1 (mod 3) then by the induction hypothesis, this option has

value
i + 2

3
+

j + 2

3
=

3k + 6

3
= k + 2

If i ≡ 0 (mod 3) and j ≡ 2 (mod 3) then by the induction hypothesis, this option has

value
i

3
± 1 +

j − 2

3
=

3k

3
± 1 = k ± 1

Right’s only option is to P3k+2 which has value k. Therefore P3k+3 = {k+2, k±1|k} =

(k + 1)± 1 = (3k+3)
3
± 1 = P3k + 1 as required (Note that (k + 2) > (k± 1)). We have

shown that if the sequence holds up to 3k then it holds up to 3k +3 and therefore by

induction it must hold for all n.

Corollary 3.1.11 The value of games played on the cycles Cn also form an arith-

metic periodic sequence with the following values:
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Ck =























k
3

if k ≡ 0 mod 3

k−4
3

if k ≡ 1 mod 3

k+1
3

if k ≡ 2 mod 3

Proof: Left’s only option from Cn is to Pn−1 and Right has no legal moves since

every vertex has degree 2. So, Cn = {Pn−1| }. When Pn−1 is an integer, we get that

Cn = Pn−1 + 1. This occurs when n− 1 ≡ 1 or 2 (mod 3). When n− 1 ≡ 0 (mod 3),

Cn = {n−1
3
± 1| }. We see that Left’s only option is reversible to n−1

3
− 2 which then

gives us that Cn = n−1
3
−1. Therefore, Cn forms an arithmetic periodic sequence with

a period of length 3 and a saltus of 1 and takes on the values given in the statement

of the Corollary.

Theorem 3.1.10 showed us that paths form an arithmetic periodic sequence. There are

many games in [2] which are conjectured to become periodic when you add enough

copies of ’simple’ positions. With respect to this game, the next theorem shows

that graphs which are similar to paths also become arithmetic periodic when enough

vertices along a path have been added.

Definition 3.1.2 The graph An is constructed as a path on n−1 vertices with another

vertex adjacent to the second vertex along the path.

Figure 3.1: The graphs A5 and A6

Theorem 3.1.12 For n ≥ 6, the values generated by the graphs An form an arith-

metic periodic sequence:

An =























(n−3
3

)? if n ≡ 0 (mod 3)
{

n−1
3

∣

∣

∣ (n−4
3

)?
}

if n ≡ 1 (mod 3)

(n−2
3

) if n ≡ 2 (mod 3)
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Proof: We will proceed by induction and begin by calculating the values for An for

3 ≤ n ≤ 8. The values obtained are:

n 3 4 5 6 7 8

An {2 | 0} 0 {{3 | 1} | 0} 1? {2 | 1?} 2

We see that the values for n = 6, 7 and 8 are as predicted. This will serve as our base

case. Now, for the general case, we need to determine what each player’s options are.

Right can remove any of the three vertices with degree 1 or the vertex of degree 3.

Left can remove any of the other vertices. This gives us the expression

An = {Ak + Pn−k−1 | An−1, Pn−1, 2 + Pn−3} where 3 ≤ k ≤ n− 2

By Theorem 3.1.10, we know that 2 + Pn−3 > Pn−1 which in turn means 2 + Pn−3

is dominated for Right and is therefore deleted. Assuming the pattern holds for all

smaller graphs, we can also check that An−1 dominates Pn−1:

If n− 1 ≡ 0 (mod 3), An−1 = (n−4
3

)? =
{

n−4
3

∣

∣

∣

n−4
3

}

<
{

n+2
3

∣

∣

∣

n−4
3

}

= n−1
3
± 1 = Pn−1.

If n− 1 ≡ 1 (mod 3), An−1 =
{

n−2
3

∣

∣

∣

n−5
3

?
}

< n+1
3

= Pn−1.

If n− 1 ≡ 2 (mod 3), An−1 = (n−3
3

) = Pn−1.

In each case, An−1 is at least as good for Right as moving to Pn−1. Therefore, the

option to Pn−1 can be deleted.

Left’s options can likewise be simplified but in a less obvious fashion. When re-

moving a vertex from the center of the graph, we produce two components, Pi and

Aj. Since i + j is fixed and Pi + Aj = Pi+3 + Aj−3 (both sequences being arithmetic

periodic with periods of length 3 and saltus of 1) then we only only have three unique

Left options that need to be considered. When n ≡ 1 or 2 (mod 3), we find that

Left’s option to A3 + Pn−4 dominates all others:

If n ≡ 1 (mod 3) his options are:

A3 + Pn−4 = {2 | 0}+
n− 4

3
± 1 =

n− 1

3

An−3 + P2 =
{

n− 4

3

∣

∣

∣

∣

(
n− 7

3
)?

}
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An−2 + P1 =
n− 4

3
+ 1 =

n− 1

3

We find that the largest is A3 + Pn−4.

If n ≡ 2 (mod 3) his options are:

A3 + Pn−4 = {2 | 0}+
n− 2

3
=

n + 1

3
± 1

An−3 + P2 =
n− 5

3

An−2 + P1 =
n− 5

3
? +1 =

n− 2

3
?

Here we find that A3 + Pn−4 is again the largest.

When n ≡ 0 (mod 3) his option to An−2 + P1 dominates all others:

A3 + Pn−4 = {2 | 0}+
n− 6

3
=

n− 3

3
± 1

An−3 + P2 =
n− 6

3
?

An−2 + P1 =
{

n− 3

3

∣

∣

∣

∣

n− 6

3
?
}

+ 1 =
{

n

3

∣

∣

∣

∣

n− 3

3
?
}

In this case, we see that An−2 + P1 is the largest.

Now we can write an expression for An with only one option for either player. Using

induction we can now see that the graphs An produce exactly the sequence described

above:

For n ≡ 0 (mod 3) we get that

An = {An−2 + P1 | An−1}

=
{{

n− 3

3

∣

∣

∣

∣

n− 6

3
?
}

+ 1
∣

∣

∣

∣

n− 3

3

}

=
{

n− 3

3

∣

∣

∣

∣

n− 3

3

}

(Left’s option reverses)

= (
n− 3

3
)?
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For n ≡ 1 (mod 3) we get that

An = {A3 + Pn−4 | An−1}

=
{

{2 | 0}+
n− 4

3
± 1

∣

∣

∣

∣

n− 4

3
?
}

=
{

1± 1 +
n− 4

3
± 1

∣

∣

∣

∣

n− 4

3
?
}

=
{

n− 1

3

∣

∣

∣

∣

n− 4

3
?
}

(since (±1) + (±1) = 0)

For n ≡ 2 (mod 3) we get that

An = {A3 + Pn−4 | An−1}

=
{

{2 | 0}+
n− 2

3

∣

∣

∣

∣

{

n− 2

3

∣

∣

∣

∣

n− 5

3
?
}}

=
{{

n + 4

3

∣

∣

∣

∣

n− 2

3

}
∣

∣

∣

∣

{

n− 2

3

∣

∣

∣

∣

n− 5

3
?
}}

=
n− 2

3
(both players’ options reverse)

To see the last equality, we can play the difference An − (n−2
3

). After either player

moves, the other can move to a position of value 0, so this is a second player win and

the games are equal.

Definition 3.1.3 The graph Pn,k has n vertices, n− k of which lie on a path, while

the other k are all adjacent to only the second vertex in the path.

The graph Pn,k is only defined for n > k. When k = 0 we have the paths Pn that

we are familiar with. When k = 1 we have the graphs An which are described

above. Another way of thinking of these graphs is having the graph Sk+1 (star on

k+1 vertices) then extending a path from the vertex of degree k until there are n

vertices in total. We’ve already seen that for k = 0 or 1 that these graphs form an

arithmetic periodic sequence.

Figure 3.2: The graphs P6,2, P7,2 and P7,3
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Table 3.1 shows the game values for n ≤ 15 and k ≤ 4. We notice that for a fixed

k and large enough n we see that the associated column of values seem to become

arithmetic periodic. In particular, for k odd, the value of Pn,k is the same as Pn−2,k−2.

For k even and k ≥ 4, we get that Pn,k is the same as Pn−2,k−2 but with the Left

option increased by 2.

n ↓ k → 0 1 2 3 4
1 1 - - - -
2 0 0 - - -
3 {2 | 0} {2 | 0} {2 | 0} - -
4 2 0 0 0 -
5 1 {{3 | 1} | 0} {4 | 0} {4 | 0} {4 | 0}
6 {3 | 1} 1? {3 | 1} 0 0
7 3 {2 | 1?} {{5 | 3} | 1?} {{5 | 1} | 0} {6 | 0}
8 2 2 {5 | {2 | 1?}} 1? {5 | 1}
9 {4 | 2} 2? {4, {5 | 3} | 2} {2 | 1?} {{7 | 5} | 1?}
10 4 {3 | 2?} {{6 | 4} | 2?} 2 {7 | {2 | 1?}}
11 3 3 {6 | {3 | 2?}} 2? {6 | 2}
12 {5 | 3} 3? {5 | 3} {3 | 2?} {{8 | 6} | 2?}
13 5 {4 | 3?} {{7 | 5} | 3?} 3 {8 | {3 | 2?}}
14 4 4 {7 | {4 | 3?}} 3? {7 | 3}
15 {6 | 4} 4? {6 | 4} {4 | 3?} {{9 | 7} | 3?}

Table 3.1: Values generated by the graphs Pn,k

Theorem 3.1.13 For a fixed k, the graphs Pn,k form an arithmetic periodic sequence.

In particular, when k ≥ 3 is odd, Pn,k = Pn−2,k−2 and when k ≥ 4 is even, Pn,k is the

same as Pn−2,k−2 but with the Left option increased by 2.

Proof: We will proceed by induction on both n and k and prove the result for the

two cases, when k is even and when k is odd.

First we assume that k is odd and examine Right’s options from the game Pn,k.

She may remove any of the vertices of degree 1, or the vertex of degree k + 2. This

results in three different graphs which are Pn−1,k−1, Pn−1,k and (k + 1) + Pn−k−2,0. By

induction, we know the value of all these graphs and find that Pn−1,k is strictly the

smallest. Therefore, her other two options are dominated. Also, we should note that
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by induction we know that Pn−1,k = Pn−1−2j,k−2j = Pn−k,1. Therefore, her best option

has the same value as if she were playing in the game Pn−k+1,1. Left’s options, on the

other hand, are all of the form Pn−i−1,k + Pi,0, 1 ≤ i ≤ n − k − 3. Again, we know

by induction that Pn−i−1,k = Pn−i−1−2j,k−2j = Pn−i−k,1. Therefore, his best move has

exactly the value it would if he were playing in the graph Pn−k+1,1. Since we know

that both players’ best options have the same value as playing in Pn−k+1,1, then we

know Pn−k+1,1 = Pn,k and Pn,k forms an arithmetic periodic sequence.

For the second case, we assume that k is even. Since we will rely on the fact that

k − 1 is arithmetic periodic, the following results will hold only after the initial ir-

regular values. Therefore, we require that n ≥ k + 5. From the graph Pn,k, Right’s

only options are to the graphs Pn−1,k−1 and Pn−1,k. By induction we know that

Pn−1,k−1 = Pn−1−2j,k−1−2j = Pn−k+1,1 < Pn−k+1,2 < Pn−1,k. Therefore, Right’s best

option has value Pn−k+1,1 which would be the same value as her option if she were

playing in the game Pn−2,k−2 by our induction hypothesis. Now, Left’s options are to

(k+1)+Pn−k−2,0 and Pn−i−1,k+Pi,0. As we have seen when k was odd, (k+1)+Pn−k−2,0

is strictly larger than all other options even when k = 1, so it will still be his best

option here. We note that in the game Pn−2,k−2, his best option would have been

to (k − 1) + Pn−k−2,0 for exactly the same reason. Therefore, Left’s option in the

game Pn,k is exactly 2 greater than in Pn−2,k−2 and Right’s option is the same as

in the game Pn−2,k−2 (ie Pn,k = {Pn−2,k−2 + 2 | Pn−2,k−2}). Therefore Pn,k forms an

arithmetic periodic sequence as described in the statement of the theorem.

This gives further evidence to the fact that there are many graphs that form arith-

metic periodic sequences when adding arbitrarily long paths extending from them.

Although we have completely solved the graphs Pn,k, the values themselves do not

always tell us the optimal strategy. If we were to play a game which is a disjunctive

sum of graphs of the form Pn,k then we’d like to know where our best move lies. In

this case, we note that for large n and k even, the difference between the Left and

Right options increase as k increases. The greater the difference, the more inclined
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a player is to move in that component. Therefore, a player should choose to play

in the component with the highest even value of k. When there are none left, we

find that the components which have k odd and n − k ≡ 0 (mod 3) are similar so

switches and will therefore be preferred over all other moves. Finally, if there are no

other moves left we find that the game is simply the sum of integers and stars. This

may not provide the best strategy in all cases since we have ignored the graphs where

n− k ≤ 4. For these graphs, we find they may have greater differences in their Left

and Right options than components with greater k values. For example, the in game

P5,3 + P6,2 we would prefer to play in the component P5,3 despite k being odd.

The graphs discussed in the last three theorems are all special cases of trees. Ta-

ble 3.2 shows the game values of all trees up to 7 vertices for this variant of the vertex

deletion game.

3.1.4 Decompositions

A question of particular interest when examining a new game is to determine those

positions which can be shown to be equivalent to smaller positions. These decompo-

sitions allow us to take a large graph and remove vertices and edges without affecting

the value of the game. The decomposition shown here relates only to the Even/Odd

variant of the vertex deletion game played on simple graphs.

Theorem 3.1.14 Let G be a graph. Let x, y ∈ V (G) such that N[x] = N[y]. Then

the game played on G has the same value as the game played on G′ = G− {x, y}.

Proof: To show that G = G′ we can simply play the game G−G′ and show that the

second player has a winning strategy. Since x and y have the same neighbourhoods,

we can deduce that the parity of the degree of all other vertices is the same in G as

it is in G′. We also know that there is an edge between x and y.

It is important to remember that the Left player will be able to remove even de-

gree vertices in G but odd degree vertices in −G′ since the roles of the players will
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Graph Value Graph Value Graph Value

1 0 {2|0}

2 0 1

{3|1||0} {4|0} {3|1}

1? {3|1} {3|1}

0 0 3

{2|1?} {2|1?} {5|3||1?}

{4|2||1|||0} {2|1?} 3

{2|0} {5|3||0} {5|1||0}

{6|0}

Table 3.2: All undirected tree game values up to 7 vertices for Even/Odd
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be reversed. If the first player deletes a vertex which is not x or y in one game, the

second player can certainly delete the equivalent vertex in the other game since the

vertices have same parity of degree. On the other hand if the first player deletes x

or y, then the second player can delete the other since its parity will have changed

(due to deleting the edge between x and y). Therefore, regardless of the first player’s

moves, the second player always has a legal move to make in response. Since the

game must eventually end we know it must be the second player who makes the last

move. Thus, G−G′ = 0 and we find that G = G′.

a b
c

d
ef

g

h
→

c

d
ef

g

h
→

c

e
g

h

N(a) = N(b) N(d) = N(f)

G G′

G = G′ = 1 + {2 | 0} = {3 | 1} = 2± 1

Figure 3.3: Using the decomposition rule to evaluate a graph

This decomposition also gives us a way to play the original game rather than just

calculate it’s value. A player should adopt their best strategy as if playing on the

simplified graph. If either player deletes a vertex that was removed during the sim-

plification, then the other player should delete its pair that was removed in the same

step of simplification. As long as both players are playing optimally, there will be no

better move for either player to make.

We can use this theorem to solve other classes of graphs where vertices have the

prescribed property. For instance, the complete graphs are such that every vertex

has the same neighbourhood since all possible edges exist in the graph.
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Theorem 3.1.15 The complete graph Kn has values:

Kn =







1 if n is odd

0 if n is even

Proof: Since every vertex has the same neighbourhood, we can remove any two at

a time and achieve a graph with the same value. This of course generates the graph

Kn−2 after the first step. Therefore, all the complete graphs on an odd number of

vertices have the same value as K1 which is a single vertex with value 1. Also, the

complete graphs with an even number of vertices are equivalent to the empty graph

which has value 0.

Theorem 3.1.16 The graph Gn,k is constructed by taking the graphs Kn and Pk then

identifying the end vertex of Pk with an arbitrary vertex of Kn. Then Gn,k has value:

Kn =







Pk if n is odd

Pk+1 if n is even

Proof: We know that every vertex that was originally in Kn besides the one which

was identified has the same neighbourhood. Therefore, using our decomposition we

can throw away pairs of vertices until we are left with either K1 or K2 (depending

on whether n was odd or even). Now, K1 (which is a single vertex) identified with

Pk remains Pk. K2 identified with Pk simply adds an extra vertex to the end of the

path, so the resultant graph is Pk+1.

This gives another example of a class of graphs which provide arithmetic periodic

sequences of game values when we extend a path from one of its vertices.

3.1.5 Aside: An interesting class of graphs

During the course of investigating the values of games played in the Even/Odd vari-

ant on simple graphs, an interesting class of graphs was discovered. These are the

complete bipartite graphs Km,n where m = 1. We call these the stars on n + 1 ver-

tices, denoted Sn+1. Theorem 3.1.9 has completely solved these graphs but they are

worth revisiting.
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The stars on 2n vertices, S2n, all have value 0. This is easy to see because there

is one vertex of degree 2n− 1 and 2n− 1 vertices of degree 1. Since all vertices have

odd degree, Left cannot make a move and loses if he plays first. Thus the game must

be in R ∪ P . Of course, we’ve shown that there are no graphs in R, so this must be

in P and hence has value 0. This can be generalized by saying that all graphs where

all vertices have odd degree have value 0. The argument is exactly as above.

Right can remove a vertex of degree 1 to produce the graph S2n−1 or remove the

vertex of degree 2n−1 to produce 2n−1 isolated vertices. That game will have value

2n− 1. Therefore, the stars on 2n vertices have the following form:

S2n = { | S2n − 1, 2n− 1}

To compute the exact value we need to know the value of S2n−1. In that graph, Left

has a very good move by taking the vertex of degree 2n−2 leaving 2n−2 isolated ver-

tices. This game has value 2n−2. Right’s only option, on the other hand, is to S2n−2

which we’ve already shown has value 0. Therefore we get that S2n−1 = {2n− 2 | 0}.

Substituting that back into our original equation, we get:

S2n = { | {2n− 2 | 0} , 2n− 1}

Now we find that Right’s other option to 2n−1 is dominated and is therefore removed.

Right’s other option is reversible and when simplified would show that this game has

value 0 as we expected. The interesting thing is that if we actually play this game it

is certainly a second player win. But, if Right must move first Left gets many ’free

moves’ since the value of the game will suddenly be very positive with value 2n− 2.

The term zugzwang is derived from German meaning ’compulsion to move’ and is

used by chess enthusiasts to describe a position in which passing would be preferable

to any legal move. Mutual zugzwang is when neither player has a good move and

would prefer to have the option to pass. With respect to combinatorial game theory,

mutual zugzwang is a position which has value 0 despite the fact that players may still
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have legal moves to make. In some sense, the stars with an even number of vertices

are even worse than mutual zugzwang since if it is Right’s turn, she does not only

lose the game, but she gives Left many extra free moves in the process.

3.2 Directed Graphs

We will now consider the same game as before, except that we will play on a directed

graph (or digraph). The players will be able to remove vertices based on the parity

of their in-degree. A dictionary of all digraphs on up to four vertices is given in the

appendix along with the respective values for all three versions of the game.

3.2.1 Even/Even

We begin with the game where both players can remove vertices that only contain

even in-degree. Naturally, this is an impartial game since both players have the same

set of options from a given position.

Theorem 3.2.1 Let D be arbitrarily directed forest with |V (D)| = n. Then we have

that

D =







? if n is odd

0 if n is even

Proof: A forest is simply a union of trees. By Theorem A.2.4 we know that a tree

with n vertices has exactly n − 1 arcs. Therefore, a forest on n vertices will have

exactly n − c arcs where c is the number of components of D. So, the sum of the

in-degrees over all vertices will be n − c. Since there are n vertices we know there

must exist some vertex with in-degree 0. In particular, there is a vertex with even

in-degree which implies that the first player has a legal move as long as n 6= 0. When

a vertex and all incident arcs is deleted we cannot possibly create a new cycle in the

digraph so we must be left with another directed forest with one fewer vertex. There-

fore, there will always be a legal move for both players until there are no vertices

remaining which makes this a trivial game with the values listed above.
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Unlike the game played on undirected graphs, this is not a trivial game in general. In

other words, there are some positions that take on values which are not 0 or ? (shown

in Table 3.3). It is unknown whether or not there is any bound on the G-values that

these digraphs can take. At the time of writing, no connected digraphs that have

any G-value greater than 2 have been found. A large number of examples have been

examined up to 7 vertices, but it was not an exhaustive search. A complete table of

all digraphs on up to 4 vertices as well as the paths on 5 vertices along with their

game values for all three variations can be found in Tables 3.3, 3.4 and 3.5 at the end

of this chapter.

3.2.2 Odd/Odd

Theorem 3.2.2 Let Pn be the digraph which is a path where all arcs are oriented in

the same direction. The G-value of the game played on Pn is the same as G(n) for

the octal game 0.6.

Proof: Let’s begin by examining the types of moves a player may make:

• remove a vertex and leave two graphs Pi and Pj where i + j = n− 1 > 0

• remove the end vertex to leave the graph Pn−1 as long as n− 1 > 0

The rules are the same for each component when the graph becomes disconnected.

Therefore, we can see that this is the same as playing a game with a heap of beans

in which the legal moves are to remove 1 bean and leave one or two heaps but never

take the last bean from any heap. Therefore, by the naming conventions for octal

games given in section 1.11, this is the game 0.6.

Among octal games, 0.6 is rather famous because it has such simple rules and yet

does not seem to be periodic. There are many such ’badly behaved’ octal games,

and we shall examine others in chapter 5. Achim Flammenkamp has analyzed many

’badly behaved’ octal games and maintains a website where this data can be found

[7]. At the time of writing, 0.6 has been analyzed up to 237 by J.P. Grossman [9] and

there has not been any observed period. Figure 3.4 shows a graph of the first 30000
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values of its G-sequence.

Figure 3.4: The first 30000 values generated by the octal game 0.6

3.2.3 Even/Odd

Like its counterpart played on simple graphs, this version of the game is partizan

since the players have different options. I will examine a couple classes of graphs and

determine their outcome class and values.

Theorem 3.2.3 Let D be an arbitrarily directed forest with |V (D)| > 0. Then D ∈ L

and hence D > 0.

Proof: As seen before, a directed forest with |V (D)| > 0 always has at least one

vertex with in-degree 0. Therefore, Left always has a legal move. Thus, the only

position which Left has no move would be when there are no vertices. But then we

can deduce that Right must have made the previous move which would have been to

delete a single vertex with no edges (and hence in-degree 0). Since this is not a legal
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P1(5) :

P2(5) :

P3(5) :

Figure 3.5: The digraphs P1(5), P2(5) and P3(5)

move for Right, Left can never be in a position where he has no legal move. This tells

us that Left can never lose, i.e. he will always win going either first or second.

Definition 3.2.1 The digraphs denoted P1(n), P2(n) and P3(n) are paths with n

vertices where all arcs are oriented in the same direction with the exception that

P2(n) has its first arc flipped and P3(n) has its last arc flipped.

Lemma 3.2.4 The digraph P1(n) has value:






1? if n is even

1 if n is odd

Proof: We will proceed by induction. When n = 1 the Left may remove it but

Right cannot since it has in-degree 0. Therefore, P1(1) = {0 | } = 1. When n = 2,

either player may move to P1(1) since there is one vertex with in-degree 1 and one of

in-degree 0. Thus we have P1(2) = {1 | 1} = 1?.

Now let’s assume the pattern holds up to P1(k). For the game P1(k+1) Left can only

remove the vertex with in-degree 0 leaving the game P1(k). Right can remove any

other vertex leaving P1(k) (by taking the other end) or P1(i)+P1(k− i) by taking the

(i+1)th vertex along the path splitting it into two paths of the same type. Therefore,

P1(k + 1) = {P1(k) | P1(k), P1(i) + P1(k − i)} where 1 ≤ i ≤ k − 1

When we examine the right options we see that P1(i) + P1(k − i) = 2 or 2?. In

either case, it is certainly greater than Right’s other option of P1(k) = 1 or 1? so it
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is dominated.

So, for k + 1 odd, we find that

P1(k + 1) = {P1(k) | P1(k)} = {1? | 1?} = 1

And for k + 1 even we find that

P1(k + 1) = {P1(k) | P1(k)} = {1 | 1} = 1?

Lemma 3.2.5 The digraph P2(n), n ≥ 3 has value:






{2 ? |1} if n is even

{2|1?} if n is odd

Proof: As before, we will proceed by induction. For n = 3 we find that Left’s only

legal move is to a digraph with 2 vertices and no arcs. If Right plays first, both of

her moves are equivalent and move to a digraph with 2 vertices and and arc between

them. This game has value 1?. Thus, P2(3) = {2 | 1?} as desired.

Now assume it the pattern holds up until P2(k). In the game P2(k + 1), Left only

has one legal move which creates a single vertex and a path P1(k − 1). Right can

remove any other vertex which may split the digraph into two components P2(i) and

P1(k− i− 1). Therefore, the Left and Right options from P2(k +1) may be described

as follows:

P2(k + 1) = {1 + P1(k − 1) | P1(k), P2(i) + P1(k − i− 1)}

where 3 ≤ i ≤ k − 1. As before, we can now examine Right’s options to eliminate

ones which are dominated. First we note that P2(i) has value {2 | 1?} or {2? | 1}

while P1(k − i− 1) has value 1 or 1?. Therefore,

P2(i) + P1(k − i− 1) = ({2 | 1?} or {2? | 1}) + (1 or 1?)

= {3 | 2?} or {3? | 2}

> 1

= P1(k)
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and we find that Right’s option to P1(k) dominates all others.

So, for k + 1 odd, we find that

P2(k + 1) = {1 + P1(k) | P1(k)} = {2 | 1?}

And for k + 1 even, we find that

P2(k + 1) = {1 + P1(k) | P1(k)} = {2? | 1}

Lemma 3.2.6 The digraph P3(n), n ≥ 5 has value:







2 if n is even

2? if n is odd

Proof: First we should note that although this class of digraphs is ultimately pe-

riodic, the first couple values do not follow the same pattern. In particular, it is

easy to check that P3(3) = 3 and P3(4) = {3|2?}. Now, for n = 5 we get that

P3(5) = {{3 | 2?} , 2, 1? | 4, 2}. The option to 4 for Right is dominated as well as the

options to 2 or 1? for Left. Therefore, we are left with P3(5) = {{3 | 2?} | 2}. Now we

can see that Left’s option is reversible to 2 (since 2? ≤ {{3 | 2?} | 2}) and we finally

arrive at P3(5) = {2 | 2} = 2?.

[As an aside, it is worthwhile to point out something rather curious that just hap-

pened during the course of simplification: Left’s option of 2 was dominated by his

option to {3 | 2?} which means that Left should never play to 2 since it is an inferior

move. Then we found that {3 | 2?} was reversed out and replaced by an option to 2.

It is interesting because this means the option that was always better than moving

to 2 is equivalent to moving to 2 in this particular game.]

Now that we have a base case, we can proceed with the induction by assuming the

pattern will now hold up to P3(k). From the game P3(k + 1) we see that Left has

three legal move which are removing either end vertex with in-degree 0 or the vertex



56

with in-degree 2. These moves give options with values P3(k), P1(k) and 1+P1(k−1)

respectively. Rights options are to remove any of the other vertices leaving a graph

with two components with value P3(i)+P1(k− i− 1) where 3 ≤ i ≤ k− 1. Therefore

we get:

P3(k + 1) = {P3(k), P1(k), 1 + P1(k − 1) | 1 ? +P1(k − 3), P3(i) + P1(k − i− 1)}

Again, we examine the options available to both players and eliminate those that are

dominated to arrive at:

P3(k + 1) = {P3(k), 1 + P1(k − 1) | 1 ? +P1(k − 3)}

Now, for k ≥ 6 we find that Left’s options have the same value and Right’s option is

again the same value. So, for k + 1 odd, we get that

P3(k + 1) = {2, 2 | 1 + 1} = {2 | 2} = 2?

Likewise, when k + 1 is even we end up with

P3(k + 1) = {2?, 2? | 1 ? +1} = {2? | 2?} = 2

Definition 3.2.2 Let AP1(n), AP2(n) and AP3(n) be directed paths with n vertices

such that each edge along the path is oriented in an alternating fashion. AP1(n) is

such that both end vertices have in-degree 0, AP2(n) is such that exactly 1 of the end

vertices have in-degree 0 and AP3(n) is such that both end vertices have in-degree 1.

Due to parity, we can deduce that AP1(n) and AP3(n) must always have an odd

number of vertices while AP2(n) must always have an even number of vertices.

Lemma 3.2.7 The digraph AP1(n) has value n for all n.

Proof: First we note that Right has no legal moves since all vertices will have

in-degree 0 or 2. On the other hand, Left can remove a vertex of in degree 2 to

produce a disconnected graph where the components are AP1(i) and AP1(j) where

i + j = n− 1. By induction we can see that this option will have value n− 1. There

cannot be any position on n− 1 vertices with value greater than n− 1, so this must

be his best move. Therefore, AP1(n) {n− 1 | } = n, as desired.
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AP1(5) :

AP2(6) :

AP3(5) :

Figure 3.6: The digraphs AP1(5), AP2(6) and AP3(5)

Lemma 3.2.8 The digraph AP2(n) has value n− 2 for all n ≥ 4.

Proof: We begin by checking that AP2(2) = 1? and AP2(4) = 2. There is only 1

vertex of in-degree 1, so Right only has one legal move from AP2(n) to AP1(n − 1).

Left can remove any of the other vertices in the digraph since they all have in-

degree 0 or 2. If he removes a vertex of in-degree 2, then he leaves two components

AP1(i) and AP2(j) where i + j = n − 1. By induction and the previous lemma

we see that this option is at most (i + j − 1)? = (n − 2)?. Therefore, AP2(n) =

{(n− 2)? | n− 1} = n − 2. (Thus, the difference of these games is a second player

win: {(n− 2)? | n− 1}−(n−2). If Left moves to (n−2)?−(n−2) = ?, Right moves

to 0 and wins. Likewise, if Right plays first she must move to (n− 1)− (n− 2) = 1

which is a Left win.)

Lemma 3.2.9 The digraph AP3(n) has value n− 4 for all n ≥ 7.

Proof: We check the first couple values of AP3(n) to find that AP3(1) = 1, AP3(3) =

{2 | 1?}, AP3(5) = 2? and AP3(7) = 3. First we note that although Right has two

different vertices she could remove, they both result in the digraph AP2(n− 1) which

we know has value n− 3. Left can move to two different types of positions:

• AP3(i) + AP3(j) where i + j = n− 1 and both i and j are odd.

• AP2(i) + AP2(j) where i + j = n− 1 and both i and j are even.

In the first case, by induction we find that AP3(i) + AP3(j) is at most n − 5 when

we choose i = 1. In the second case, if we let i = 2 the previous lemma tells us that
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this option has value 1 ? +(n− 3)− 1 = (n− 4)?. For any other value of i we get an

option with value (i−2)+(j−2) = i+ j−4 = n−5. Therefore, Left’s best option is

when he lets i = 2 and we get that AP3(n) = {(n− 4)? | n− 3} = n − 4 as desired.

Again, this last equality can be seen by playing the difference of the two games.

The most important difference between this version of the game and it’s counter-

part played on undirected graphs is that there are digraphs which the Right player

can win by playing first or second. The reason for this is that the sum of in-degrees is

equal to the number of arcs in the digraph. Previously, we were able to use the fact

that the sum of degrees in a simple graph is twice the number of edges. For example,

Figure 3.7 shows a digraph D which has value -1.

→

Figure 3.7: A digraph with a negative game value, -1

Since each vertex has odd in-degree, Left cannot make a legal move and would lose

if he played first. If Right plays first, she may remove the vertex with 0 out-degree,

as shown, leaving a digraph that again has only vertices with odd in-degree and thus

winning the game. It is easily checked that this option is Right’s best move and that

the option has value 0. Therefore, D = { | 0} = −1.

Also, the digraph game values don’t fall into the classes of even and odd games pre-

viously defined. For example, Figure 3.8 shows two different digraphs on 3 vertices

with 3 arcs which have values 0 and 1 respectively.

Figure 3.8: Two 3-vertex digraphs with values 0 and 1
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Graph E/O E/E O/O Graph E/O E/E O/O

1 ? 0 1? 0 ?

1 ? ?2 {2|1?} ? 0

3 ? 0 0 0 0

1 ? 0 1? 0 0

{2 ? |1} 0 ? 2 0 ?

{3|2?} 0 0 −1 0 ?3

{2 ? |1} ?2 ? 1? 0 ?2

4 0 0 {2 ? |1} 0 ?3

{3||2|1?} 0 ? 1? 0 ?

3? 0 ? 3? 0 ?

Table 3.3: Digraph values for Even/Odd, Even/Even and Odd/Odd
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Graph E/O E/E O/O Graph E/O E/E O/O

{3|2?} 0 ?2 {2 ? |1} 0 ?

1? 0 0 0 0 0

2 0 ? {3|1} 0 0

4 0 0 1
2
± 1

2
0 ?

1? 0 ? {3|1} ?2 ?

1? 0 0 {3|1} 0 ?

{2|1 ? ||0} 0 ? 2 0 ?

3? 0 ? −1 0 0

1
2
± 1

2
?2 0 1? 0 0

2 ?2 0

Table 3.4: Digraph values for Even/Odd, Even/Even and Odd/Odd (cont.)
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Graph E/O E/E O/O Graph E/O E/E O/O

1 ? ? 2? ? ?

3 ? ? 2? ? ?2

{2|1?} ? 2? ? ?2

5 ? 0 3± 1 ? ?

Table 3.5: Digraph values for Even/Odd, Even/Even and Odd/Odd (cont.)



Chapter 4

Grand Left/Right

4.1 Playing The Game

During the course of play, Grand Left/Right usually becomes the sum of small discon-

nected components. Also, in the smallest components, to secure a position that is an

integer, empty spaces must be completely surrounded by your own pieces. Therefore,

an intuitive strategy for the game might be to play such that your pieces are adjacent

to as many empty spaces as possible. In that way, even if you cannot secure any

empty squares for yourself, at least your opponent can no longer secure any of the

spaces your piece is next to either.

For many small games, this strategy usually causes the game to break down into

many small positions which all have value 0 or ?. Therefore, given a symmetric board

and starting position, the game will be won based on parity (all spaces of the board

will be filled with neither player securing any beneficial positions).

A list of all values that Grand Left/Right can take when there is a game with at

most 4 free spaces is given in Table 4.1.
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4.2 One Empty Row

The next two results deal with a game in which there is a single empty row left in

the game. We assume that the row is completely surrounded by pieces (ie it is not at

the side of the board). In the following diagram, we specify that the leftmost piece

is black and the rightmost piece is white, but do not specify which pieces are above

or below the empty spaces in the diagram.

z j

Lemma 4.2.1 In the above position, if there are 2k empty spaces along a row, Left’s

option is ≥ ?. If there are 2k + 1 empty spaces, Left’s option is ≥ 0.

Proof: Left can always begin by shooting across the row leaving one of his pieces at

the other end. If Right has a move, it will be to a space at an end of the row, creating

a similar position with exactly two fewer empty spaces. Of course, if Right has no

move at some point while there are still empty spaces, then this position must have

a positive value. By induction, Left can continue in this manner as long as Right

does not fill the last space and create a game of value 0. In this case, we know there

must be an even number of spaces left and that Left never has an option to a positive

number. Therefore, his best option is to ? (since Right moves to 0). Otherwise, Left

wins which implies his Left option is ≥ 0.

Lemma 4.2.2 If Right’s best move when playing in a game with a single empty row

is to a game with a positive value, then Left must have an option which is ≥ 0.

Proof: Case 1: After Right’s move, both endpoints of the path are her own pieces.

Assume she loses going first in this new game. Then we know that since she can

move after each of Left’s moves, there must be an even number of spaces remaining.

Now, if she goes second, she will still always be able to move after Left moves, and

there will always be an odd number of spaces left so she must eventually make the

last move and win. Therefore, this game cannot have a positive value.
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Case 2: After Right’s move, the one endpoint is Left’s piece and the other is Right’s.

If this game has a positive value, then consider the position where Left had played

first and moved to the same space Right had moved to as shown here:

z z

G

z z z z j z

GL GR

Then we can see that Left’s options from GR are a subset of his options from GL.

Also, Right’s options from GL are a subset of her options from GR. Therefore, it

must be the case that GL ≥ GR > 0.

Theorem 4.2.3 All Grand Left/Right paths with 2n spaces are even games and paths

with 2n + 1 spaces are odd games.

Proof: Any game with 0 spaces has value 0, so this is an even game as required. If

there is one space free, the game has value 1, -1 or ? which are all odd games. Assume

that all paths up to 2k spaces are even or odd games as appropriate. Now, a game

with 2k+1 spaces has only even games as options. By the previous theorem we know

that if Right has an option to a game with positive value, so does Left. Therefore, we

can never have this game be of value 0. Therefore, all the paths with 2k + 1 spaces

are odd games. Now we find that all games with 2k + 2 spaces only have odd games

as options, therefore they must be even games. By induction all paths with 2n spaces

are even and all paths with 2n + 1 are odd.
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Position Value Position Value Position Value
tttt t 1 tdtt t ? tdtd d -1
ttttt t 2 ttdtt t {1 | ?} tdttt d 0
ttdtt d ±1 tddtt d {? | −1} tddtd d -2
tttttt t 3 tttttd t {2 | 0} ttdttt t 1
tttdtt t {2 | {1 | ?}} tdtttd t {2 | {? | −1}} ttdttd t ?
tddttd t {{1 | ?} | −2} tttdtd d −1 tdddtd t {0 | −2}
ttddtd d {{? | −1} | −2} tdddtd d −3 d t ±2

Position Value Position Value
ttttttt t 4 ttttttd t {3 | ?}
ttdtttt t {1 | ?} tttdttt t 2
ttttdtt t {3 | {2 | 0}} ttdtttd t 0
tttdttd t ±1 ttddttd t {? | −1}
tdttdtt d {{2 | 0} | −1} ttddttt d {1 | {0 | −2}}
tttddtt d {{2 | {1 | ?}} | {{? | −1} | −2}} tddddtt d {? | −3}
tdtddtd d −2 ttdddtd d {{0 | −2} | −3}
t d ±3

Table 4.1: All Grand Left/Right values with up to 4 free spaces



Chapter 5

Cookie Cutter

Lemma 5.0.4 For any position of the game with n blocks, the G-value of the game

is at most n.

Proof: We will proceed by induction. Clearly a game with no blocks has value 0

since there are no legal moves. A game with only one block has a single legal move

to 0 and thus has value ?. In other words, it has G-value 1.

Now assume the value of all games with n−1 or fewer blocks have G-value of n−1 or

less. Since on each turn we must remove at least 1 block, the options of a game with

n blocks are all at most n − 1 by our induction hypothesis. Therefore, any position

with n blocks has G-value at most n by the mex-rule.

5.1 One Row Cookie Cutter

Definition 5.1.1 An arbitrarily large cookie cutter is one of a fixed size that is

big enough to cover all blocks remaining in the game.

Corollary 5.1.1 For arbitrarily large cookie cutters, the G-value of a game with n

consecutive blocks in one row is n.

66



67

Proof: With an arbitrarily large cookie cutter, it is always possible remove any

number of the remaining blocks if they are in a row. Therefore, this is equivalent to

a game of Nim with one pile of n beans which has G-value n.

Lemma 5.1.2 The game starting with a 1 × n grid and a cookie cutter of size k is

equivalent to the octal game 0.33 . . .37 where there are k−1 threes in the expression.

Proof: We begin by thinking of the n blocks as a pile of beans as in Nim. On each

turn, a player may remove from 1 to k − 1 blocks as long as it is from an end thus

leaving the equivalent of 0 or 1 piles of beans remaining. This accounts for the k − 1

threes in the expression. If a player removes k blocks he may leave 0, 1 or 2 piles

since he could place the cookie cutter so as to split the initial row into two. These two

piles are disjoint because the blocks are too far apart for a cookie cutter to be placed

which would cover blocks from both piles. This accounts for the 7 in the kth place

of the expression. Finally, there is no way to remove more than k blocks since they

lie in a row and the cookie cutter is of size k. Therefore, these games are equivalent.

Lemma 5.1.3 The expressions i + j and i⊕ j have the same parity.

Proof: If exactly one of i and j are odd, then their sum is odd. Also, only odd

numbers have a 1 in the units column of their binary representation. Therefore, the

nim-sum will also have a 1 in that place making i ⊕ j odd. Likewise, if i and j are

either both odd or both even their sum will be even. Also, there will be an even

number of 1s in the units column of the binary representation, making the nim-sum

even as well.

Theorem 5.1.4 When using a cookie cutter of size k where k is odd, the G-sequence

produced by the corresponding octal game is periodic. Moreover, the sequence has no

irregular values, and G(n) = n (mod(k + 1)).

Proof: The first k + 1 terms of the G sequence are the numbers 0 through k in

order since the cookie cutter is large enough to remove all blocks. Therefore, this is
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equivalent to a single pile of beans in nim.

Assume that the specified pattern holds until we get to some term t ≥ k+1. We would

like to show that this term has value t (mod(k+1)) since that would be the next term

in the sequence described. We know that we can remove up to k blocks and leave the

remainder in one pile, so this gives us the options {t− 1, t− 2, ...1, 0, k, k − 1...t + 1}

(all terms mod(k + 1)). Also, we could remove exactly k and split the remainder into

two piles.

Since k + 1 is even, then t will have the same parity as t (mod(k + 1)). When

we remove k and split into two piles, of size i and j, we know that i + j will have

opposite parity to t. But then by the Lemma 5.1.3 we know that G(i)+G(j) will also

have opposite parity to t. In particular, this cannot be an option which is equivalent

to t (mod(k + 1)). Therefore, we know that when we have a pile of size t, we have

options to 0 through t − 1 (mod(k + 1)), but no option to t (mod(k + 1)). By the

mex-rule we conclude that G(t) = t (mod(k + 1)). Therefore, by induction we have

shown that the G-sequence will always be periodic with the values specified above.

I have checked up to k = 32 and have found that although for all k odd we have

periodic G-sequences, not all of the others appear chaotic in the sense that they do

not seem to be a period. In particular, for k=4, 12 and 28 we get periodic sequences

but with some irregular values first.

Theorem 5.1.5 For k = 4(2a−1), a > 0 the G-sequence of the octal game 0.33...37

with k − 1 3s is periodic.

Proof: In particular, we will show that the G-sequence becomes periodic starting

at n = 4k +4. The irregular values will be grouped into 5 sections which we will deal

with in order:

• For 0 ≤ n ≤ k we find that G(n) = n.

• For k + 1 ≤ n ≤ 2k + 2 we find that G(n) = n− (k + 1).
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• For 2k + 3 ≤ n ≤ 3k + 3 we find that G(n) = n− (2k + 2).

• For 3k + 4 ≤ n ≤ 4k + 2 we find that G(n) = n− (3k + 3).

• For n = 4k + 3 we find that G(n) = 0.

Starting at n = 4k + 4 we observe that a period of length k + 1 begins taking on the

values (k + 1), 1, 2, ..., k in that order.

For the first section, we have a cookie cutter of size k, so it can remove all blocks in

play if a player chooses. Therefore, we may treat this as an arbitrarily large cookie

cutter and apply Corollary 5.1.1 to find that G(n) = n when 0 ≤ n ≤ k.

For the second section, we know by induction that from n = k + 1 + i, 1 ≤ ileqk + 1

we can get to any of the previous k values in the G-sequence which are {i − 1, i −

2, ...1, 0, k, k − 1, ...i + 1}. Also, we may split the pile after removing k. If we choose

to split the pile we know the two resultant piles will sum to i + 1 since we removed

exactly k from the n = k + 1 + i that we started with. Then by Lemma 5.1.3 we

know that we cannot have two piles which have a sum of i + 1 and a nim-sum of i

since they have opposite parity. Therefore, from a position with n = k + 1 + i, we

have no option to a game with G-value i but we do have all options up to i− i. Thus,

G(n) = n− (k + 1) for k + 1 ≤ n ≤ 2k + 2.

For the third section, we know by induction that from n = 2k+2+i we can get to any

of the previous k values in the G-sequence which are {i−1, i−2, ...1, k +1, k, ...i+1}.

Again, we may also split the pile after removing exactly k. In order to show G(2k +

2+ i) = i we still need to show that there exists an option to 0 and there is no option

to i. To show there is an option to 0, we consider two cases:

• i is even: Then we can remove exactly k (which is also even to have k + 2 + i

remaining. If we split this into two equal sized piles, then each pile will have

the same G-value and their nim-sum will therefore be 0.

• i is odd: In this case, we split the pile of size k + 2 + i into piles of size j and

k+2+ i− j. As long as k+2+ i− j falls into the second range described above,
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it will have G-value i + 1− j. Since we want the values to be equal (and hence

their nim-sum 0) we solve j = i + 1 − j, so j = i+1
2

. This indeed puts the pile

of size j into the first range and the pile of k + 2 + i− j in the second, so this

position has G-value 0.

Now we need to show there is no option to a position with G-value i. As above we

will find that we are splitting the pile into two such that the sum of the two piles

is k + 2 + i and their nim-sum is i. Since one of the piles must fall into the second

range, we know that the G-value the piles will be j and i + 1− j. Again, by Lemma

5.1.3, we know this can never have a nim-sum of i since the sum of G-values is i + 1.

Therefore, from a position n = 2k + 2 + i, 1 ≤ i ≤ k + 1 we know we can get to all

the G-values from 0 to i − 1 but never to i. Thus, by the mex-rule, we know that

G(n) = n− (2k + 2) for 2k + 3 ≤ n ≤ 3k + 3.

(Note that if k is not of the form 4(2a−1), a > 0 it is possible to have both piles in this

third section fall into the second section after splitting and create higher G-values.)

For the fourth section, we again need to show that we have all the options up to

i−1 but no option to i when we start with n = 3k+3+ i. The options from 1 to i−1

are obtained exactly as before and the option to 0 occurs when you remove exactly

k and split into two heaps, one of which is of size i+1
2

when i is even or into equal

piles when i is odd. Using a similar argument as above, we can show the option to i

cannot exist. Therefore, by the mex-rule, G(n) = n−(3k+3) when 3k+4 ≤ n ≤ 4k+2.

For n = 4k + 3 we get all the same options as we would in section 4 except that

our only option to 0 no longer exists since creating the pile of size i+1
2

no longer falls

into the first range and hence the nim-sum is not 0. Since we have no option to 0 in

this case, G(4k + 3) = 0 by the mex-rule.

Starting at 4k+4, we are now in the section that will repeat forever. To show why,

we must examine the game starting at n = 4k + 4 + i to show that all options from

0 to i − 1 exist but that i does not (modulo (k+1) since that is the length of the
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Figure 5.1: The first 30000 values generated by the octal game 0.33333333333337

period). As before, showing the options from 0 to i − 1 exist is based on induction.

Showing i does not exist is again due to parity. The only case we need to be careful

of is n = 5k + 4 because we can no longer reach a position with value 0 unless we

split the heap. Of course, once we have removed k, we have an even number left over

so we can split into equal piles to get the G-value 0. For all n = 5k + 4 + i, i > 0 we

can show that G(n) = i (modulo k + 1) by showing all the options from 0 to i − 1

exist and an option to i does not. Therefore, this is a periodic sequence with a period

length of k + 1.

At the time of writing, there are no other known games of this form that become

periodic. All other values of k ≤ 32 are ’badly behaved’ but generate some rather

interesting looking graphs. Figure 5.1 shows the first 30000 G-values of the game

played when k = 14.
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5.2 Two Row Cookie Cutter

Definition 5.2.1 A position of Type-A, denoted A(a,b) has two adjacent rows with

a and b consecutive blocks respectively. These rows start in the same column.

Definition 5.2.2 A position of Type-B, denoted B(n,m), has 2 rows which are

divided into three sections. The first (leftmost) section contains n consecutive blocks

in the first row. The second section contains no blocks but as many empty columns

as desired. The third (rightmost) section contains m consecutive blocks in the second

row.

Figure 5.2: Cookie Cutter positions A(2, 3) and A(1, 4)

Figure 5.3: Cookie Cutter positions B(2, 3) and B(1, 4)

Lemma 5.2.1 For arbitrarily large cookie cutters, the position B(n,m) has G-value

n + m

Proof: We will proceed by induction. Since B(n, 0) and B(0,m) are single rows,

by Corollary 5.1.1 we know they have G-values n and m respectively. Assume the

statement is true for all positions for a + b < n + m and a ≤ n, b ≤ m. Consider the

following two types of legal moves:

• Take k blocks from the group of n leaving a position B(n − k,m) where 0 <

k ≤ n.

• Take all blocks from the group of n and k blocks from the group of m leaving

a position B(0,m− k) where 0 < k ≤ m.
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By the induction hypothesis, the second move generates positions which have values

0 to m−1. The first move generates positions which have values from m to m+n−1.

Therefore, by the mex-rule we know that B(n,m) has G-value at least n + m. By

Lemma 5.0.4 we know that it can have value at most n + m. Thus, it’s value must

be exactly n + m.

Theorem 5.2.2 For arbitrarily large cookie cutters, the position A(a, b) has G-value

a− 1 when a = b and a 6= 2k− 1 for any k > 0. Otherwise, A(a, b) has G-value a + b.

Proof: We will proceed by induction. From Lemma 5.0.4 we know the position

A(a, 0) has G-value a. It is also easy to see that A(1, 1) is the same as A(2, 0) (by

rotation) and therefore has G-value 2.

Assume that the statement is true for all positions for a+b < n+m and a ≤ n, b ≤ m.

First we check the case when n < m. We want to show that we have options which

take on all G-values from 0 to n + m− 1. Consider the following four types of moves

and the G-values they produce based on the induction hypothesis:

1. Remove blocks from the first row to reach positions A(k,m) where 0 ≤ k < n

with G-values from m to n + m− 1.

2. Remove blocks from the second row to reach positions A(n, k) where 0 ≤ k < m

with G-values n to 2n− 1, 2n + 1 to n + m− 1 and 2n if n = 2j − 1 for some j

and n− 1 otherwise.

3. Remove blocks from both rows from the unequal side to reach positions A(k, k)

where 0 ≤ k < n which have G-values 2k when k = 2j − 1 for some j and k− 1

otherwise.

4. Remove at least n blocks from the second row starting at the equal side to reach

positions B(n, k) where 0 ≤ k ≤ m− n with G-value n + k.

The move of type 2 generates all the values from n to n+m−1 except possibly 2n.
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→

Figure 5.4: Cookie Cutter move of type 1 from A(3, 5) to A(1, 5)

→

Figure 5.5: Cookie Cutter move of type 2 from A(3, 5) to A(3, 2)

If 2n ≥ m then let m = n + k. We can make a move of type 1 to the position

A(n− k,m) since n ≥ k. But then we find that A(n− k,m) = A(n− k, n + k) which

has G-value 2n since k > 0.

If 2n < m then we can make a move of type 4 to take m − n blocks leaving the

position B(n, n) (since m− n > n). By Lemma 5.2.1, this position has G-value 2n.

So far, we have found options from A(n,m) to positions of G-values n to n + m− 1.

We now need to find options with G-values 0 to n− 1.

By using moves of type 3, we can generate all the positions A(k, k) where 0 ≤ k ≤ n.

So, based on the induction hypothesis, we need to determine if all the G-values from

0 to n-1 exist as games of this form. The G-value j − 1 exists in the position A(j, j)

when j 6= 2i − 1 for any i. If j = 2i − 1 then the value j − 1 exists in the position

A( j−1
2

, j−1
2

) since we know that j−1
2

= 2i−1 − 1 and thus has G-value 2( j−1
2

) = j − 1.

Therefore, for any particular value j ≤ n − 1, there exists a k with 0 ≤ k ≤ n such

that the position A(k, k) has a G-value of j. It is now easy to check that the G-values

of these positions is exactly the set {0, 1, . . . , n− 1, 2j} where j = max{i : i ≤ n and

→

Figure 5.6: Cookie Cutter move of type 3 from A(3, 5) to A(2, 2)
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→

Figure 5.7: Cookie Cutter move of type 4 from A(3, 5) to B(3, 1)

i = 2p − 1 for some p}.

In summary, we’ve found moves to positions which can take on all the values from 0

to n + m − 1. Therefore, the mex-rule tells us the G-value must be at least n + m.

By Lemma 5.0.4 we know this is also an upper bound and therefore is exactly the

G-value of this position.

Now we assume n = m. From this position, there are only two distinct types of

moves.

R1 - Remove blocks from both rows leaving position A(k, k) where 0 ≤ k ≤ n− 1.

R2 - Remove k blocks from one row leaving position A(n−k, n) where 0 ≤ k ≤ n−1.

As before, we note that the moves of the type R1 generate the set of G-values 0,1,. . . ,n-

2, 2j where j = max{i : i ≤ n− 1 and i = 2p − 1 for some p}. If n = 2k − 1 for some

k, then j = n−1
2

and therefore 2j = n− 1. If n 6= 2k − 1 for any k, then 2j > n− 1.

In particular, the value n− 1 is only an option from this position using these moves

when n is 1 less than a power of 2.

Moves of type R2 generate positions A(n− k, n) where 0 < k ≤ n. Since n− k 6= n,

then by our previous result we know this position has a G-value of 2n− k. Therefore,

this gives all G-values in the range n to 2n− 1.

We have now considered all possible moves from the position A(n, n). When n = 2k−1

for some k, we have legal moves to positions which have all G-values from 0 to 2n−1.

The G-value of A(n, n) is therefore at least 2n. It is also at most 2n by Lemma 5.0.4

so this is its exact G-value.
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When n 6= 2k − 1 for any k, then there is no legal move to a position having G-

value n− 1. In this case, by the mex-rule we know its G-value is n− 1.

Table 5.1 shows the G-values for different sized grids and an arbitrarily large cookie

cutter. As we’ve seen, the values in the first two rows are completely solved. At

the time of writing, there are no other values known besides those shown here. The

computer program used to calculate these values was written by Kristy Anstett [1].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 2 1 6 3 4 5 14 7 8 9 10 11 12 13 30
3 3 6 1 2 8 4 12
4 4 3 2 1 7 11 5
5 5 4 8 7 1 2
6 6 5 4 11 2 3

Table 5.1: Nimbers generated by an x×y board and an arbitrarily large cookie cutter

5.3 Other results

In the first section we showed that a row of n blocks has G-value n when we have an

arbitrarily large cookie cutter. There are many other positions that also have G-value

n when there are n blocks. I will characterize some of them here.

Clearly, any position where we can leave any number of remaining blocks will have

value n. We can see this by examining the value of the options. Since from any

option with k blocks we generate we can again move to a position with any number

of blocks up to k − 1, by induction we can show that this option will have G-value

k. Therefore the options from our original position include all the nimbers from 0 to

n− 1. Thus, it must have G-value n.

Finally, I will give a theorem which describes a set of starting positions which the

second player can always win along with an explicit strategy to do so.
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Theorem 5.3.1 For a cookie cutter of size k, a (k + 1) × n grid has G-value 0 for

all n.

Proof: We will proceed by induction. If n = 0 there are no blocks so the game has

G-value 0.

Assume that every position with a rectangle of (k + 1) × m where m < n has G-

value 0. On the first player’s turn, he must remove between 1 and k blocks from up

to k consecutive rows. On the second player’s turn, he may remove between 1 and k

blocks from each of exactly the same rows such that those rows are now completely

empty. We can always do this since given a number from 1 to k, we may always select

another number from 1 to k such that their sum is k+1. There are two possible types

of resulting positions. First, we may have a game of the same form with at least 1

less row and thus has G-value 0. Otherwise, the game has two disjoint components

which are also of the same form and have fewer rows. This is the disjunctive sum of

two games, both of which have G-value 0 by the induction hypothesis. This sum is

again 0 which means the second player has a winning strategy and the game has a

G-value of 0.

When you look at the table indexed by the x and y dimensions of the starting grid,

the previous theorem tells us that a row and column of 0s will occur at precisely

x = k + 1 and y = k + 1 where the cookie cutter is of size k. This has been coined a

bounding box of 0s.

Tables 5.2 through 5.7 give G-values for the game which begins with an x× y grid for

a particular fixed sized cookie cutter. This data is again thanks to Kristy Anstett [1].
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 0 1 2 3 1 2 3 4 0 3 4 2 1
2 2 1 0 2 1 3 4 1 3 4 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 2 0 5 1
5 2 1 0 1 0

Table 5.2: Nimbers generated by an x× y board and 2× 2 cookie cutter

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
2 2 1 6 0 2 1 3 0 2 4 3 0 2 1
3 3 6 1 0 3 6 4 0 2 7
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 1 2 3 0 5

Table 5.3: Nimbers generated by an x× y board and 3× 3 cookie cutter

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 3 4 0 1 2 3 4 5 1 2 3 4 5
2 2 1 6 3 0 2 1 6 3 5 8 1
3 3 6 1 2 0 7 6 3 4
4 4 3 2 1 0 5
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.4: Nimbers generated by an x× y board and 4× 4 cookie cutter

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3
2 2 1 6 3 4 0 2 1 5 8 9 0
3 3 6 1 2 8 0 4 3 11
4 4 3 2 1 7 0 5
5 5 4 8 7 1 0

Table 5.5: Nimbers generated by an x× y board and 5× 5 cookie cutter

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 3 4 5 6 0 1 2 3 4 5 6 7 8
2 2 1 6 3 4 5 0 2 1 6 9 7
3 3 6 1 2 8 4 0 5 3
4 4 3 2 1 7 11 0
5 5 4 8 7 1 2 0
6 6 5 4 11 2 3 0

Table 5.6: Nimbers generated by an x× y board and 6× 6 cookie cutter
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
2 2 1 6 3 4 5 14 0 2 1 6 8 7 3 11
3 3 6 1 2 8 4 12 0 3
4 4 3 2 1 7 11 5 0
5 5 4 8 7 1 2 0
6 6 5 4 11 2 3 0

Table 5.7: Nimbers generated by an x× y board and 7× 7 cookie cutter



Chapter 6

Future Work

6.1 Vertex Deletion

Although many results were found about this game, there were just as many new

questions that could be asked. For instance, in the Even/Odd variant played on

undirected graphs, we found that there were only a subset of all game values that a

graph could take. Further work along these lines would include examining this subset

to see if it has any other interesting algebraic properties.

Also, it would be interesting to find other classes of graphs that fall into an arithmetic

periodic sequence. We saw that the graphs Pn,k and Gn,k both had sequences of this

type. A conjecture might be as follows:

Conjecture 6.1.1 For any graph G, consider the graph Gn where we take the graph

Pn and attach it to G at a particular vertex v ∈ V (G) by identifying v with an endpoint

of Pn. Then, Gn forms an arithmetic periodic sequence.

One of the things most surprising about the periods of the graphs we’ve seen was

that they were all of length 3 with a saltus of 1. Also, when we examined classes of

digraphs, we found that they had periods of length 2. It would be interesting to see

if there are other classes of graphs which produced sequences with a different period
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length or saltus.

Also, many of the impartial versions of the game lead to some very interesting prob-

lems as well. Is there an upper bound on the G-value that a graph can take? Com-

puter searches to obtain a larger dictionary of values may be needed before reasonable

conjectures can be made.

6.2 Grand Left/Right

The obvious conjecture for Grand Left/Right would be to expand on the fact that all

paths are even or odd games:

Conjecture 6.2.1 Any Grand Left/Right position with an even number of unoccu-

pied spaces is an even game. Likewise, any position with an odd number of unoccupied

spaces is an odd game.

Future work may also include looking at variations of the game where both players

turn in the same direction or when the pieces don’t turn at all, stopping when they

reach an obstacle of any kind.

6.3 Cookie Cutter

We’ve seen that the k + 1 row and column for a fixed cookie cutter of size k produce

all 0s. In all the data that has been collected by the time of writing, it seems that

whenever there is a 0 in the first row, there are 0s in the same position in all other

rows. We are lead to the following conjecture:

Conjecture 6.3.1 If the game which begins with a grid of size 1 × n and a cookie

cutter of size k has value 0, then the game played on a grid of size i×n with a cookie

cutter of size k has value 0 for all i ≥ 1.

If the above result were true, we would have many more bounding boxes in our table

of values. Also, these bounding boxes would relate to the 0s of the 1× n game which
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in turn relate to the octal games mentioned in that section. Therefore, to know every-

thing about the bounding boxes of cookie cutter, we would need to know everything

about the 0s of the octal games of the form 0.33...37. Clearly, understanding these

games better would help understand cookie cutter better as well.

Another variant of this game which was not discussed would be a partizan version

where each player has a different sized cookie cutter, and perhaps even ones which

are not square. If we were to give Left a cookie cutter of size 1 × 2, Right a cookie

cutter of size 2 × 1 and didn’t allow them to rotate the cookie cutters during play

we would have a game that would be similar in nature to Domineering. Of course,

values would be very different because we are allowed to place cookie cutters over

empty spaces.



Appendix A

Graph Theory

The following are common graph theory definitions and results. They are found in

[3] and [11].

A.1 Definitions

Definition A.1.1 A graph (or simple graph) G = (V,E) is a finite set of elements

V (or V (G)) called vertices and a set of two-sets of vertices, E (or E(G)) called

edges. These sets are often referred to as the vertex set and the edge set of G

respectively.

Definition A.1.2 A subgraph G′ = (V ′, E ′) of a graph G = (V,E) has V ′ ⊆ V and

E ′ ⊆ E. An induced subgraph H is any subgraph where ∀x, y ∈ V (H) we have that

{x, y} ∈ E(H) iff {x, y} ∈ E(G).

Definition A.1.3 Vertices x and y are adjacent in a graph G if {x, y} ∈ E(G).

Also, we say the edge {x, y} is incident with the vertices x and y.

Definition A.1.4 The closed neighbourhood of a vertex v is denoted N [v] where

N [v] = {v} ∪ {x : x is adjacent to v}.

Definition A.1.5 The open neighbourhood of a vertex v is denoted N(v) where

N(v) = {x : x is adjacent to v}.
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Definition A.1.6 The degree of a vertex v, d(v) in a graph G is the number of

vertices which are adjacent to v in G.

Definition A.1.7 A path is alternating sequence of vertices and edges (starting and

ending with a vertex) such that each edge is incident with the vertex that comes before

and after it in the sequence. Furthermore, the sequence cannot repeat any vertex (and

hence any edge).

Definition A.1.8 A graph is connected if for every pair of vertices, there exists a

path that contains them. Otherwise, we call the graph disconnected.

Definition A.1.9 A component H of a graph G is a connected induced subgraph

of G. It must also be maximal in the sense that is if x ∈ V (H) and there is a path

from x to y in G, then y ∈ V (H).

Definition A.1.10 A cycle is a path with the exception that the first and last vertex

in the sequence can (and must) be the same. A graph which contains no cycles is

called acyclic.

Definition A.1.11 A tree is an acyclic connected graph.

Definition A.1.12 A forest is a (possibly disconnected) acyclic graph. It is easy to

see that a forest is simply a union of trees.

Definition A.1.13 The graph Kn is the complete graph on n vertices. It is the

graph with n vertices and all possible edges between them.

Definition A.1.14 The graph Sn is the star on n vertices. It is the graph with n

vertices where one vertex is adjacent to all others and no other edges exist.

Definition A.1.15 The graphs Pn and Cn are the paths and cycles on n vertices

respectively.

Definition A.1.16 A directed graph (or digraph) D = (V,E) is a finite set of

vertices V and a set of ordered pairs of vertices, A (or A(D)) called arcs. An arc

(x,y) is said to originate at x and terminate at y.
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Definition A.1.17 The in-degree of a vertex v, d+(v) in a directed graph D is the

number of edges which terminate at v in D

Definition A.1.18 The out-degree of a vertex v, d−(v) in a directed graph D is

the number of edges which originate at v in D

A.2 Useful Results

Theorem A.2.1 For any graph G,
∑

v∈V (G)

d(v) = 2|E(G)|.

Proof: The degree of a vertex v is the same as the number of edges incident with it.

Therefore, every edge {x, y} is counted twice in the above sum because x is adjacent

to y and y is adjacent to x.

Corollary A.2.2
∑

v∈V (G)

d(v) is even for every graph G.

Theorem A.2.3 If |V (G)| is odd then there is some vertex v ∈ V (G) which has

even degree.

Proof: Assume for a contradiction that every vertex in G has odd degree. Then
∑

v∈V (G)

d(v) must again be odd since it is the sum of only odd numbers and has an

odd number of terms. This contradicts Corollary A.2.2 .

Theorem A.2.4 Let G be a tree with |V (G)| = n. Then |E(G)| = n− 1

Proof: We will proceed by induction. Clearly, if there is only 1 vertex, then there

are 0 edges as required. Now assume that all trees on k vertices have exactly k − 1

edges. Let G be a tree on k + 1 vertices with an edge (x, y). G − (x, y) must now

be disconnected since there is no path between x and y - otherwise there would have

been a cycle in G. There are now two components each of which is connected and

contains no cycles. Thus each component is a tree with at most k vertices. Therefore,

there are exactly k−2 edges left by the induction hypothesis. So, G must of originally

had k edges as required.
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