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1. Which two of the following statements are true?

1. The span of two{distinct/vectors 1 and v in R? is a plane through the origin.
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II. The span of a single vector u in R? is a line. N
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2. Which of the following are vector spaces?

(1) {(z,y,2) € R®| 2z — 3y + z = 0}, together with the usual vector operations of R3. v

(2) {(z,y,2) € R¥| xyz = 0}, together with the usual vector operations of R3. X
(3) { [2 g] € Mas | a,b, ¢ € R}, together with the usual vector operations of Ma, /
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3. Whichofzf:{[“’ fy]emmx,yeft} V={[“ x:y]el\/{”iw,yen}and

W{[? ] € Mas | 2, y € R} are subspaces of Ma3?
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D. U only

E. V only
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4. Which two of the following are not subspaces of F(R) = {f | f: R = R}?
S={f € F(R) | f(1) =0 or £(3) =0}
T={feFR)| f(—z) = —f(z),¥z € R} (all odd functions)
U={feF®R)| (1) >0}
V={feFR)|f(1)=0}
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Which one of the following spans the subspace {(z, v, 2) ¢ R® |z —y ~ 2 =0} of R® ?
A.{(1, 0, 0), (0, 0, 1)} : X =
B.{(L 1, 0), (0, 1, )} % (xigig) swhifies Z-4=3=0,
D101 0 .0, 1)

E. {(1, 1 -—1)} Winn  CCYeg)= G5, 453) 90
F. {1, -1, 1), (1, 0, 1)}
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6. Letv=1(0,1,-2) and U = {u € R®| proj, u = 0}

a) Show that if u = (z,y, z) € R?, then proj, u = 9—“—'535(0, 1,-2)

b) Find a cartesian equation for U.

¢} Give a complete geometric description of U. Is U a subspace of .33,3?

d) Find a spanning set for U.
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7. Consider the vector space F(R) = {f | f: R —» R}, with the standard operations. Recall
that the zero of F(R) is the function that has the value 0 for all z € R.

Let W = {f € F(R) | f(z) = f(—=z)for all z € R} be the subset of even functions.
a) Show that W is a subspace of F(R).
b) If f(z) = 1 is constant, g(z) = sin® z and h(z) = sinz, show that f,g € W but h ¢ W.
¢) Explain why U = span{1,sin®z} is a subspace of W, without using the subspace test.
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