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Abstract. Continuing our first paper in this series, we study multiple limits in
infinite-dimensional multiple categories. The general setting is chiral multiple categories
- a weak, partially lax form with directed interchanges.

After defining multiple limits we prove that all of them can be constructed from (mul-
tiple) products, equalisers and tabulators - all of them assumed to be respected by faces
and degeneracies. Tabulators appear thus to be the basic higher limits, as was already
the case for double categories.

Intercategories, a laxer form of multiple category already studied in two previous papers,
are also considered. In this more general setting the basic multiple limits mentioned
above can still be defined, but their general theory is not developed here.

Introduction

Strict double and multiple categories were introduced and studied by C. Ehresmann and
A.C. Ehresmann [Eh, BE, EE1, EE2, EE3]. Strict cubical categories can be seen as a
particular case of multiple categories; their links with strict ω-categories are made clear
in the article [ABS].

The present series studies various ‘forms’ of weak or lax multiple categories, of finite or
infinite dimension. They extend weak double categories [GP1] - [GP4] and weak cubical
categories [G1, G2, GP5]. More information on literature on higher dimensional category
theory can be found in the Introduction of the first paper [GP8], here referred to as Part
I.

Our main framework, a chiral multiple category, is briefly reviewed here, in Section 1;
it is a partially lax multiple category with a strict composition gf = f +0 g in direction
0 (the transversal direction), weak compositions x +i y in all positive (or geometric)
directions i and directed interchanges for the i- and j-compositions (for 0 < i < j)

χij : (x+i y) +j (z +i u)→0 (x+j z) +i (y +j u) (ij-interchanger). (1)

Part I also considers a laxer form already studied in two previous papers [GP6, GP7]
for the 3-dimensional case, under the name of ‘intercategory’, that is particularly powerful:
it covers duoidal categories, Gray categories, Verity double bicategories, monoidal double
categories, etc. In this framework, extended in Part I to infinite dimension and recalled
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here in 1.9, there are also lower interchangers (τij, µij, δij) where positive degeneracies (i.e.
weak identities) intervene; in particular degeneracies are no longer assumed to commute,
but have a directed interchange for 0 < i < j

τij : ejei(x)→0 eiej(x) (ij-interchanger for identities). (2)

Here we study multiple limits in the setting of chiral multiple categories. Part of the
theory is briefly extended to intercategories, with the problems discussed below.

Our general definition of multiple limits (in 4.4) requires their preservation by faces and
degeneracies (as in the cubical case [G2]). We prove that all of them can be constructed
from (multiple) products, equalisers and tabulators. The latter appear thus to be the
basic higher form of a limit, as was already the case for double and cubical categories.
In particular this holds in a 2-category, where tabulators (of vertical identities) reduce to
cotensors by the ordinal 2; the previous result agrees thus with Theorem 10 of R. Street
[St1], according to which all weighted limits in a 2-category can be constructed from such
cotensors and ordinary limits.

More analytically, Section 1 contains a review of the basic notions of strict, weak and
chiral multiple categories. We also introduce the ‘lift functors’ that will play a relevant
role below.

Then, in Section 2, we begin our study of limits with the simple case of i-level limits,
for a positive multi-index i = {i1, ..., in}. In a chiral multiple category A, i-level limits are
ordinary limits in the transversal category tvi(A). When all these exist, and are preserved
by faces and degeneracies between transversal categories, we say that A has level multiple
limits. Of course, multiple products and multiple equalisers generate all of them.

Non-level limits, where the diagram and the limit object are not confined to a transver-
sal category, are studied in the next two sections. The main theorems on the construction
and preservation of multiple limits are stated in 3.6 and 4.5, and proved in Section 5.

The main example treated here is the chiral triple category SC(C) of spans and cospans
over a category C with pushouts and pullbacks (see 1.8, 2.1, 2.2, 3.7 and 4.6). One can
similarly study multiple limits (and colimits) in other weak or chiral multiple categories
of finite or infinite dimension, listed at the beginning of Section 2.

The relationship with the double limits of [GP1] are discussed in 2.6 and 4.7. In the
case of level limits (see 2.6) there are only slight differences in terminology. For non-level
limits a real difference appears, which is already evident in the basic case of tabulators
(see 4.7). We think that the present terminology is preferable.

The general theory of multiple colimits is dual to that of multiple limits and is not
written down explicitly. Showing this requires some technical expedient because - as we
have seen in Part I - transversal duality turns a (right) chiral multiple category into a
left-hand version where all interchangers have the opposite direction. Thus, a multiple
colimit in the chiral multiple category A is a multiple limit in a left chiral multiple category
Atr; but it can also be viewed as a multiple limit in a right chiral multiple category (Atr)−

indexed by the negative integers (reversing indices).
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An extension of the general theory of multiple limits from the chiral case to intercat-
egories presents serious problems, linked to the crucial fact that degeneracies no longer
commute. Yet, the basic limits can be easily extended.

To begin with, level limits can be defined as here, in 2.2; one should nevertheless be
aware that they do not behave so well as in the chiral case: see the end of Proposition
2.3. Tabulators can also be extended and even acquire richer forms: for instance, the
total tabulator of a 12-cube gives now rise to two distinct notions, the e1e2-tabulator and
the e2e1-tabulator, as already shown in Part I, Section 6. However, a general definition of
limit seems to fail: in a situation where degeneracies do not commute, even defining the
diagonal functor becomes complicated (see 3.1).

Notation. We follow the notation of Part I; the reference I.2.3 points to its Subsection
2.3. The two-valued index α (or β) varies in the set 2 = {0, 1}, often written as {−,+}
in superscripts. The symbol ⊂ denotes weak inclusion.

1. Multiple categories

After a review of the basic notions of strict multiple categories, taken from Part I, we
introduce the ‘lift functors’ that will play a relevant role in the study of multiple limits.
As it will be made clear later (in 4.8) they are a surrogate for the path endofunctor of sym-
metric cubical categories. These notions are then extended to chiral multiple categories,
a weak and partially lax version introduced in Part I.

1.1. Multiple sets. A multi-index i is a finite set of natural numbers, possibly empty.
Writing i ⊂ N it will be understood that i is finite; writing i = {i1, ..., in} we always mean
that i has n distinct elements, written in the natural order i1 < i2 < ... < in; the integer
n is called the dimension of i.

We use the following symbols

ij = ji = i ∪ {j} (for j ∈ N \ i), i|j = i \{j} (for j ∈ i). (3)

A multiple set is system of sets and mappings X = ((Xi), (∂
α
i ), (ei)) under the following

two assumptions.

(mls.1) For every multi-index i = {i1, ..., in}, Xi is a set whose elements are called i-cells
of X and said to be of dimension n. We write X∗, Xi, Xij,... instead of X∅, X{i}, X{i,j},...;
thus X∗ is of dimension 0 while X0, X1,... are of dimension 1.

(mls.2) For j ∈ i and α = 0, 1 we have mappings, called faces and degeneracies of Xi

∂αj : Xi → Xi|j, ej : Xi|j → Xi, (4)

satisfying the multiple relations

∂αi .∂
β
j = ∂βj .∂

α
i (i 6= j), ei.ej = ej.ei (i 6= j),

∂αi .ej = ej.∂
α
i (i 6= j), ∂αi .ei = id.

(5)
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Faces commute and degeneracies commute, but ∂αi and ei do not. These relations
look similar to the cubical ones but much simpler, because here an index i stands for a
particular sort, instead of a mere position, and is never ‘renamed’. Note also that ∂αi acts
on Xi if i belongs to the multi-index i (and cancels it), while ei acts on Xi if i does not
belong to i (and inserts it); therefore ∂αi .∂

β
i and ei.ei make no sense, here: one cannot

cancel or insert twice the same index.

If i = j∪k is a disjoint union and α = (α1, ..., αr) is a mapping k = {k1, ..., kr} → 2, we
have an iterated face and an iterated degeneracy (independent of the order of composition)

∂αk = ∂α1
k1
... ∂αrkr : Xi → Xj, ek = ek1 ... ekr : Xj → Xi. (6)

In particular, the total i-degeneracy is the mapping

ei = ei1 ... ein : X∗ → Xi. (7)

1.2. Multiple categories. We recall the definition, from Part I.

(mlc.1) A multiple category A is, first of all, a multiple set of components Ai, whose
elements are called i-cells. As above, i is any multi-index, i.e. any finite subset of N, and
we write A∗, Ai, Aij... for A∅, A{i}, A{i,j},...

(mlc.2) Given two i-cells x, y which are i-consecutive (i.e. ∂+
i (x) = ∂−i (y), with i ∈ i),

the i-composition x +i y is defined and satisfies the following interactions with faces and
degeneracies

∂−i (x+i y) = ∂−i (x), ∂+
i (x+i y) = ∂+

i (y),

∂αj (x+i y) = ∂αj (x) +i ∂
α
j (y), ej(x+i y) = ej(x) +i ej(y) (j 6= i).

(8)

(mlc.3) For every multi-index i containing j we have a category cati,j(A) with objects in
Ai, arrows in Aij, faces ∂αj , identities ej and composition +j.

(mlc.4) For i < j we have

(x+i y) +j (z +i u) = (x+j z) +i (y +j u) (binary ij-interchange), (9)

whenever these composites make sense. (Note that the lower interchanges are already
expressed above.)

More generally, for an ordered pointed set N = (N, 0), an N -indexed multiple category
A has components Ai indexed by (finite) multi-indices i ⊂ N . If N is the ordinal set
n = {0, ..., n − 1} we obtain the n-dimensional version of a multiple category, called an
n-tuple category. The 0-, 1- and 2-dimensional versions amount - respectively - to a set,
a category or a double category.
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1.3. Transversal categories. The transversal direction, corresponding to the index
i = 0, is treated differently in the theory: we think of it as the ‘dynamic’ direction, along
which ‘transformation occurs’, while the positive directions are viewed as the ‘static’ or
‘geometric’ ones.

A positive multi-index i = {i1, ..., in} (with n > 0 positive elements) has an ‘aug-
mented’ multi-index 0i = {0, i1, ..., in}. The transversal category of i-cubes of A

tvi(A) = cati,0(A), (10)

- has objects in Ai, called i-cubes and viewed as n-dimensional objects,

- has arrows f : x− →0 x
+ in A0i, called i-maps, with domain and codomain ∂α0 (f) = xα,

- has identities 1x = id(x) = e0(x) : x→0 x and composition gf = f +0 g.

All these items are said to be of degree n (though their dimension may be n or n+ 1):
the degree always refers to the number of positive indices. In all of our examples, 0-
composition is realised by the usual composition of mappings, while the ‘positive’ com-
positions (also called concatenations) are often obtained by operations (products, sums,
tensor products, pullbacks, pushouts...) where reversing the order of the operands would
only be confusing.

Faces and degeneracies give (ordinary) functors

∂αj : tvij(A)→ tvi(A), ej : tvi(A)→ tvij(A) (j /∈ i, α = 0, 1). (11)

In particular, the unique positive multi-index of degree 0, namely ∅, gives the category
tv∗(A) of objects of A (i.e. ?-cells) and their transversal maps (i.e. 0-cells).

An i-map f : x →0 y is said to be i-special, or special in direction i ∈ i, if its i-faces
are transversal identities (of i|j-cubes)

∂αi f = e0∂
α
i x = e0∂

α
i y. (12)

This, of course, implies that the i-cubes x, y have the same i-faces. We say that f is
ij-special if it is special in both directions i, j.

1.4. Multiple functors and transversal transformations. A multiple functor
F : A → B between multiple categories is a morphism of multiple sets F = (Fi) that
preserves all the composition laws. For an i-map f : x →0 y, we use one of the following
forms

F (f) : F (x)→0 F (y), F0i(f) : Fi(x)→0 Fi(y),

as it may be convenient.
A transversal transformation h : F → G : A→ B between multiple functors consists of

a family of i-maps in B (its components), for every positive multi-index i and every i-cube
x in A

hx : F (x)→0 G(x) (hix : Fi(x)→0 Gi(x)). (13)
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The following axioms of naturality and coherence are required:

(trt.1) Gf.hx = hy.Ff, for f : x→0 y in A,

(trt.2) h commutes with positive faces, degeneracies and compositions:

h(∂αj x) = ∂αj (hx), h(ejz) = ej(hz), h(x+j y) = hx+j hy.

where i is a positive multi-index, j ∈ i, x and y are j-consecutive i-cubes, z is an i|j-cube.
Given two multiple categories A,B we have thus the category Mlc(A,B) of their mul-

tiple functors and transversal transformations. All these form the 2-category Mlc, in an
obvious way.

More generally for any ordered pointed set N = (N, 0) we have the 2-category MlcN
of N -indexed multiple categories, formed of ordinary categories MlcN(A,B).

1.5. Lift functors. For a positive integer j there is a j-directed lift functor with values
in the 2-category of multiple categories indexed by the pointed set N|j = N \{j}

Qj : Mlc→MlcN|j. (14)

On a multiple category A, the multiple category QjA is - loosely speaking - that part
of A that contains the index j, reindexed without it:

(QjA)i = Aij,

(∂αi : (QjA)i → (QjA)i|i) = (∂αi : Aij → Aij|i),

(ei : (QjA)i|i → (QjA)i) = (ei : Aij|i → Aij) (i ∈ i ⊂ N|j),
(15)

and similarly for compositions. In the same way for multiple functors F,G : A → B and
a transversal transformation h : F → G : A→ B we let

(QjF )i = Fij, (Qjh)i = hij (i ⊂ N|j). (16)

There is also an obvious restriction 2-functor Rj : Mlc→MlcN|j, where the multiple
category RjA is that part of A that does not contain the index j. The j-directed faces
and degeneracies of A are not used in QjA, but yield three natural transformations, also
called faces and degeneracy

Dα
j : Qj → Rj : Mlc→MlcN|j, (Dα

j )i = ∂αj : Aij → Ai (i ⊂ N|j),
Ej : Rj → Qj : Mlc→MlcN|j, (Ej)i = ej : Ai → Aij (i ⊂ N|j),
Dα
j Ej = id.

(17)

In particular, the objects and ?-maps of Qj(A) are the j-cubes and j-maps of A, so
that

tv∗(Qj(A)) = tvj(A),

tv∗(D
α
j ) = ∂αj : tvj(A)→ tv∗(A), tv∗(Ej) = ej : tv∗(A)→ tvj(A).

(18)
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Plainly all the functors Qj commute. By composing n of them in any order we get an
iterated lift functor of degree n, in a positive direction i = {i1, ..., in}

Qi : Mlc→MlcN|i, Qi(A) = Qin ...Qi1(A),

tv∗(Qi(A)) = tvi(A).
(19)

Again, there are faces and degeneracies (where hi = h ∪ i)

Dα
j : Qij → RjQi : Mlc→MlcN|ij, (Dα

j )h = ∂αj : Ahij → Ahi (h ⊂ N|ij),
Ej : RjQi → Qij : Mlc→MlcN|ij, (Ej)h = ej : Ahi → Ahij (h ⊂ N|ij),

(20)

tv∗(D
α
j ) = ∂αj : tvij(A)→ tvi(A), tv∗(Ej) = ej : tvi(A)→ tvij(A) (j /∈ i). (21)

1.6. Transversal invariance. We now extend the notion of ‘horizontal invariance’ of
double categories [GP1], obtaining a property that will be of use for multiple limits and
should be expected of every ‘well formed’ multiple category.

We say that the multiple category A is transversally invariant if its cubes are ‘trans-
portable’ along transversally invertible maps. Precisely:

(i) given an i-cube x of degree n and a family of 2n invertible transversal maps fαi : yαi →0

∂αi x (i ∈ i, α = 0, 1) with consistent positive faces (and otherwise arbitrary domains yαi )

∂αi (fβj ) = ∂βj (fαi ) (for i 6= j in i), (22)

•
y−j //

y−j

��

!!
f−j

f−i

•
h

!!

• //

0
��j ��

i

• //

��

x

•

��

•

  

(h = ∂+
i (f−j ) = ∂−j (f+

i )),

• // •

there exists an invertible i-map f : y →0 x (a ‘filler’, as in the Kan extension property)
with positive faces ∂αi f = fαi (and therefore ∂αi y = yαi ).

Of course this property can be equivalently stated for a family of invertible maps
gαi : ∂αi x→0 y

α
i .

1.7. Weak multiple categories. Weak multiple categories have been introduced in
Part I, Section 3.

Extending weak double categories [GP1] - [GP4] and weak triple categories [GP6,
GP7], the basic structure of a weak multiple category A is a multiple set with compositions
in all directions. The composition laws in direction 0 are categorical and have a strict
interchange with the other compositions.
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On the other hand, the ‘positive’ compositions have transversally-invertible compar-
isons for unitarity, associativity and interchange (with 0 < i < j)

λix : (ei∂
−
i x) +i x→0 x (left i-unitor),

ρix : x+i (ei∂
+
i x)→0 x (right i-unitor),

κi(x, y, z) : x+i (y +i z)→0 (x+i y) +i z (i-associator),

χij(x, y, z, u) : (x+i y) +j (z +i u)→0 (x+j z) +i (y +j u) (ij-interchanger),

(23)

under coherence conditions listed in I.3.3 and I.3.4.

Our main infinite-dimensional examples are of a cubical type (see I.3.5). Essentially,
this means that components, faces and degeneracies are invariant under renaming positive
indices, in the same order. An i-cube can thus be indexed by [n] = {1, ..., n} and called
an n-cube; an i-map can be indexed by 0[n] = {0, 1, ..., n} and called an n-map; again,
such items are of order n and dimension n or n + 1, respectively. (The examples below
are also symmetric, by a natural action of each symmetric group Sn on the sets of n-cubes
and n-maps, permuting the positive directions; see Part I.)

(a) The strict symmetric cubical category ωCub(C) of commutative cubes over a category
C. An n-cube is a functor x : 2n → C (n > 0), where 2 is the ordinal category •→ • ; an
n-map is a natural transformation of such functors. Applications of this multiple category
(and its truncations) to algebraic K-theory can be found in [Sh].

(b) The weak symmetric cubical category ωCosp(C) of cubical cospans over a category
C with (a fixed choice) of pushouts has been constructed in [G1], to deal with higher-
dimensional cobordism. An n-cube is a functor x : ∧n → C, where ∧ is the formal-cospan
category •→ • ← • ; again, an n-map is a natural transformation of such functors.

(c) The weak symmetric cubical category ωSpan(C) of cubical span, over a category C with
pullbacks, is similarly constructed over ∨ = ∧op, the formal-span category • ← • → •

(see [G1]). It is transversally dual to ωCosp(Cop).

(d) The weak symmetric cubical category of cubical bispans, or cubical diamonds ωBisp(C),
over a category C with pullbacks and pushouts, is similarly constructed over a formal di-
amond category (see [G1]).

1.8. Chiral multiple categories and intercategories. Our main structure here
is more general and partially lax.

A chiral, or χ-lax, multiple category A (see I.3.7) has the same data and axioms of a
weak multiple category, except for the fact that the interchange comparisons χij (0 < i <
j) recalled above (in 1.7) are not supposed to be invertible.

Examples are constructed in [GP7] and Part I, Section 4. For instance, if the category
C has pullbacks and pushouts, the weak double category Span(C), of arrows and spans of
C, can be ‘amalgamated’ with the weak double category Cosp(C), of arrows and cospans
of C, to form a 3-dimensional structure: the chiral triple category SC(C) whose 0-, 1-
and 2-directed arrows are the arrows, spans and cospans of C, in this order (as required
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by the 12-interchanger). For higher dimensional examples, like SpCq(C), SpC∞(C) and
S−∞C∞(C) (and the corresponding left-chiral cases) see I.4.4; the latter structure is in-
dexed by all integers, with spans in each negative direction, ordinary arrows in direction
0 and cospans in positive directions.

Chiral multiple categories, with their strict multiple functors and transversal transfor-
mations, form the 2-category Cmc.

As defined in I.3.9, a lax multiple functor F : A→ B between chiral multiple categories,
or lax functor for short, has components Fi : Ai → Bi for all multi-indices i (often written
as F ) that agree with all faces, 0-degeneracies and 0-composition. Moreover F is equipped
with comparison i-maps, for every positive multi-index i and i ∈ i, that will be denoted
as F i

F i(x) : eiF (x)→0 F (eix) (for x ∈ Ai|i),

F i(x, y) : F (x) +i F (y)→0 F (x+i y) (for i-consecutive cubes x, y in Ai).
(24)

These comparisons have to satisfy some axioms. We write down the naturality con-
ditions (lmf.1-2), frequently used below, while the coherence conditions (lmf.3-5) can be
found in loc. cit.

(lmf.1) (Naturality of unit comparisons) For an i|i-map f : x→0 y in A we have:

Fei(f).F i(x) = F i(y).ei(Ff) : eiF (x)→0 F (eiy). (25)

(lmf.2) (Naturality of composition comparisons) For two i-consecutive i-maps f : x→0 x
′

and g : y →0 y
′ in A we have:

F (f +i g).F i(x, y) = F i(x
′, y′).(F (f) +i F (g)) : F (x) +i F (y)→0 F (x′ +i y

′). (26)

A transversal transformation h : F → G : A→ B between lax functors consists of a family
of i-maps in B (its components), one for every positive multi-index i and every i-cube x
in A

hx : F (x)→0 G(x) (hix : Fi(x)→0 Gi(x)), (27)

under the axioms (trt.1) and (trt.2L) of I.3.9

(trt.1) Gf.hx = hy.Ff (for f : x→0 y in A),

(trt.2L) for every positive multi-index i and j ∈ i:

h(∂αj x) = ∂αj (hx), (x ∈ Ai),

h(ejx)F j(x) = Gj(x).ej(hx) : ejF (x)→0 G(ejx) (x ∈ Ai|j),

h(z).F j(x, y) = Gj(x, y).(hx+j hy) : F (x) +j F (y)→0 G(z) (z = x+j y in Ai).

We have thus the 2-category LxCmc of chiral multiple categories, lax functors and
their transversal transformations.
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The lift functor and restriction functor in direction j (cf. 1.5) are extended in the same
form:

Qj : LxCmc→ LxCmcN|j, (QjA)i = Aij,

Rj : LxCmc→ LxCmcN|j, (RjA)i = Ai (j > 0, j /∈ i).
(28)

Similarly one defines the 2-category CxCmc for the colax case, where the comparisons
of colax (multiple) functors have the opposite direction. A pseudo (multiple) functor
is a lax functor whose comparisons are invertible (and is made colax by inverting its
comparisons); such functors are the arrows of the 2-category PsCmc.

1.9. Intercategories. The more general case of intercategories, studied in [GP6, GP7]
and Part I (Sections 5 and 6), will only be considered here in a marginal way.

Let us recall that an intercategory A has other directed ij-interchangers besides χij
(for 0 < i < j):

(a) τij(x) : ejei(x)→0 eiej(x) (for i- and j-identities),

(b) µij(x, y) : ei(x) +j ei(y)→0 ei(x+j y) (for i-identities and j-composition),

(c) δij(x, y) : ej(x+i y)→0 ej(x) +i ej(y) (for i-composition and j-identities).

As proved in [GP7], three-dimensional intercategories comprise under a common form
various structures previously studied, like duoidal categories, Gray categories, Verity dou-
ble bicategories and monoidal double categories. Literature on the these structures can
be found in loc. cit.; the inspiring case of duoidal (or 2-monoidal) categories can be found
in [AM, BS, St2].

As already noted in Part I, various ‘anomalies’ appear with respect to the chiral case,
that make problems for a theory of multiple limits in this setting. These will be briefly
considered below (see 2.3 and 3.1), without further investigating a situation for which we
do not yet have examples sufficiently rich to have good limits.

Some anomalies can already be remarked here. First, an intercategory A is no longer
a multiple set (unless each τij is the identity). Second, a degeneracy ei (i > 0) is now
lax with respect to every higher j-composition (for j > i, via τij and µij) but colax with
respect to every lower j-composition (for 0 < j < i, via τji and δji). Therefore, in the
truncated n-dimensional case e1 is lax with respect to all other compositions and en is
colax, but the other degeneracies (if any, i.e. for n > 3) are neither lax nor colax.

2. Multiple level limits

We begin our study of limits with the simple case of i-level limits, for a positive multi-index
i.

In a chiral multiple category A, i-level limits are ordinary limits in the transversal
category tvi(A) (as in the cubical case, see [G2]). When all these exist, and are preserved
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by faces and degeneracies, we say that A has level multiple limits; of course they are
‘generated’ by multiple products and multiple equalisers.

Examples are given in the chiral triple category SC(C) recalled in 1.8; they can be eas-
ily adapted to the weak multiple categories ωCub(C), ωCosp(C), ωSpan(C) and ωBisp(C)
of 1.7, and to the chiral multiple categories SpCq(C), SpC∞(C) and S−∞C∞(C) recalled
in 1.8. Note that all of these are transversally invariant, a property of interest for limits
as we show below, in 2.3 and 2.4.

Level limits can be extended to intercategories with the same definitions (see 1.9).
But Proposition 2.3 and its consequences in 2.4 would partially fail.

Non-level limits, where the diagram and the limit cube are not confined to a transversal
category, will be studied in the next two sections.

2.1. Products. Let us begin by examining various kinds of products in the chiral triple
category A = SC(C).

Supposing that C has products, the same is true of its categories of diagrams, and
(using the formal-span category ∨ and the formal cospan ∧ recalled in 1.7) we have four
types of products in A (indexed by a small set Λ):

- products of objects (in C), with projections in A0: C =
∏
λCλ, pλ : C →0 Cλ,

- products of 1-arrows (in C∨), with projections in A01: f =
∏
λ fλ, pλ : f →0 fλ,

- products of 2-arrows (in C∧), with projections in A02: u =
∏
λ uλ, pλ : u→0 uλ,

- products of 12-cells (in C∨×∧), with projections in A012: π =
∏
λ πλ, pλ : π →0 πλ.

Faces and degeneracies preserve these products. Saying that the triple category SC(C)
has triple products we mean all this. It is important to note that this is a global condition:
we shall not define when, in a chiral triple category, a single product of objects

∏
λCλ

should be called ‘a triple product’.
It is now simpler and clearer to work in a chiral multiple category A, rather than in a

truncated case, as above.
Let n > 0 and let i be a positive multi-index (possibly empty). An i-product a =∏

λ∈Λ aλ will be an ordinary product in the transversal category tvi(A) of i-cubes of A
(recalled in Section 1). It comes with a family pλ : a →0 aλ of i-maps (i.e. cells of A0i)
that satisfies the obvious universal property.

We say that A:

(i) has i-products, or products of type i, if all these products (indexed by an arbitrary
small set Λ) exist,

(ii) has products if it has i-products for all positive multi-indices i,

(iii) has multiple products if it has all products, and these are preserved by faces and
degeneracies, viewed as (ordinary) functors (cf. (11))

∂αj : tvi(A)→ tvi|j(A), ej : tvi|j(A)→ tvi(A) (j ∈ i, α = 0, 1). (29)
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Of course this preservation is meant in the usual sense, up to isomorphism (i.e. invert-
ible transversal maps); however, if this holds and A is transversally invariant (cf. 1.6), one
can construct a choice of products that is strictly preserved by faces and degeneracies,
starting from ?-products and going up. This will be proved, more generally, in Proposition
2.3.

A ?-product is also called a product of degree 0.

2.2. Level limits. We now let Λ be a small category and consider the functors F : Λ→
tvi(A) with values in the transversal category of i-cubes of A, for a positive multi-index i.

There is an obvious chiral multiple category AΛ whose i-cubes are the functors F : Λ→
tvi(A) and whose i-maps are their natural transformations, composed as such. The posi-
tive faces, degeneracies and compositions are pointwise (as well as their comparisons):

(∂αi F )(λ) = ∂αi (F (λ)), (eiF )(λ) = ei(F (λ)), (F +i G)(λ) = F (λ) +i G(λ).

The diagonal functor D : A→ AΛ takes each i-cube a to the constant a-valued functor
Da : Λ→ tvi(A), and each i-map h : a→0 b to the constant h-valued natural transforma-
tion Dh : Da→ Db : Λ→ tvi(A).

The limit of the functor F , called an i-level limit in A, is an i-cube L ∈ Ai equipped
with a universal natural transformation t : DL→ F : Λ→ tvi(A), where DL : Λ→ tvi(A)
is the constant functor at L. It is an i-product if Λ is discrete and an i-equaliser if Λ is
the category 0 −→−→ 1.

We say that A:

(i) has i-level limits on Λ if all the functors Λ→ tvi(A) have a limit,

(ii) has level limits on Λ if it has such limits for all positive multi-indices i,

(iii) has level multiple limits on Λ if it has such level limits, and these are preserved by
faces and degeneracies (as specified in (29)),

(iv) has level multiple limits if the previous property holds for every small category Λ.

Obviously, the multiple category A has level multiple limits if and only if it has multiple
products and multiple equalisers. Finite level limits work ‘in the same way’, with finite
multiple products.

In particular, a ?-level limit is a limit in the transversal category tv∗(A), associated to
the multi-index ∅, of degree 0; it will also be called a level limit of degree 0.

Extending the case of multiple products considered in 2.1, if the category C is complete
(or finitely complete) so are its categories of diagrams, and the chiral triple category SC(C)
has level triple limits (or the finite ones).

2.3. Proposition. [Level limits and invariance] Let Λ be a category and A a transversally
invariant chiral multiple category (cf. 1.6). If A has level multiple limits on Λ, one can
find a consistent choice of such limits. More precisely, one can fix for every positive
multi-index i and every functor F : Λ→ tvi(A) a limit of F

L(F ) ∈ Ai, t(F ) : DL(F )→ F : Λ→ tvi(A), (30)
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so that these choices are strictly preserved by faces and degeneracies:

∂αi (L(F )) = L(∂αi F ), ∂αi (t(F )) = t(∂αi F ) (i ∈ i),

ei(L(F )) = L(eiF ), ei(t(F )) = t(eiF ) (i /∈ i).
(31)

Proof. We proceed by induction on the degree n of positive multi-indices. For n = 0
we just fix a choice (L(F ), t(F )) of ?-level limits on Λ, for all F : Λ → tv∗(A). Then, for
n > 1, we suppose to have a consistent choice for all positive multi-indices of degree up
to n− 1 and extend this choice to degree n, as follows.

For a functor F : Λ → tvi(A) of degree n, we already have a choice (L(∂αi F ), t(∂αi F ))
of the limit of each of its faces. Let (L, t) be an arbitrary limit of F ; since faces preserve
limits (in the usual, non-strict sense), there is a unique family of transversal isomorphisms
hαi coherent with the limit cones (of degree n− 1)

hαi : L(∂αi F )→0 ∂
α
i L, t(∂αi F ) = (∂αi t).h

α
i (i ∈ i, α = 0, 1), (32)

and this family has consistent faces (cf. (22)), as it follows easily from their coherence
with the limit cones of a lower degree (when n > 2, otherwise the consistency condition
is void).

Now, because of the hypothesis of transversal invariance, this family can be filled with
a transversal isomorphism h, yielding a choice for L(F ) and t(F )

h : L(F )→0 L, t(F ) = t.Dh : DL(F )→ F. (33)

By construction this extension of L is strictly preserved by all faces. To make it also
consistent with degeneracies, we assume that - in the previous construction - the following
constraint has been followed: for an i-degenerate functor F = eiG : Λ→ tvi(A) we always
choose the pair (eiL(G), eit(G)) as its limit (L, t). This allows us to take hαi = id(L(G))
(for all i ∈ i and α = 0, 1), and finally h = id(L), that is

L(F ) = eiL(G), t(F ) = eit(G) : DL(F )→ F. (34)

If F is also j-degenerate, then F = eiejH = ejeiH; therefore, by the inductive assump-
tion, both procedures give the same result: eiL(G) = eiejL(H) = ejeiL(H) = ejL(eiH).

Note that this point would fail in an intercategory with eiej 6= ejei.

2.4. Level limits as unitary lax functors. The previous proposition shows that, if
the chiral multiple category A is transversally invariant and has level multiple limits on the
small category Λ, we can form a unitary lax functor L and a transversal transformation t

L : AΛ → A, t : DL→ 1: AΛ → AΛ, (35)

such that, on every i-cube F , the pair (L(F ), t(F )) is the level limit of the functor F , as
in (30).
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Indeed, after defining L and t on i-cubes, by a consistent choice (which is possible by
the proposition itself), we define L(h) for every natural transformation h : F → G : Λ→
tvi(A). By the universal property of limits, there is precisely one i-map L(h) such that

L(h) : L(F )→0 L(G), h.t(F ) = t(G).DL(h), (36)

and this extension on i-maps is obviously the only one that makes the family t(F ) : DL(F )→
F into a transversal transformation DL→ 1. The lax comparison for i-composition (with
i ∈ i)

L(F,G) : L(F ) +i L(G)→0 L(F +i G), t(F +i G).DL(F,G) = t(F ) +i t(G), (37)

comes from the universal property of L(F +i G) as a limit.

2.5. Level limits and liftings. Let us recall (from (19) and 1.8) that, for a positive
multi-index i, the chiral multiple category A has a lifting Qi(A) such that

tv∗(Qi(A)) = tvi(A). (38)

Therefore, an i-level limit in A is the same as a ?-level limit in Qi(A). The chiral
multiple category A

(i) has i-level limits on Λ if and only if its lifting Qi(A) has ?-level limits on Λ,

(ii) has level limits on Λ if and only if all its liftings Qi(A) have ?-level limits,

(iii) has level multiple limits on Λ if and only if all its liftings Qi(A) have ?-level limits, and
these are preserved by faces and degeneracies, namely the multiple functors Dα

j = Dα
j (A)

and Ej = Ej(A) for j /∈ i and α = 0, 1 (cf. 1.5)

Dα
j : Qij(A)→ RjQi(A), Ej : RjQi(A)→ Qij(A),

tv∗(D
α
j ) = ∂αj : tvij(A)→ tvi(A), tv∗(Ej) = ej : tvi(A)→ tvij(A)

(39)

(iv) has level multiple limits if the previous property holds for every small category Λ.

2.6. Level limits in weak double categories. Let A be a weak double category,
viewed as the weak multiple category sk2(A), by adding degenerate items of all the missing
types (cf. I.2.7).

The present ?-level limits in A, i.e. limits of ordinary functors Λ→ tv∗(A), correspond
to the ‘limits of horizontal functors’ in [GP1]. There are slight differences in terminology,
essentially because the ‘2-dimensional universal property’ of double limits (see [GP1],
4.2) here is not required from the start but comes out of a condition of preservation by
degeneracies. We think that the present terminology is preferable.

As a particular case of the definitions in 2.2, we have the following cases.

(i) A has ?-level limits on a (small) category Λ if all the functors Λ→ tv∗(A) have a limit.
By the usual theorem on ordinary limits, all of them can be constructed from:
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- small products
∏
Aλ of objects,

- equalisers of pairs f, g : A→ B of parallel horizontal arrows.

(i′) A has 1-level limits on Λ if all the functors Λ→ tv1(A) have a limit. All of them can
be constructed from:
- small products

∏
uλ of vertical arrows,

- equalisers of pairs a, b : u→ v of double cells (between the same vertical arrows).

(ii) A has level limits on Λ if it has ?- and 1-level limits on Λ.

(iii) A has level double limits on Λ if it has such level limits, preserved by faces and
degeneracies.

(iv) A has level double limits if the previous property holds for every small category Λ;
this is equivalent to the existence of small double products and double equalisers.

Let us note again, as in 2.1 that the existence of (say) double products is now a global
condition: it means the existence of products of objects and vertical arrows, consistently
with faces and degeneracies. Here we are not defining when a single product

∏
Aλ should

be called a ‘double product’ (while in [GP1] this meant a product of objects preserved by
vertical identities).

In [GP1] case (i) would be expressed saying that A has 1-dimensional limits of hor-
izontal functors on Λ. Case (iii) (resp. (iv)) would be expressed saying that A can be
given a lax choice of double limits for all horizontal functors defined on Λ (resp. defined
on some small category).

3. Multiple limits of degree zero

We now define ‘multiple limits’ of degree zero - namely those limits that produce objects.
They extend the previous level limits of degree zero (or ?-level limits), and are generated
by the latter together with tabulators of degree zero (Theorem 3.6). The general case -
limits that produce cubes of arbitrary dimension - will be treated in the next section.

3.1. The diagonal functor. Let X and A be chiral multiple categories, and let X be
small. Consider the diagonal functor (of ordinary categories)

D : tv∗A→ PsCmc(X,A). (40)

D takes each object A of A to a unitary pseudo functor, ‘constant’ at A, via the family
of the total i-degeneracies (cf. (7))

DA : X→ A,

DA(x) = ei(A) DA(f) = id(eiA) (for x and f in tviX),

DAi(x) = id(eiA) : ei(DA(x))→ DA(eix) (for x in Xi|i),

DAi(x, y) = λi : ei(A) +i ei(A)→ ei(A) (for i-consecutive cubes x, y in Xi).

(41)
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In fact, as required by axiom (lmf.3) of lax multiple functors (in I.3.9), the comparison
DAi(x, y) above is (necessarily) the unitor λi(eiA) = ρi(eiA) of A, equivalently left or right
(see I.3.3), that will generally be written as λi for short.

Similarly, a ?-map h : A→ B in A is sent to the constant transversal transformation

Dh : DA→ DB : X→ A, (Dh)(x) = ei(h) : ei(A)→ ei(B) (x in Xi). (42)

DA is a strict multiple functor whenever A is pre-unitary (cf. I.3.2).
Note also that the definition of the diagonal functor D depends on the commutativity

of degeneracies in A, which holds in the present chiral case. For a general 3-dimensional
intercategory A one could define two functors

D12 : tv∗A→ LxCmc(X,A), D21 : tv∗A→ CxCmc(X,A), (43)

where Dij(A) sends a 12-cube x to Dij(A)(x) = eiej(A) (and any lower i-cube to ei(A)).
In higher dimension the situation is even more complex.

Still, in an intercategory we have level limits, defined as in Section 2, and some simple
non-level limits that can be defined ad hoc, like the e1e2-tabulator and the e2e1-tabulator
of a 12-cube considered in Part I, Section 6.

3.2. Cones. Let F : X → A be a lax functor. A (transversal) cone of F will be a pair
(A, h : DA → F ) comprising an object A of A (the vertex of the cone) and a transversal
transformation of lax functors h : DA → F : X → A; in other words, it is an object of
the ordinary comma category (D ↓ F ), where F is viewed as an object of the category
LxCmc(X,A).

By definition (cf. 1.8), the transversal transformation h amounts to assigning the
following data:

- a transversal i-map hx : ei(A) → Fx, for every i-cube x in X, subject to the following
axioms of naturality and coherence:

(tc.1) Ff.hx = hy (for every i-map f : x→0 y in X),

(tc.2) h commutes with positive faces, and agrees with positive degeneracies and compo-
sitions:

h(∂αi x) = ∂αi (hx), (for x in Xi),

h(eix) = F i(x).ei(hx) : ei(A)→0 F (eix) (for x in Xi|i),

h(z) = F i(x, y).(hx+i hy).λ−1
i : ei(A)→0 F (z) (for z = x+i y in Xi),

where λi : ei(A) +i ei(A)→ ei(A) is a unitor of A (cf. (41)).

3.3. Definition (Limits of degree zero). Given a lax functor F : X → A between
chiral multiple categories, the (transversal) limit of degree zero lim(F ) = (L, t) is a uni-
versal cone (L, t : DL→ F ).

In other words:
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(tl.0) L is an object of A and t : DL→ F is a transversal transformation of lax functors,

(tl.1) for every cone (A, h : DA → F ) there is precisely one ?-map f : A → L in A such
that t.Df = h.

We say that A has limits of degree zero on X if all these exist. In particular, if X is the
multiple category freely generated by a category Λ, at level 0, then A has 0-degree limits
on X if and only if it has 0-degree level limits on Λ (cf. 2.2).

3.4. Tabulators of degree zero. A is always a chiral multiple category. Let us recall
that every positive multi-index i gives a ‘total’ degeneracy

ei = ei1 ...ein : tv∗A→ tviA. (44)

An i-cube x of A can be viewed as a unitary pseudo functor x : ui → A where ui is the
strict multiple category freely generated by one i-cube ui. The pseudo functor x sends ui
to x, and has comparisons xi for i-composites that derive from the unitors of A, as in the
following

xi(ei∂
−
i ui, ui) = λi(x) : ei∂

−
i x+i x→ x, xi(ui, ei∂

+
i ui) = ρi(x) : x+i ei∂

+
i x→ x.

(All such pseudo functors x are strict precisely when A is unitary.)
The tabulator of degree zero of x in A will be the limit of this pseudo functor x : ui → A;

we also speak of the total tabulator, or i-tabulator, of x.
The tabulator is thus an object T = >x (= >ix) equipped with an i-map tx : ei(T )→0

x such that the pair (T, tx : ei(T )→0 x) is a universal arrow from the functor ei : tv∗A→
tviA to the object x of tviA. Explicitly, this means that, for every object A and every
i-map h : ei(A)→0 x there is a unique ?-map f such that

ei(A)
ei(f) //

h ''

ei(T )

tx
��

f : A→0 T,

x tx.ei(f) = h.

(45)

We say that A has tabulators of degree zero if all these exist, for every positive multi-
index i. Obviously, the tabulator of an object always exists and is the object itself.

When such tabulators exist, we can form for every positive multi-index i a right adjoint
functor

>i : tviA→ tv∗A, ei a >i, (46)

which is just the identity for i = ∅.
Assuming that the tabulators of x ∈ Ai and z = ∂αj x exist (for j ∈ i), the projection

pαj x of >x (= >ix) will be the following ?-map of A

ei|j>x
ei|j(p

α
j x)

//

∂αj (tx) ))

ei|j>(∂αj x)

tz
��

pαj x : >x→0 >(∂αj x),

z = ∂αj x tz.ei|j(p
α
j x) = ∂αj (tx).

(47)
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3.5. Tabulators and concatenation. We now examine the relationship between
tabulators of i-cubes and (zero-ary or binary) j-concatenation, for j ∈ i.

(a) If the degenerate i-cube x = ejz and the i|j-cube z have total tabulators in A, they
are linked by a diagonal transversal ?-map djz, defined as follows

ei(>z)
ei(djz) //

ejtz ))

ei(>(ejz))

tx
��

djz : >z →0 >(ejz),

x = ejz tx.ei(djz) = ej(tz).

(48)

This ?-map djz is a section of both projections pαj x (defined above) because

tz.ei|j(p
α
j x.djz) = ∂αj (tx).ei|j(djz) = ∂αj (tx.ei(djz)) = ∂αj (ej(tz)) = tz.

(b) For a concatenation z = x+j y of i-cubes, the three total tabulators of x, y, z are also
related. The link goes through the ordinary pullback >j(x, y) of the objects >x and >y,
over the tabulator >w of the i|j-cube w = ∂+

j x = ∂−j y (provided all these tabulators and
such a pullback exist)

>x p+j x

))

tw.ei|j(p
+
j x) = ∂+

j (tx),

>j(x, y)

pj(x,y) 44

qj(x,y) **

>w

>y p−j y

55

tw.ei|j(p
−
j y) = ∂−j (ty).

(49)

We now have a diagonal transversal ?-map dj(x, y) given by the universal property of
>z

dj(x, y) : >j(x, y)→0 >z, tz.ei(dj(x, y)) = tx.eipj(x, y) +j ty.eiqj(x, y). (50)

The j-composition above is legitimate, by construction

∂+
j (tx.eipj(x, y)) = ∂+

j (tx).ei|j(pj(x, y)) = tw.ei|j(p
+
j x).ei|j(pj(x, y))

= tw.ei|j(p
−
j y).ei|j(qj(x, y)) = ∂−j (ty).ei|j(qj(x, y)) = ∂−j (ty.eiqj(x, y)).

It is easy to show (and it also follows from the proof of the theorem below) that
>j(x, y) is the transversal limit of the diagram ‘formed’ by z = x +j y (based on the
multiple category freely generated by two j-consecutive i-cubes).

3.6. Theorem. [Construction and preservation of 0-degree limits] Let A and B be chiral
multiple categories.

(a) All limits of degree zero in A can be constructed from level limits of degree zero and
tabulators of degree zero, or also from products, equalisers and tabulators - all of degree
zero.

(b) If A has all limits of degree zero, a lax multiple functor F : A → B preserves them if
and only if it preserves products, equalisers and tabulators of degree zero.

Proof. See Section 5.
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3.7. Examples. In the chiral triple category SC(C) (over a category C with pullbacks
and pushouts) we have the following three kinds of tabulators of degree zero (apart from
the trivial tabulator of an object), already described in I.4.3.

(a) The tabulator of a 1-arrow f (i.e. a span) is an object >1f with a universal 1-map
e1(>1f)→0 f ; the solution is the (trivial) limit of the span f , i.e. its middle object.

(b) The tabulator of a 2-arrow u (a cospan) is an object >2u with a universal 2-map
e2(>2u)→0 u; the solution is the pullback of u.

(c) The total tabulator of a 12-cell π (a span of cospans) is an object >12π with a universal
12-map e12(>12π) →0 π; the solution is the limit of the diagram, i.e. the pullback of its
middle cospan.

The two (non total) tabulators of degree 1 of the 12-cell π will be reviewed below, in
4.6.

4. Multiple limits of arbitrary degree

We now introduce general limits in a chiral multiple category A, taking advantage of the
iterated lift functors Qi (cf. 1.5), where i is a positive multi-index of degree n > 0. X is
always a small chiral multiple category.

Let us recall that ui denotes the multiple category freely generated by one i-cube ui
(cf. 3.4).

4.1. A motivation. For a positive multi-index i of degree n > 0, the limits (of degree 0)
of multiple functors with values in the lifted chiral multiple category QiA will be called
multiple limits of type i (and degree n) in A; their results are thus i-cubes of A. They
extend the limits of degree zero considered above, for i = ∅ and Q∗A = A.

Let us begin with some simple examples, based on a 2-dimensional cube x ∈ A12,
introducing definitions that will be made precise below.

(a) The cube x ∈ A12 is the same as a unitary pseudo functor x : u12 → A. We have
already considered its tabulator of degree zero, namely an object >x = >12x with a
universal 12-map t : e12(>12x)→0 x (where e12 = e1e2 = e2e1 : A∗ → A12 is the composed
degeneracy).

(b) But x can also be viewed as a (1-dimensional) 1-cube of Q2A, i.e. a unitary pseudo
functor x : u1 → Q2A. Its e1-tabulator (of degree 1) will be the total tabulator of x as a 1-
cube of Q2A; this amounts to a 2-cube >1x of A with a universal 12-map t : e1(>1x)→0 x
(where e1 : A2 → A12 is the degeneracy e1 : (Q2A)∗ → (Q2A)1).

(c) Symmetrically, x can be viewed as a (1-dimensional) 2-cube of Q1A, i.e. a unitary
pseudo functor x : u2 → Q1A. Its e2-tabulator (of degree 1, again) will be the total
tabulator of x as a 2-cube of Q1A; this amounts to a 1-cube >2x of A with a universal
12-map t : e2(>2x)→0 x (where e2 : A1 → A12 is the degeneracy e2 : (Q1A)∗ → (Q1A)2).
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(d) The 2-dimensional cube x is also an object of Q12A. Its tabulator of degree two is x
itself. This is a (trivial) level limit, while the previous limits are not level, i.e. are not
limits in some transversal category of A.

4.2. General tabulators. An i-cube x ∈ Ai is a unitary pseudo functor x : ui → A.
For every k ⊂ i we can also view x as a pseudo functor uj → QkA, where j = i \k, so
that x can have an ej-tabulator, namely a k-cube T = >jx ∈ Ak with a universal i-map
tx : ej(>jx)→0 x. (Total tabulators correspond to j = i, while j = ∅ gives the trivial case
>∅x = x.)

The universal property says now that, for every k-cube A and every i-map h : ej(A)→0

x there is a unique k-map u such that

ej(A)
ej(u)

//

h ((

ej(T )

tx
��

u : A→0 T,

x tx.ej(u) = h.

(51)

We say that the chiral multiple category A has tabulators of all degrees if every i-cube
x ∈ Ai has all j-tabulators >jx ∈ Ak (for i = j ∪ k, disjoint union). We say that A has
multiple tabulators if it has tabulators of all degrees, preserved by faces and degeneracies.

In this case, if A is transversally invariant, one can always make a choice of multiple
tabulators such that this preservation is strict (as we have already seen in various examples
of Part I):

∂αi (>jx) = >j(∂
α
i x), >j(ei(y)) = ei(>j(y)) (j ⊂ i, i ∈ i \ j), (52)

for x ∈ Ai and y ∈ Ai|i.
Note that these conditions are trivial if j = ∅ or j = i, whence for all weak double

categories (where there is only one positive index). This remark will be important when
reconsidering double limits, in 4.7.

4.3. Lemma. [Basic properties of tabulators] Let A be a chiral multiple category.

(a) For an i-cube x and a disjoint union i = j ∪ k we have

>ix = >k>jx, (53)

provided that the two tabulators on the right exist.

(b) A has tabulators of all degrees if and only it has all elementary tabulators >jx (for
every positive multi-index i, every j ∈ i and every i-cube x).

(c) If all ej-tabulators of i-cubes exist in A there is an ordinary adjunction

ej : tvi|j(A) −→←− tvi(A) :>j, ej a >j (j ∈ i), (54)

and ej : tvi|jA→ tviA preserves colimits.
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(d) If all ej-cotabulators of i-cubes exist in A, then ej : tvi|jA → tviA is a right adjoint
and preserves the existing limits (so that a condition on multiple level limits in 2.2(iii) is
automatically satisfied).

(e) In a weak double category A the existence of cotabulators of vertical arrows implies
that all ordinary limits in tv∗(A) are preserved by vertical identities. (This has already
been used in I.5.5.)

Proof. (a) Follows from a composition of universal arrows for

ei = ejek : tv∗A→ tvkA→ tviA.

The rest is obvious.

4.4. Definition (Multiple limits). We are now ready for a general definition of mul-
tiple limits in a chiral multiple category A.

(a) For a positive multi-index i ⊂ N and a chiral multiple category X we say that A has
limits of type i on X if QiA has limits of degree zero on X.

(b) We say that A has limits of type i if this happens for all small chiral multiple categories
X.

(c) We say that A has limits of all degrees (or all types) if this happens for all positive
multi-indices i.

(d) We say that A has multiple limits of all degrees if all the previous limits exist and are
preserved by the multiple functors (cf. 1.5)

Dα
j : Qij(A)→ RjQi(A), Ej : RjQi(A)→ Qij(A) (j /∈ i). (55)

In this case, if A is transversally invariant, one can always operate a choice of multiple
limits such that this preservation is strict (working as in Proposition 2.3).

We do not speak here of completeness: this notion should also involve the existence
of ‘companions’ and ‘adjoints’ for all transversal maps, as shown by our study of Kan
extensions in the domain of weak double categories [GP3, GP4].

4.5. Main Theorem. [Construction and preservation of multiple limits, II] Let A and B
be chiral multiple categories.

(a) All multiple limits in A can be constructed from level multiple limits and multiple
tabulators, or also from multiple products, multiple equalisers and multiple tabulators.

(b) If A has all multiple limits, a lax multiple functor S : A→ B preserves them if and
only if it preserves multiple products, multiple equalisers and multiple tabulators.

Similarly for finite limits and finite products.

Proof. Follows from Theorem 3.6, applied to the family of chiral multiple categories QiA,
together with the multiple functors of faces and degeneracies (cf. (55)) and the multiple
functors QiS : QiA→ QiB.
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4.6. Examples. For a category C with pushouts and pullbacks we complete the discussion
of tabulators in the chiral triple category SC(C), after the three types of tabulators of
degree zero examined in 3.7. We start again from a 12-cube π : ∨×∧ → C (a span of
cospans in C).

(a) The e1-tabulator of π is a 2-arrow >1π (a cospan) with a universal 12-map e1(>1π)→0

π; the solution is the middle cospan of π.

(b) The e2-tabulator of π is a 1-arrow >2π with a universal 12-map e2(>2π) →0 π; the
solution is the obvious span whose objects are the pullbacks of the three cospans of π.

These limits are preserved by faces and degeneracies. For instance:

- ∂−1 (>2π) = >2(∂−1 π), which means that the domain of the span >2π (described above)
is the pullback of the cospan ∂−1 π,

- >2(e1u) = e1(>2u), i.e. the e2-tabulator of the 1-degenerate cell e1u (on the cospan u)
is the degenerate span on the pullback of u.

Finally, putting together the previous results (in 2.2 and 3.7): if C is a complete
(or finitely complete) category with pushouts, then the chiral triple category SC(C) has
multiple limits (or the finite ones).

4.7. Limits in weak double categories. We now complete the discussion of limits
in a weak double category A, after the case of level limits examined in 2.6.

Here a strong difference appears between the present analysis and that of [GP1]. In
that paper tabulators were assumed to satisfy also a ‘two-dimensional universal property’.
On the other hand we already remarked here, at the end of 4.2, that multiple tabulators
are subject to preservation properties that only become non-trivial in dimension three
or higher; the examples above (in 4.6) clearly show that at least two positive indices are
required to formulate non-trivial conditions of this type.

In other words, with the present terminology, tabulators in a weak double category A
are automatically double tabulators, and the only limits that must be preserved by faces
and degeneracies are the level ones, generated by products and equalisers of objects or
vertical arrows of A.

We think that the present terminology for a weak double category A, a particular case
of the definitions in 4.2 and 4.4, is preferable; it can be summarised as follows.

(a) A has tabulators if every vertical arrow u (a 1-cube) has an object >u = >1u with
a universal double cell e1(>1u) → u. (This is what we now consider to be the correct
definition of a double tabulator.)

(b) A has limits of degree zero (namely the limits that produce objects) if all the functors
X → A (defined on a small weak double category) have a limit. Theorem 3.6 says that
this condition amounts to the existence of:
- all products

∏
Aλ of objects,

- all equalisers of pairs f, g : A→ B of parallel horizontal arrows,
- all tabulators >u of vertical arrows.
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(c) A has limits of degree 1 (namely the limits that produce vertical arrows) if all the
functors Λ→ tv1(A) defined on a small category) have a limit. By the usual theorem on
ordinary limits, this condition amounts to the existence of:
- products

∏
uλ of vertical arrows,

- equalisers of pairs a, b : u→ v of double cells (between the same vertical arrows).

Let us recall that such limits can be viewed as limits of degree zero in the lifted
category C = Q1(A), with objects in C∗ = A1 (the vertical arrows of A) and arrows in
C0 = A01 (the double cells of A). On the other hand R1A = tv∗A is the category of
objects and horizontal arrows of A.

(d) A has limits of all degrees if both conditions (b) and (c) are satisfied.

(e) A has double limits if all the previous limits exist and are preserved by the ordinary
functors

Dα
1 : C→ tv∗A, E1 : tv∗A→ C, (56)

inasmuch as this makes sense (i.e. for ordinary limits in tv∗A and C, which amount to 0-
and 1-level limits of A).

Theorem 4.5 says that A has double limits if and only if it has: double products,
double equalisers and tabulators. Concretely, this amounts to the existence of the limits
listed in (b) and (c), together with the conditions:
- products preserve domain, codomain and vertical identities,
- equalisers preserve domain, codomain and vertical identities.

If this holds and A is transversally invariant (‘horizontally invariant’ in [GP1]), Propo-
sition 2.3 says one can always choose double limits such that this preservation is strict.
For products this means that:
- for a family of vertical arrows uλ : Aλ → Bλ we have

∏
uλ :

∏
Aλ →

∏
Bλ,

- for a family of objects Aλ the product of their vertical identities is the vertical identity
of

∏
Aλ.

4.8. The symmetric cubical case. As analysed in [G1], weak symmetric cubical
categories (with lax cubical functors) have a path endofunctor

P : LxWsc→ LxWsc,

P ((tvnA), (∂αi ), (ei), (+i), (si), ...) = ((tvn+1A), (∂αi+1), (ei+1), (+i+1), (si+1), ...),
(57)

which lifts all components of one degree and discards 1-indexed faces, degeneracies, trans-
positions and comparisons (the latter are omitted above). The discarded faces and de-
generacy yield three natural transformations

∂α1 : P −→−→←− 1 : e1, ∂α1 .e1 = id, (58)

which make P into a path endofunctor, from a structural point of view. The role of
symmetries is crucial (without them we would have two non-isomorphic path-functors,
and a plethora of higher path functors, their composites, see [G1]).
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This situation cannot be extended to chiral multiple categories: the path endofunctor
was replaced by the lift functors Qj : LxCmc → LxCmcN|j and the restriction functors
Rj : LxCmc→ LxCmcN|j of 1.8, with faces and degeneracy

Dα
j : Qj

−→−→←− Rj :Ej, Dα
j .Ej = id. (59)

The whole system is consistent, by means of commutative squares

LxWsc P //

U
��

LxWsc

Uj
��

LxWsc 1 //

U
��

LxWsc

Uj
��

LxCmc
Qj
// LxCmcN|j LxCmc

Rj
// LxCmcN|j

(60)

where U : LxWsc→ LxCmc is the embedding described in I.2.8 (that gives rise to weak
multiple categories of a symmetric cubical type) and Uj = RjU .

In this way, cubical limits in weak symmetric cubical categories, dealt with in [G2],
agree with multiple limits as presented here.

5. Proof of the theorem on the construction of multiple limits

We now prove Theorem 3.6. The argument is similar to the proof of the corresponding
theorem for double limits [GP1], or its extension to cubical limits [G2].

5.1. Comments. Of course we only have to prove the ‘sufficiency’ part of the statement.
We write down the argument for the construction of limits; the preservation property is
proved in the same way.

The chiral multiple category A is supposed to have all level limits of degree zero and
all tabulators of degree zero (or total tabulators). The proof works by transforming a lax
functor F : X→ A of chiral multiple categories into a graph-morphism G : X→ tv∗A and
taking the limit of the latter. The (directed) graph X is a sort of ‘transversal subdivision’
of X, where every i-cube of X is replaced with an object simulating its total tabulator.

The procedure is similar to computing the end of a functor S : Cop×C → D as the
limit of the associated functor S§ : C§ → D based on Kan’s subdivision category of C
([Ka], 1.10; [Ma], IX.5).

5.2. Transversal subdivision. The transversal subdivision X of X is a graph, formed
by the following objects and arrows, for an arbitrary positive multi-index i of degree
n > 0, with arbitrary j ∈ i and α ∈ {0, 1}. (Note that this graph is finite whenever X is.)

(a) For every i-cell x of X there is an object x in X. For every i-map f : x→ y of X there
is an arrow f : x→ y in X.

(b) For every i-cell x of X, we also add 2n arrows pαj x : x → ∂αj x (that simulate the
projections (47) of the total tabulator of x, for j ∈ i and α = 0, 1).
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(c) If x = ejz is degenerate (in direction j) we also add an arrow djz : z → ejz (that
simulates the diagonal map (48)).

(d) For every j-concatenation of i-cells z = x +j y in X, we also add an object (x, y)j in
X and three arrows

pj(x, y) : (x, y)j → x, qj(x, y) : (x, y)j → y, dj(x, y) : (x, y)j → z, (61)

that simulate the pullback-object >j(x, y) of (49), with its projections and the diagonal
map (50).

5.3. The associated morphism of graphs. We now construct a graph-morphism
G : X→ tv∗A that naturally comes from F and the existence of level limits and tabulators
(of degree zero) in A.

(a) For every i-cell x of X, we define Gx as the following total tabulator (a ?-cube) of A

G(x) = >(Fx) (tFx : eiG(x)→0 F (x)). (62)

For every i-map f : x→0 y of X, we define Gf as the transversal map of A determined by
the universal property of tFy, as follows

ei>(Fx)
ei(Gf) //

tFx
��

ei>(Fy)

tFy
��

Gf : >(Fx)→0 >(Fy),

Fx
Ff

// Fy tFy.ei(Gf) = Ff.tFx.

(63)

(b) For z = ∂αj x we define G(pαj x) : Gx→0 Gz as the following transversal map of A

ei|j>(Fx)
ei|j(Gp

α
j x)
//

∂αj (tFx) ))

ei|j>(Fz)

tFz
��

G(pαj x) : >(Fx)→0 >(Fz),

Fz tFz.ei|j(G(pαj x)) = ∂αj (tFx).

(64)

(c) For a degenerate i-cube x = ejz (where z is an i|j-cube) the map G(djz) : Gz →0

G(ejz) is defined as follows

ei(>Fz)
ei(Gdjz) //

ejtFz
��

ei(>(Fejz))

tFx
��

G(djz) : >Fz →0 >(Fejz),

ejFz
F j(z)

// F (ejz) = Fx tFx.ei(G(djz)) = F j(z).ej(tFz).

(65)

(d) For a concatenation z = x +j y of i-cubes, the object G(x, y)j = >j(Fx, Fy) is the
pullback of the objects >Fx and >Fy, over the tabulator >Fw associated to the i|j-cube
w = ∂+

j x = ∂−j y (cf. 3.5).
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The arrows pj(x, y) : (x, y)j → x and qj(x, y) : (x, y)j → y of X are taken by G to the
projections (49) of >j(Fx, Fy)

G(pj(x, y)) : G(x, y)j →0 Gx, G(qj(x, y)) : G(x, y)j →0 Gy, (66)

so that (G(x, y)j;Gpj(x, y), Gqj(x, y)) is the pullback of (p+
j (Fx), p−j (Fy)) in tv∗A.

Finally, the arrow dj(x, y) : (x, y)j → z of X is sent by G to the diagonal (50) of
G(x, y)i = >j(Fx, Fy), determined as follows

G(dj(x, y)) : >j(Fx, Fy)→0 >F (z),

tFz.ei(G(dj(x, y)) = F j(x, y).(tFx.eiG(pj(x, y)) +j tFy.eiG(qj(x, y))).λ−1
j ,

(67)

ei(>j(Fx, Fy))
ei(G(dj(x,y)) //

λ−1
j
��

ei(>(Fz))
tFz // Fz

ei(>j(Fx, Fy)) +j ei(>j(Fx, Fy))
tFx.eiGpj(x,y) +j tFy .eiGqj(x,y)

// Fx+j Fy

F j(x,y)

OO

The limit of this diagram G : X→ tv∗A exists, by hypothesis.

5.4. From multiple cones to cones. In order to prove that the limit of G gives the
limit of degree 0 of F we construct an isomorphism

(D↓F )→ (D′ ↓G),

from the comma category of transversal cones of the lax functor F to the comma category
of ordinary cones of the graph-morphism G. We proceed first in this direction, and then
backwards.

Let (A, h : DA → F ) be a cone of F . For every i-cube x of X, we define k(x) : A →0

Gx = >(Fx) as the ?-map of A determined by the i-map hx, via the tabulator property

tFx.ei(kx) = hx. (68)

Further, we define k(x, y)j : A →0 G(x, y)j by means of the pullback-property of
G(x, y)j

pj(x, y).k(x, y)j = kx : A→0 Gx, qj(x, y).k(x, y)j = ky : A→0 Gy. (69)

Let us verify that this family k is indeed a cone of G : X→ tv∗A.

(a) Coherence with an i-map f : x→0 y (viewed as an arrow of X) means thatGf.kx = ky,
which follows from the cancellation property of tFy

tFy.ei(Gf.kx) = Ff.tFx.ei(kx) = Ff.hx = hy = tFy.ei(ky). (70)



27

(b) - (c). Coherence with the X-arrows pαj (x) : x → ∂αj x and djz : z → ejz = x follows
from (64) and (65)

G(pαj (x)).kx = k(∂αj x),

tFx.ei(G(djz).kz) = F j(z).ej(tFz).ei(kz) = F j(z).ej(tFz.ei|j(kz))

= F j(z).ej(hz) = h(ejz) = h(x) = tFx.ei(kx).

(71)

(d) Coherence with the X-arrows pj(x, y) and qj(x, y) holds by construction (see (66)).
For dj(x, y) and z = x+j y we have

tFz.ei(G(dj(x, y).k(x, y)j)

= F j(x, y).(tFx.eipj(x, y) +j tFy.eiqj(x, y)).λ−1
j .eik(x, y)j

= F j(x, y).(tFx.eipj(x, y) +j tFy.eiqj(x, y)).(eik(x, y)j +j eik(x, y)j).λ
−1
j

= F j(x, y).(hx+j hy).λ−1
j = hz = tFz.ei(kx).

(72)

Finally, a map of multiple cones f : (A, h : DA→ F )→ (A′, h′ : DA′ → F ) determines
a map of G-cones f : (A, k)→ (A′, k′), since

tFx.ei(k
′x.f) = h′x.ei(f) = hx = tFx.ei(kx). (73)

5.5. From cones to multiple cones. In the reverse direction (D′ ↓G)→ (D↓F ) we
just specify the procedure on cones. Given an ordinary cone (A, k : D′A→ G) of G, one
forms a multiple cone (A, h : DA→ F ) by letting

hx = tFx.ei(kx) : ei(A)→ x (x ∈ Ai). (74)

This satisfies (tc.1) (cf. 3.2) since, for f : x→0 y in X

Ff.hx = Ff.tFx.ei(kx) = tFy.ei(Gf.kx) = tFy.ei(ky) = hy. (75)

Finally, to verify the condition (tc.2) for j-units and j-composition in X we operate
much as above (with x = ejz in the first case and z = x+j y in the second)

F j(z).ej(hz) = F j(z).ej(tFz.ei|j(kz)) = F j(z).ej(tFz).ei(kz)

= tFx.ei(G(djz).kz) = tFx.ei(kx) = hx.
(76)

hz = tFz.ei(kz) = tFz.ei(G(dj(x, y)).k(x, y)j) =

= F j(x, y).(tFx.eipj(x, y) +j tFy.eiqj(x, y)).λ−1
j .eik(x, y)j

= F j(x, y).(tFx.eipj(x, y) +j tFy.eiqj(x, y)).(eik(x, y)j +j eik(x, y)j).λ
−1
j

= F j(x, y).(hx+j hy).λ−1
j .

(77)
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Catn. Cahiers Top. Géom. Diff. 19 (1978), 387-443.

[EE3] A. Ehresmann - C. Ehresmann, Multiple functors IV. Monoidal closed structures
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[GP1] M. Grandis - R. Paré, Limits in double categories, Cah. Topol. Géom. Différ. Catég.
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