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1. Find all values of ¢ so that {(2, -1, 3), (0, ¢, 2), (8, -1, 8)} is lincarly independent.
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2. A 1s a 10 by 6 matrix such that Ax = 0 has only the trivial solution. Answer the
following questions:
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3. Let A= 213 4 . The dimension of the solution-space of Ax =0 1is:
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4. FFor what value of e does the vector (5, 3, e) belong to the subspace of R? spanned
by (3., 2, 0) and (4, 2, 3)7
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5. A basis for the solution space of the system
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6. Consider the linear system

x 4z = =1
2r + y + z = -1
r - 2y + ez = d

a) 16 [A]b] is the augmented matrix of the system above, find rank A and rank[ A | b] for
all values of ¢ and d.

h) Find all ¢ and d so that this system has
i) a unique solution,
ii} infinitely many solutions, and
iii} no solutions.

¢) In case (ii) above, give a geometric description of the set of solutions.
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7. Consider the network of streets with intersections A, 13, C and D below. The arrows
indicate the direction of trafhe flow along the one way streets, and the numbers refer to
the number of cars observed to enter A or leave B.C and D during 1 minute. Fach z;
denotes the unknown number of cars which passed along the indicated streets during the

same period.
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a) Using Kircholl’s law, write down the lincar system which describes the the traffic
flow, together with all the constraints on the variables z;, i = 1,...,5. (Do not
perform any operations on your equations: this is done for you in (b)!)

I3) The reduced row-cchelon form of the augmented matrix from part (a) is

Aot
I oo 1 0 | 5
010 1 1 | 3
001 -1 -1 | =2
O 00 0 0 | o0

Give the general solution. (Ignore the constraints at this point.)

¢) Using (b) and the constraints from (a), find all possible traffic flows.
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