
Fibonacci and Lucas Sequences

The Fibonacci sequence is defined by

F0 = 0, F1 = 1, and Fn+2 = Fn+1 + Fn, for n ≥ 0.

The Lucas sequence is defined by

L0 = 2, L1 = 1, and Ln+2 = Ln+1 + Ln, for n ≥ 0.

So they satisfy the same recurrence relation with different initial values.
In this project we will learn about some common properties that these

sequences share because they do satisfy the same recurrence relation, but we
will also learn about some remarkable differences between these sequences.

Some Easier Results. Here are first a couple of results that you can derive
directly from the recurrence relation, or that can be proved by techniques
we have seen before such as induction.

(1) Show that for all n ≥ 2, F 2
n+1 − F 2

n = Fn+2Fn−1.
(2) Show by induction on n that for all integers n,m ≥ 1, Fn+m =

Fm+1Fn + FmFn−1.
Polynomial Relationships. Start by creating a table containing the first
13 Fibonacci and Lucas numbers (or more, if you like). Over the years
people have found many interesting polynomial relationships between these
numbers. So I want to encourage you to try to find some conjectures for
relationships between these numbers. For example, what would you get if
you consider the products FnLn (where can you find these numbers in the
existing sequences)? Could you find a way to write each number in the Lucas
sequence as a sum of two Fibonacci numbers? Do you see other relations?
Which relations can you prove already? (Don’t worry if you cannot prove
them all; some of them need theory that we are going to learn about in this
project.)

Generating Solutions. In our course we learned how to verify a formula
for the Fibonacci numbers (by induction), but we didn’t learn how you would
find such a formula. In this section you will learn a technique that can be
extended to work for all linear recurrence relations, but for now we will just
look at un+1 = un + un−1 (with arbitrary initial values).

We want to find some special generating solutions vn and wn that sat-
isfy the equation un+1 = un + un−1, but not necessarily a specific initial
condition. Any linear combination of vn and wn will then also satisfy the
equation. So we can then take a linear combination rvn + swn that will
satisfy the equation with the initial conditions. Our guess for solutions is
that they will be of the form un = xn. When we substitute this, we get
xn+2 − xn+1 − xn = 0. So we need to find x such that x2 − x − 1 = 0.
Call the solutions α and β. We usually don’t need to calculate α and β
themselves. It is often sufficient to use what we know about their sum and
their product.
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(1) What are α+ β and αβ? (Note that these numbers α and β them-
selves are not integers, but their sum and product are!)

(2) Verify that un = rαn + sβn is a solution of the recurrence relation
without the initial condition for any s and r.

(3) If un = rαn + sβn satisfies the initial conditions for the Fibonacci
sequence, what can you say about r + s and rα+ sβ?

(4) If un = rαn + sβn satisfies the initial conditions for the Lucas se-
quence, what can you say about r + s and rα+ sβ?

(5) Give a formula for Fn and Ln in terms of α and β.
(6) Prove your formula for FnLn from the first section (or derive one

now).
(7) What can you say about FnLn−1? Can you find any other products

or sums?

Symmetric Polynomials. A polynomial in two variables P (x, y) is called
symmetric if P (x, y) = P (y, x). (When you switch the two variables, you
get the same polynomial.) You may use the following result:

Theorem 1. Any symmetric polynomial with integer coefficients in x and
y can be written as a polynomial with integer coefficients in a = x + y and
b = xy.

(1) Show that this implies that every symmetric polynomial expression
in α and β is an integer.

(2) Show that Fn+1Fn−1 − F 2
n = (−1)n.

(3) What is F 2
n+1 + F 2

n?
(4) The polynomial α4 +α2β2 +β4 is symmetric in α and β. According

to the Theorem just stated, it is possible to express α4 + α2β2 + β4

as a polynomial in α+ β and αβ. Can you find this expression?
(5) Show that if m|n (i.e., there is an integer k such that n = mk),

then Fm|Fn, i.e., Fn
Fm

is an integer. (Hint: You can either do this by
showing that Fn

Fm
can be expressed as a symmetric polynomial in α

and β, or you may want to use one of the easier results from this
project.)

(6) Show that no two consecutive Fibonacci numbers have a common
factor which is greater than 1.

(7) Can you also show that if d = gcd (m,n), then gcd (Fm, Fn) = Fd?
(8) Show that if Fm is divisible by Fn, then m is divisible by n.
(9) Show that for the Lucas numbers, m|n does not imply that Lm|Ln.

(10) Show that no two consecutive Lucas numbers have a common factor
which is greater than 1.

(11) We say that m divides n oddly, if there exists an odd number k such
that n = mk. Show that if m|n oddly, then Lm|Ln.
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Divisibility. Given an integer q, for which positive numbers n is Fn divisible
by q?

(1) Show that 5|Fn if 5|n. (Hint: start by considering the remainders
of the Fibonacci number after division by 5 for the beginning of the
sequence. How far do you need to go?)

(2) Show that there is no Lucas number Ln such that 5|Ln.
(3) If you want to answer the question of this section for any other

positive integer q, you could use the same technique as we used for
5 in the first problem, but the question is whether there will always
be a 0 in the sequence of remainders. Use the pigeon hole principle
to show that there always has to be a 0.

There are many interesting results about numbers that are divisors of Lucas
numbers, but they will need to wait till another project (unless you really
want to learn more about this; then ask me).

Some Geometry. Consider a path consisting of three consecutive straight
line segments in the plane connecting the points (0, 0), (5, 8), (8, 13) and
(13, 21). Place this path inside the rectangular box with vertices (0, 0),
(13, 0), (13, 21), and (0, 21).

(1) Show that the area below the path is equal to the area above the
path. (For a nice proof by symmetry, add some horizontal and ver-
tical lines to your diagram to divide the areas into rectangles.)

(2) You have probably observed that the sequence of coordinates here
consists of consecutive Fibonacci numbers. So we may ask our-
selves: does this work for any sequence of consecutive Fibonacci
numbers? Does it also work for Lucas numbers? Show that this re-
sult is true for any path connecting a sequence of points of the form
(0, 0), P1(vn, vn+1), P2(vn+1, vn+2), ... , P2k−1(vn+2k−2, vn+2k−1),
where the vi satisfy the equation vn+2 = vn+1 + vn.

(3) Would it work for a sequence of the form

(0, 0), P1(vn, vn+1), P2(vn+1, vn+2), . . . , P2k(vn+2k−1, vn+2k),

where the vi satisfy the equation vn+2 = vn+1 + vn?

Zeckendorf’s Representations. Edouard Zeckendorf was a Belgian amateur
mathematician, who lived from 1901 until 1983. He took the Fibonacci
sequences with F1 deleted:

1, 2, 3, 5, 8, 13, 21, . . .

and showed that every number can be written in a unique way as a sum of
nonconsecutive Fibonacci numbers.

(1) Find the Zeckendorff representation for 20, for 50, and for 100.
(2) Can you proof Zeckendorf’s result and give an algorithm to find the

representation for any positive integer?
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The Zeckendorf representation can be used to quickly convert miles into
kilometers and vice versa without multiplying. The trick is that limn→∞

Fn+1

Fn
=

α, where α = 1
2(
√

5+1) ≈ 1.618, which is close to 1.609, the number of kilo-
meters to a mile. So if you take the Zeckendorf representation of number
of kilometers and then replace each number in this representation by the
next Fibonacci number, you get a good approximation for the correspond-
ing number of miles. Conversely, you get the kilometers from the miles, by
taking the sum of the previous Fibonacci numbers. Do this for 80 miles and
40 kilometers.


