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1. If{d e f|=9, find | 3b-5h h ¢ |~ 3b 4 ¢
g hi 3¢-5i i f 3¢ v
A. 45
B. 45 | =3 | 44 q
© 27 b e
D. 9 C ¢ {
E. 27
F. -9
_ 3 nb ¢ 3] a b ¢
9 (n & d < «g
d e gyl v
= -%.4 = -1%
2. Which of the following are bases for R3 ?
(1){(41 27 0)5 (01 1: 2)3 (1535_1)} H 1. O [f (Z ~ U
(2){(-1.2,.3),(3.3,2) } O 1 2= o0t D
3 {(-1,3,-5),(1,-2,4),(2,0,4),(5,1,9) } , _
B A
A.  (1)and (2)
(1) only |
C.  (2)and (3) . L - u .
D. None of them = 1 = ~4Y% #0
E.  All three | -4
F (2) only
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(11 2)

Suppose A =
2

1

4

A.
B.
C.
F.

None of the below is true.
The second row is |1 2 -1].
The firstrow is [2 0 -1].
The third row is {-1 -1 1].
A1 does not exist.

The second columnis [0 2 -1]%
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1 0 1 |. Which one of the following statements is true for A™! ?
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5. If K={A € Mz3 | A =-A'} is the subspace of anti-symmetric 3 by 3 matrices, then

dim K is:
3 . .
’ O ab N
5. 2 K»,C 40 ¢ a,ﬂ;( e\l
C. 6 l !
D. 9 -h - 0
E. 4 N
Fo0 Y oqe) (oo 000
-.L“SO')CLL-\/ "‘lC’o 009 £ o
oo J, o] o0 | 0.1 0
\—’"/’_\,/\_,_/
A
(a1 b/b0)
6. Find all (a, b, ¢) so that t(] 0 01 _;I J is in reduced row-echelon form.
0000
‘\_,\‘.\ . 5 = O
A, (0,0,1) st hae €
B (1,0,0) ,
C. (1,1, 1) N WLU/’T &ﬂ."‘f Q}: O
D. (0,0,0)
(1,0, 0) and (0, 0, 1) A can he 0o 4
(1,0, 0) and (0, 0, 0)
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7. Consider the linear system

T
r — y + 2z = 0
-z + yv - z =0
x + ky + =z = 0

a) If [A|0] is the augmented matrix of the system above, find rank A and rank{A 0] for all
values of k.

b} Find all &k so that this system has
i} a unique solution,
i) infinitely many solutions, and
iii} no solutions.

¢) In case (ii) above, give a complete geometric description of the set of solutions.
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8. Consider the closed network of streets and intersections below. The atrows indicate the
B direction of traffic flow along the one-way streets, and the numbers are the flows observed during

one minute. Each z; denotes the unknown numbcr of cars which passed along the indicated
strects during the samc period.

9 a) Using Kirchofl’s law, write down the linear system which describes the the traffic flow,
together with all the constraints on the variables ;, i =1,...,5. (Do not perform any
operations on your equations: this is done for you in (b)!)

| b) The reduced row-echelon form of the augmented matrix from part (a) is

o)
1 000 21 | —10
0100 1 | 30
0010 -1 | —10
0001 -1 | 10
0000 0 | 0

Give the general solution. (Ignore the constraints at this point.)

2 ¢) Using (b) and the constraints from (a), find all possible traffic flows. (You do not need to list

them all individually: simply give the possible vales of parameter(s).). How many different
network flows are there?

[ d) Are there any network flows with both AD and BC closed for roadwork? What are the
possible flows on the other streets in this case?
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29. Let W =span{(—1,1,0),(1,1,—2)} and L = span{(1,1,1}}.

For v € R3, let projw(v) and proj p(v) denote the orthogonal projections of ¢ onto W and
L respectively.

a) Give complete geometric descriptions of W and L.

b) Find a basisof Wt = {v e R3 | v- w = 0 for allw € W} and use this to show that L = W,

r+ytz zxdytz ) *

? 3 ! 3

)
¢} If {z,y,2) € R®, find a formula for projw (2, ¥, 2).
d) If (z,y, z) € R?, show that proj 1.(z,y, z) = (ZH4EE
)

e) Use (c) and (d) to show that v = projw(v) + proj 1 (v) for all v € R®.
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5 -1 2
T10. Let A=1% li—l 5 2} and v; = (1,1,1) and v2 = (1, —1,0) be two vectors in R?.
2 2 2

/Pﬁ;) Show that Av; = vy and Awvy = vy, and hence show that {vy,v2} C col(A), where col (A4)
w7 denotes the column space of P.

@\b) Show that rank A = 2, and use this to deduce that dimcol (4) < 3.

@,L) Use {a) and (b) to show that {vy,v2} is a basis of col (4), and give a complete geometric
Lf;d) Show that ker A = span{v; x va2}.

description of col (A).
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2 -1 =1
pnil., LetA=1-1 2 -—1].
-1 -1 2
a) Show that the eigenvalucs of A are 0 and 3.
b) Find a basis By of By = { € R* | Az =0}
¢) Find a basis of B3 = {z € R* | (A — 31)a = 0}.
" d) Show that the set consisting of all vectors from the bases for Eq and Fj is a basis for RS,

¢) If possible, find an invertible matrix F and a diagonal matrix D such that P AP = D.
‘-G‘ + 23
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#12. a) Let A be a real n x n matrix. Give 3 different statements which are equivalent to:
The columns of A are linearly dependent.
b) Statc whether the following are always true or conld be false. If true, explain why, if false,
give a numerical example to illustrate.

(i) Suppose an 1 x n matrix A satisfics A? = A. If v is an eigenvector of A with eigenvalue
A then A=0or A =1

(ii) If an n x n matrix A satisfies A? == 0, then A = 0.

(iii) Let F[0,1} = {f | f:[0,1] — R} be the vector spacc of real-valued funtions defined on
[0,1]. If f, g and h are any three different functions in F[0, 1], then {f, g, h} must be
linearly independent.
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