

1. The coefficient matrix A in a homogeneous system of 12 equations in 16 unknowns is known to have rank 6. How many parameters are there in the general solution?

- A. $\textcircled{10}$
- B. none
- C. 6
- D. 12
- E. 4
- F. 16

$$12 \begin{bmatrix} A | 0 \end{bmatrix} \quad \because \text{rank } A = 6,$$

$$\begin{aligned} \# \text{ parameters} &= n - r \\ &= 16 - 6 \\ &= 10 \end{aligned}$$

2. For what value of α does the vector $(5, 3, \alpha)$ belong to the subspace of \mathbb{R}^3 spanned by $(3, 2, 0)$ and $(1, 0, 3)$?

$$\begin{matrix} v & w & u \\ \left[\begin{matrix} v & w & | & u \end{matrix} \right] & \left[\begin{matrix} 1 & 3 & | & 5 \\ 0 & 2 & | & 3 \\ 3 & 0 & | & \alpha \end{matrix} \right] & \sim \left[\begin{matrix} 1 & 3 & | & 5 \\ 0 & 2 & | & 3 \\ 0 & -9 & | & \alpha - 15 \end{matrix} \right] \sim \left[\begin{matrix} 1 & 3 & | & 5 \\ 0 & 2 & | & 3 \\ 0 & 0 & | & \alpha - 15 + \frac{27}{2} \end{matrix} \right] \end{matrix}$$

$$\alpha = \frac{3}{2}$$

The vector $u \in \text{span}\{v, w\}$ iff the system $\left[\begin{matrix} v & w & | & u \end{matrix} \right]$ is consistent.

In order that the system be consistent, we

$$\text{need } \alpha - \frac{3}{2} = 0, \text{ so } \alpha = \frac{3}{2}$$

(or, compute $u \cdot v \times w$ and set it equal to 0:

$$v \times w = \begin{vmatrix} i & j & k \\ 3 & 2 & 0 \\ 1 & 0 & 3 \end{vmatrix} = (6, -9, -2); \text{ so } u \cdot v \times w = 30 - 27 - 2\alpha = 0$$

$$\Leftrightarrow \alpha = \frac{3}{2}$$

3. If $A = \begin{bmatrix} 0 & 1 & 0 & -3 \\ 1 & 1 & 3 & 0 \\ 2 & 1 & 3 & 2 \\ 1 & 0 & 0 & 2 \end{bmatrix}$ is the coefficient matrix of a homogeneous linear system, the dimension of the solution space of that system is:

A. 3
B. 4
C. 2
D. Infinite
E. 1
F. 0

$$\begin{bmatrix} 0 & 1 & 0 & -3 \\ 1 & 1 & 3 & 0 \\ 2 & 1 & 3 & 2 \\ 1 & 0 & 0 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 1 & 3 & -2 \\ 0 & 1 & 3 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$\therefore \text{rank } A = 3$. Hence
 $\dim \text{soln space} = 4 - 3 = 1$.

4. For what value of α is $\{(1, 1, 1), (1, 0, 2), (1, \alpha, 1)\}$ linearly dependent?

A. -1
B. 0
C. 1
D. -2
E. -1/2
F. 2

S is linearly dependent iff the system $[u \ v \ w \ | \ 0]$ has ∞ many solutions, i.e. $\text{rank } [u \ v \ w] < 3$.

$$[u \ v \ w] = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & \alpha \\ 1 & 2 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & -1 & \alpha - 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & \alpha - 1 \end{bmatrix}, \text{ which}$$

has rank $< 3 \Leftrightarrow \alpha = 1$.

5. Which of the following statements is true for the following system?

$$x + y = 5$$

$$2x + y + z = 13$$

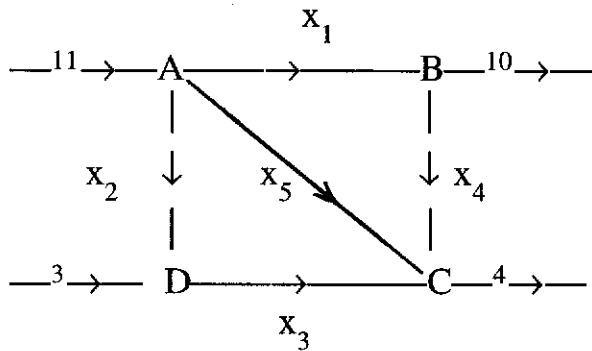
$$4x + 3y + z = 23$$

- A. It is inconsistent
- B. It has the unique solution $(5, 0, 3)$.
- C. It has infinitely many solutions with 2 parameters.
- D. It has the trivial solution.
- E. It has infinitely many solutions with 1 parameter.
- F. It has the unique solution $(8, -3, 0)$.

$$\begin{bmatrix} A | b \end{bmatrix} = \left[\begin{array}{ccc|c} 1 & 1 & 0 & 5 \\ 2 & 1 & 1 & 13 \\ 4 & 3 & 1 & 23 \end{array} \right] \sim \left[\begin{array}{ccc|c} 1 & 1 & 0 & 5 \\ 0 & -1 & 1 & 3 \\ 0 & -1 & 1 & 3 \end{array} \right] \sim \left[\begin{array}{ccc|c} 1 & 1 & 0 & 5 \\ 0 & 1 & -1 & -3 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

Hence, $\text{rank } A = \text{rank } [A|b] = 2 < 3 = \# \text{ vars}$, so this system has ~~only~~ many solutions with 1 ($= 3-2$) parameter.

6. Consider the diagram of streets below. The arrows indicate the direction of traffic flow along the one-way streets, and the numbers refer to the number of cars observed to enter (in the case of A and D) or leave (in the case of B and C) the intersections during a period of 10 minutes. Each x_i denotes the (unknown) number of cars which passed along the indicated streets during the same period.



a) Using Kirchoff's law, write down a system of linear equations in the x_i , $i=1,\dots,5$, together with all constraints, which describe the the traffic flow.

b) If
$$\left[\begin{array}{ccccc|c} 1 & 0 & 0 & -1 & 0 & 10 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right]$$
 is the result of row-reduction on the linear system of (a)

find the general solution, **ignoring the constraints**.

c) If AD had been closed to traffic because of roadwork, find all the possible values of the x_i , $i=1,\dots,5$.

a)

Intersection	# cars in	=	# cars out.
A	11	=	$x_1 + x_2 + x_5$
B	x_1	=	$10 + x_4$
C	$x_3 + x_4 + x_5$	=	4
D	$x_2 + 3$	=	x_3

(1)

Constraints: Since each x_i represents the # of cars on one-way streets, $x_i \in \mathbb{Z}$ and $x_i \geq 0$ for $i=1,\dots,5$.

b)
$$\begin{aligned} x_1 &= 10 + \Delta \\ x_2 &= 1 - \Delta - t \\ x_3 &= 4 - \Delta - t \end{aligned} \quad \begin{aligned} x_4 &= \Delta \\ x_5 &= t \end{aligned} \quad ; \Delta, t \in \mathbb{R}.$$

(1)

c) AD is closed $\Leftrightarrow x_2 = 1 - s - t = 0$. Hence $s+t = 1$.

Imposing the constraints, we find

i) $x_i \in \mathbb{Z} \Leftrightarrow s, t \in \mathbb{Z}$

& ii) $x_1 \geq 0 \Leftrightarrow 10 + s \geq 0 \Leftrightarrow s \geq -10$

$x_2 \geq 0 \checkmark$ ($x_2 = 0$)

$x_3 \geq 0 \Leftrightarrow 4 - s - t \geq 0 \Leftrightarrow s + t \leq 4 \checkmark$ ($s + t = 1$)

$x_4 \geq 0 \Leftrightarrow s \geq 0$

$x_5 \geq 0 \Leftrightarrow t \geq 0$

Hence, $\underbrace{s \geq 0, t \geq 0}_{\frac{1}{2}}, \underbrace{s+t=1}_{\frac{1}{2}}$ and $\underbrace{s, t \in \mathbb{Z}}_{\frac{1}{2}}$. Thus,

the only possibilities are $\underbrace{(s, t) = (0, 1)}_{\frac{1}{2}}$ or $\underbrace{(1, 0)}_{\frac{1}{2}}$.

For $s=0, t=1 : x_1=10, x_2=0, x_3=3, x_4=0, x_5=1$ } ①

$s=1, t=0 : x_1=11, x_2=0, x_3=3, x_4=1, x_5=0$.

2

7. Consider the linear system:

$$\begin{aligned} x + y + 3z &= 2 \\ x + 2y + 5z &= 1 \\ 2x + 3y + az &= b \end{aligned}$$

a) Compute rank A and rank $[A | B]$ for all values of a and b , where A and $[A | B]$ are, respectively, the coefficient matrix and the augmented matrix of the system.

b) Find all values of a and b for which this system has

(i) a unique solution,
 (ii) infinitely many solutions
 and (iii) no solutions.

c) In the case (ii), give a geometric description of the set of solutions. Is it a subspace of \mathbb{R}^3 ?

$$a) [A|B] = \left[\begin{array}{ccc|c} 1 & 1 & 3 & 2 \\ 1 & 2 & 5 & 1 \\ 2 & 3 & a & b \end{array} \right] \sim \left[\begin{array}{ccc|c} 1 & 1 & 3 & 2 \\ 0 & 1 & 2 & -1 \\ 0 & 1 & a-6 & b-4 \end{array} \right] \sim \left[\begin{array}{ccc|c} 1 & 1 & 3 & 2 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & a-8 & b-3 \end{array} \right] \quad \text{(1/2)}$$

Hence, $\text{rank } A = \begin{cases} 2 & \text{if } a = 8 \quad \text{(1/2)} \\ 3 & \text{if } a \neq 8 \quad \text{(1/2)} \end{cases}$ & $\text{rank } [A|B] = \begin{cases} 2 & \text{if } a = 8 \text{ and } b = 3 \\ 3 & \text{if } a = 8 \text{ and } b \neq 3 \\ 3 & \text{if } a \neq 8 \end{cases} \quad \text{(1/2)}$

b) Using (a), we find that

(i) there's a unique soln iff $\text{rank } A = \text{rank } [A|B] = \# \text{vars.} = 3$

i.e. iff $a \neq 8 \quad \text{(1/2)}$ (b is not restricted)

(ii) ∞ many solns exist iff $\text{rank } A = \text{rank } [A|B] = 2 < 3 = \# \text{vars.}$

i.e. iff $a = 8$ and $b = 3$

(iii) the system is inconsistent $\Leftrightarrow \text{rank } A = 2 < 3 = \text{rank } [A|B]$

i.e. iff $a = 8$ and $b \neq 3$.

$$c) a=8, b=3 \Rightarrow [A|B] \sim \left[\begin{array}{ccc|c} 1 & 1 & 3 & 2 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{array} \right] \sim \left[\begin{array}{ccc|c} 1 & 0 & 1 & 3 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{array} \right] \quad \text{Page 4}$$

Hence the general solution is $\begin{cases} x = 3 - s \\ y = -1 - 2s \\ z = s \end{cases}, s \in \mathbb{R} \quad \left. \begin{array}{l} \textcircled{1} \\ \textcircled{2} \end{array} \right\}$

This set of solns is thus the line through $(3, -1, 0)$ in \mathbb{R}^3 with direction $(-1, -2, 1)$. $\textcircled{2}$

It is not a subspace of \mathbb{R}^3 , since $(0, 0, 0)$ is not a solution to the system in this case. $\textcircled{2}$

2