Solutions to the problems from Assignment 3:

2 $(\sqrt{3}-i)^{10} = (2e^{-\frac{\pi i}{6}})^{10} = 2^{10}e^{-\frac{10\pi i}{6}} = 2^{10}e^{-\frac{5\pi i}{3}}$ so the real part is

$$2^{10}\cos(-\frac{5\pi}{3}) = 210 * \frac{1}{2} = 2^9 = 512,$$

and the *imaginary part* is

$$2^{10}\sin(-\frac{5\pi}{3}) = 2^{10} * \frac{\sqrt{3}}{2} = 2^9\sqrt{3} = 512\sqrt{3}$$

$$(\sqrt{3}-i)^{-7} = (2e^{-\frac{\pi i}{6}})^{-7} = 2^{-7}e^{\frac{7\pi i}{6}}$$
, so the real part is

$$2^{-7}\cos(\frac{7\pi}{6}) = -2^{-7}\frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2^8} = \frac{\sqrt{3}}{256}$$

and the *imaginary part* is

$$2^{-7}\sin(\frac{7\pi}{6}) = -2^{-7} * \frac{1}{2} = -\frac{1}{2^8} = -\frac{1}{256}$$

 $(\sqrt{3}-i)^n = (2e^{-\frac{\pi i}{6}})^n = 2^n e^{-\frac{n\pi i}{6}}$, so the imaginary part is $2^n \sin(-\frac{n\pi}{6})$. $(\sqrt{3}-i)^n$ is real if and only if its imaginary part is equal to zero. So $(\sqrt{3}-i)^n$ is real if and only if $2^n \sin(-\frac{n\pi}{6}) = 0$. This is zero if and only if $\sin(-\frac{n\pi}{6}) = 0$ and this is the case if and only if $\frac{n\pi}{6}$ is a (positive or neagtive) multiple of π , i.e., when n is an integer multiple of 6.

3 (a) We first find one root of $z^{10} = i$. We do this by finding a value of r and of θ such that $r^{10}e^{i\theta} = i = e^{\frac{\pi i}{2}}$. A solution is r = 1 and $\theta = \frac{\pi}{20}$. The other roots are found by multiplying by the 10th

roots of unity. So the 10 roots of $z^{10} = i$ are:

$$\begin{array}{rcl} e^{\frac{\pi i}{20}} \\ e^{\frac{\pi i}{20}}e^{\frac{2\pi i}{10}} &= e^{\frac{\pi i}{20} + \frac{2\pi i}{10}} = e^{\frac{5\pi i}{20}} = e^{\frac{\pi i}{4}} \\ e^{\frac{\pi i}{20}}e^{\frac{4\pi i}{10}} &= e^{\frac{\pi i}{20} + \frac{4\pi i}{10}} = e^{\frac{9\pi i}{20}} \\ e^{\frac{\pi i}{20}}e^{\frac{6\pi i}{10}} &= e^{\frac{\pi i}{20} + \frac{6\pi i}{10}} = e^{\frac{13\pi i}{20}} \\ e^{\frac{\pi i}{20}}e^{\frac{8\pi i}{10}} &= e^{\frac{\pi i}{20} + \frac{8\pi i}{10}} = e^{\frac{17\pi i}{20}} \\ e^{\frac{\pi i}{20}}e^{\frac{10\pi i}{10}} &= e^{\frac{\pi i}{20} + \frac{10\pi i}{10}} = e^{\frac{21\pi i}{20}} \\ e^{\frac{\pi i}{20}}e^{\frac{12\pi i}{10}} &= e^{\frac{\pi i}{20} + \frac{12\pi i}{10}} = e^{\frac{25\pi i}{20}} = e^{\frac{5\pi i}{4}} \\ e^{\frac{\pi i}{20}}e^{\frac{14\pi i}{10}} &= e^{\frac{\pi i}{20} + \frac{14\pi i}{10}} = e^{\frac{29\pi i}{20}} \\ e^{\frac{\pi i}{20}}e^{\frac{16\pi i}{10}} &= e^{\frac{\pi i}{20} + \frac{16\pi i}{10}} = e^{\frac{33\pi i}{20}} \\ e^{\frac{\pi i}{20}}e^{\frac{18\pi i}{10}} &= e^{\frac{\pi i}{20} + \frac{18\pi i}{10}} = e^{\frac{37\pi i}{20}} \end{array}$$

These roots all lie on the unit circle, so the root closest to i is the one with argument closest to $\frac{\pi}{2}$. That is $e^{\frac{9\pi i}{20}}$.

3(b) We need to find the 7 roots of $z^7 = \sqrt{3} - i$, i.e., $z^7 = 2e^{-\frac{\pi i}{6}}$. We start by finding one solution of $r^7 e^{i7\theta} = 2e^{-\frac{\pi i}{6}}$. A solution is $r = \sqrt[7]{2}$ and $\theta = -\frac{\pi}{6*7} = -\frac{\pi}{42}$, so one of the roots is $z = \sqrt[7]{2}e^{-\frac{\pi i}{42}}$. The other roots are found by multiplying by the 7th roots of unity. So the 7 roots of $z^7 = \sqrt{3} - i$ are:

$\sqrt[7]{2}e^{-\frac{\pi i}{42}}$		
$\sqrt[7]{2}e^{-\frac{\pi i}{42}} * e^{\frac{2\pi i}{7}}$	=	$\sqrt[7]{2}e^{-\frac{\pi i}{42} + \frac{12\pi i}{42}} = \sqrt[7]{2}e^{\frac{11\pi i}{42}}$
$\sqrt[7]{2}e^{-\frac{\pi i}{42}} * e^{\frac{4\pi i}{7}}$	=	$\sqrt[7]{2}e^{-\frac{\pi i}{42} + \frac{24\pi i}{42}} = \sqrt[7]{2}e^{\frac{23\pi i}{42}}$
$\sqrt[7]{2}e^{-\frac{\pi i}{42}} * e^{\frac{6\pi i}{7}}$	=	$\sqrt[7]{2}e^{-\frac{\pi i}{42} + \frac{36\pi i}{42}} = \sqrt[7]{2}e^{\frac{35\pi i}{42}}$
$\sqrt[7]{2}e^{-\frac{\pi i}{42}} * e^{\frac{8\pi i}{7}}$	=	$\sqrt[7]{2}e^{-\frac{\pi i}{42} + \frac{48\pi i}{42}} = \sqrt[7]{2}e^{\frac{47\pi i}{42}}$
$\sqrt[7]{2}e^{-\frac{\pi i}{42}} * e^{\frac{10\pi i}{7}}$	=	$\sqrt[7]{2}e^{-\frac{\pi i}{42} + \frac{60\pi i}{42}} = \sqrt[7]{2}e^{\frac{59\pi i}{42}}$
$\sqrt[7]{2}e^{-\frac{\pi i}{42}} * e^{\frac{12\pi i}{7}}$	=	$\sqrt[7]{2}e^{-\frac{\pi i}{42} + \frac{72\pi i}{42}} = \sqrt[7]{2}e^{\frac{71\pi i}{42}}$

The root closest to the imaginary axis has an argument closest to $\frac{\pi}{2} = \frac{21\pi}{42}$ or $\frac{3\pi}{2} = \frac{63\pi}{42}$. So the root closest to the imaginary axis is $\sqrt[7]{2}e^{\frac{23\pi i}{42}}$

7 If you want to use the method of the book (which will work for all $\cos(n\theta)$), this goes as follows. First we derive from De Moivre's formula that

$$\cos(4\theta) + i\sin(4\theta) = (\cos(\theta) + i\sin(\theta))^4.$$

The right hand side of this equation can be expanded to

$$(\cos(\theta) + i\sin(\theta))^4 = \binom{4}{0}\cos^4(\theta) + \binom{4}{1}\cos^3(\theta)i\sin(\theta) + \binom{4}{2}\cos^2(\theta)(i\sin(\theta))^2 + \binom{4}{3}\cos(\theta)(i\sin(\theta))^3 + \binom{4}{4}(i\sin(\theta))^4 = \cos^4(\theta) + 4\cos^3(\theta)\sin(\theta)i - 6\cos^2(\theta)\sin^2(\theta) -4\cos(\theta)\sin^3(\theta)i + \sin^4(\theta) = \cos^4(\theta) - 6\cos^2(\theta)\sin^2(\theta) + \sin^4(\theta) + (4\cos^3(\theta)\sin(\theta) - 4\cos(\theta)\sin^3(\theta))i.$$

By setting the real parts equal we obtain

$$\cos(4\theta) = \cos^4(\theta) - 6\cos^2(\theta)\sin^2(\theta) + \sin^4(\theta)$$

Since $\sin^2(\theta) = 1 - \cos^2(\theta)$, this gives us

$$cos(4\theta) = cos^{4}(\theta) - 6 cos^{2}(\theta)(1 - cos^{2}(\theta)) + (1 - cos^{2}(\theta))^{2}
= cos^{4}(\theta) - 6 cos^{2}(\theta) + 6 cos^{4}(\theta) + 1 - 2 cos^{2}(\theta) + cos^{4}(\theta)
= 8 cos^{4}(\theta) - 8 cos^{2}(\theta) + 1$$

So the answer to the first question is:

$$\cos(4\theta) = 8\cos^4(\theta) - 8\cos^2(\theta) + 1$$

When we substitute $\theta = \frac{\pi}{12}$ in this equation we get that

$$\cos(\frac{\pi}{3}) = 8\cos^4(\frac{\pi}{12}) - 8\cos^2(\frac{\pi}{12}) + 1$$

Note that $\cos(\frac{\pi}{3}) = \frac{1}{2}$, so this becomes

$$\frac{1}{2} = 8\cos^4(\frac{\pi}{12}) - 8\cos^2(\frac{\pi}{12}) + 1$$

Multiplying by 2 gives

$$1 = 16\cos^4(\frac{\pi}{12}) - 16\cos^2(\frac{\pi}{12}) + 2$$

and this is equivalent to

$$16\cos^4(\frac{\pi}{12}) - 16\cos^2(\frac{\pi}{12}) + 1 = 0$$

So $\cos(\frac{\pi}{12})$ is a root of the equation

$$16x^4 - 16x^2 + 1 = 0.$$

The other roots of this equation can be found by looking for angles θ such that $\cos(4\theta) = \frac{1}{2}$. (This is the only distinguishing feature of $\cos(\frac{\pi}{12})$ that makes this work.) So we look for θ such that

$$4\theta = \frac{\pi}{3} + 2k\pi.$$

This gives us $\theta = \frac{\pi}{12}$ with corresponding root $\cos(\frac{\pi}{12})$ (as we knew already) and $\theta = \frac{\pi}{12} + \frac{2\pi}{4} = \frac{7\pi}{12}$ with corresponding root $\cos(\frac{7\pi}{12})(=-\cos(\frac{5\pi}{12}))$, and $\theta = \frac{\pi}{12} + \frac{4\pi}{4} = \frac{13\pi}{12}$ with corresponding root $\cos(\frac{13\pi}{12}) = -\cos(\frac{\pi}{12})$, and $\theta = \frac{\pi}{12} + \frac{6\pi}{4} = \frac{19\pi}{12}$ with corresponding root $\cos(\frac{19\pi}{12}) = \cos(\frac{-5\pi}{12}) = \cos(\frac{5\pi}{12})$. So the roots of the equation are $\pm \cos(\frac{\pi}{12})$ and $\pm \cos(\frac{5\pi}{12})$. That gives us four roots. Since this is a quartic equation, we have found all of them.

- 8 Since |z| = 1, we have that $z = \cos \theta + i \sin \theta$ for some angle θ . Since $|z + \sqrt{2}| = 1$, we also have that $(\cos \theta + \sqrt{2})^2 + \sin^2 \theta = 1$. This can be rewritten as $\cos^2 \theta + 2\sqrt{2} \cos \theta + 2 + \sin^2 \theta - 1 = 0$, and then as $2\sqrt{2} \cos \theta + 2 = 0$. So we find that $\cos \theta = -\frac{1}{\sqrt{2}}$. We conclude that $\theta = \frac{3\pi}{4}$ or $\theta = \frac{5\pi}{4}$, so the solutions are $e^{\frac{3i\pi}{4}}$ and $e^{\frac{5i\pi}{4}}$. And $(e^{\frac{3i\pi}{4}})^8 = e^{\frac{8*3i\pi}{4}} = e^{6i\pi} = 1$ and $(e^{\frac{5i\pi}{4}})^8 = e^{10i\pi} = 1$, so both solutions satisfy $z^8 = 1$.
- 10 If w is an nth root of unity, w lies on the unit circle, so its modulus |w| = 1. So $\sqrt{w \cdot \overline{w}} = 1$, so $w \cdot \overline{w} = 1$. Note that we can divide by w since zero is not a root of unity, so we get $\overline{w} = \frac{1}{w}$. (There are several other proofs of this fact.) Now,

$$\overline{(1-w)}^n = (1-\overline{w})^n \text{ (since } \overline{1} = 1)$$

$$= (1-\frac{1}{w})^n \text{ (by the statement above)}$$

$$= (1-\frac{1}{w})^n w^n \text{ (since } w \text{ is an } n\text{th root of unity)}$$

$$= ((1-\frac{1}{w})w)^n$$

$$= (w-1)^n,$$

as required.

Finally,

$$(1-w)^{2n} = (1-w)^n (1-w)^n$$

= $(1-w)^n (w-1)^n (-1)^n$
= $(1-w)^n \overline{(1-w)}^n (-1)^n$
= $((1-w)\overline{(1-w)})^n (-1)^n$

and for any complex number z, we have that $z \cdot \overline{z} = |z|^2$ is a real number, so $(1 - w)\overline{(1 - w)}$ is a real number, so $(1 - w)^{2n}$ is a real number.