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1. Which of the following are bases for R3?

(1) {4, 2, 0}, (1, 4, 1), (5, 6, 1)}
(2) {(-1, 2, 3), (3, 3, 2)} ><

(3) {(-1, 3, -5), (1, - (2,0, 4), (5 1, 9)} X
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2. The dimension of $ = {A € Ma:(R) | trace 4 = 0} is:
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3. Consider a homogeneous system of 6 linear equations in 5 unknowns. Which of the following
is true?
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A. The system always has infinitely many solutions. 6 A’
. The system has only the trivial solution, ' <
é The system has either the trivial solution only or infinitely many sclutions. \/
. The system can have no solution.

E. The system has between 1 and 6 solutions.
F. The system has between 0 and 5 solutions.
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5. The dimension of the subspace of R® spanned by the vectors (1, 0, 3, 1, 1), (1, -1, 7, -1, 0)
(2, 1, 2, 4, 3 and (5, 1, 11, 7, 6) is: |
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6. Which of the following are linearly independent in F(R) = {f | f : R — R}.?

S = {cos z,sinz}
T = {1,cos? z,sin’ £} < { = S‘t}kir-—r Cot! ¥ ¥y e (i
l
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U={1,2cos x,*Bsm z} M - 'j?; 2/054\!,4 Jg_g-,,‘ * 7
V = {2cosz, 3sinz}
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7. Compute
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8. Compute the determinant {1 0 3
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9. Let A be a 4 x 5 matrix such that rank{(A) = 4. If kerA = {x € R® | Az = 0} and

col A = {Ax |z € R}, then &e{q 5 455 ‘g &g_f |
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11. Consider the linear system

z + 3y + =z
-r - 2y + pz
3z + Ty — =z
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1.{21) If [A|b] is the augmented matrix of the system above, find rank A and rank[A|b] for all
values of p and 4.

IS b) Find all p and g so that this system has
i} a unique solution,
ii} infinitely many sclutions, and
iii} no solutions.

. ¢) In case (ii) above, give a complete geometric description of the set of solutions,
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12. Suppose v; = (1,—1,0,1),2 = (1,~1,1,0),v3 = (2,~2,~-1,3), and vy = (~1,1,2,—3) and
let W = span{vy, vy, vs, v4}.

a) Find any basis of W, and so determine dim W.

b} Find & basis of W which is a subset of {vy,vs,v3,v4}.

@ ¢) Extend your basis in (b) (if necessary) to a basis of R%,
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13. Let W={{z,y,2) e R¥ |z —y+2=0}.

@a) Find a basis of W and give the dimension of W.
@b) Find an orthogonal basis of W.

@c) Find the projection of (1,0,0) onto W.
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14. Let A=} 4 1 8
—4 —4 —11

I.( a) Check that —3 and 1 are the eigenvalues of A.

b} Find a basis of By = {x € R® | Az = z}.

{

) ¢) Find a basis of £_3 = {z € R® | Az = —3z}.

( f d) Find an invertible matrix P such that P~'AP = D is diagonal, and give this diagonal matrix
D. Show why your choice of P is invertible.
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15. a) Let A be a real n X n matrix. Give 4 statements equivalent to “rank 4 = n”, in terms of

(I) the columns of A

Ha cwhd) Aae Al ]

(I) the determinant of A :}é o [

(111} the homogeneous system Az =0 /&'0’0 7%{ U/MA? 2 3‘9’&\ Y= ‘
Z

(IV}) the row canonical form of A >, fn



15b) State whether the following are true or false. If true, explain why, if false, give a numerical
example to illustrate. '
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iii) {v1,v,va} linearly independent implies that {v;, v1 +v9, v1 +va +vs} is linearly independent.
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W) If Ais an 11 x 11 matrix, and A* = — A4, then det A = 0.
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