
Algebraic Infinitesimals

The algebraic infinitesimals E form an extension of the real numbers
like the complex numbers. The number we add is called ε. It has the
property that ε2 = 0, but ε 6= 0. So when you work with algebraic
infinitesimals, the equation x2 = 0 has two solutions, namely, x = 0
and x = ε. We will call ε a pure infinitesimal. More general algebraic
infinitesimals include the real numbers and they are closed under addi-
tion and multiplication. They are completely characterized by the fact
that they are the smallest possible set with this property.

Addition and Multiplication. Your first task is to show that all
algebraic infinitesimals are of the form a + bε, where a and b are real
numbers. Do this as follows:

(1) Show that every number of the form a+bε has to be an algebraic
infinitesimal.

(2) Show that the set of numbers of the form a+ bε if closed under
addition and multiplication, by giving a formula for the addition
and the multiplication of two algebraic infinitesimals a+ bε and
c+ dε.

The fact that the algebraic infinitesimals form the smallest set with
these properties allows you to conclude that E = {a+ bε|a, b ∈ R}.

Division. Contrary to the case with the complex numbers, division of
infinitesimals by infinitesimals can be a problem.

(1) Show that ε cannot have a multiplicative inverse, i.e., show that
there cannot be a number x such that xε = εx.

(2) Determine which algebraic infinitesimals do have a multiplica-
tive inverse and give a formula for the inverse of such numbers
a + bε. (Hint: use conjugation.) Those are the numbers you
can divide by.

(3) Calculate a+bε
c+dε

for an algebraic infinitesimal c + dε that has a
multiplicative inverse.

Differentiation. Algebraic infinitesimals were first created in order to
make differentiation better understandable. This works well for poly-
nomials. Let P (x) = pnx

n + pn−1x
n−1 + · · ·+ p1x+ p0 be a polynomial

with p0, p1, . . . , pn ∈ R.

(1) Show that P (a+ bε) = P (a) + bP ′(a)ε, where P ′ is the deriva-
tive of P .
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Transcendental Functions. From what we have learned above we
can evaluate f(a + bε) for any rational function (as long as a + bε is
chosen in such a way that the division is well-defined). The previous
result about derivatives leads us to a way to define f(a + bε) for any
function f for which we know the derivative:

f(a+ bε) := f(a) + bf ′(a)ε.

(1) Verify that this gives the correct answer for the function f(x) =
1
x
.

(2) What is ea+bε?
(3) Use algebraic infinitesimals to prove the chain rule by calculat-

ing f(g(a+ bε)).
(4) Can you prove the product and the quotient rule in this way as

well?
(5) Calculate (a+ bε)c+dε (and determine when this is defined).

A Geometric Interpretation. Just as with the complex numbers we
like to represent algebraic infinitesimals by points in the plane R2: the
algebraic infinitesimal a+bε would correspond to the point (a, b) in the
plane. We would like to have a kind of polar representation for these
numbers that would work well for multiplication and addition. Note
that a+ bε = a(1 + b

a
ε). We will call a the modulus and b

a
(the slope of

the vector (a, b)) the angular part.

(1) Describe the function ex for algebraic infinitesimals in terms of
moduli and angular parts.

(2) Give a geometric description of the algebraic infinitesimals with
modulus 1. All complex numbers with modulus 1 can be written
as eiθ, where θ is a real number. Is there a similar result for
algebraic infinitesimals?

(3) Describe the addition, multiplication and division of two alge-
braic infinitesimals in terms of their moduli and angular parts.
Can you give a geometric interpretation for these operations?


