1 Solving language equations

Let Σ be an alphabet, and recall that Σ^* is the set of words. A language is a subset of Σ^*, i.e., an element of $\mathcal{P}(\Sigma^*)$.

Theorem 1.1. Let K and M be languages over an alphabet Σ, and consider the equation

$$L = KL \mid M.$$

Then the smallest solution of (1) is the language

$$L' = K^*M.$$

Proof. First, we need to show that $L' = K^*M$ is a solution of (1). Indeed, using the laws of regular expressions, we have

$$L' = K^*M = (KK^* \mid \epsilon)M = KK^*M \mid \epsilon M = KL' \mid M,$$

and therefore L' is a solution. Next, we need to show that, if L is any other solution of (1), then $L' \subseteq L$. To prove this, consider an arbitrary element $w \in L'$. Then, by definition of K^*M, we have $w = k_n \ldots k_1 m$, for some $n \geq 0$, $k_1, \ldots, k_n \in K$, and $m \in M$. We prove that $w \in L$ by induction on n. For $n = 0$, we have $w = m \in M \subseteq KL \mid M = L$. For $n > 0$, we know that $w' = k_{n-1} \ldots k_1 m \in L$ by induction hypothesis. Then $w = k_n w' \in KL \subseteq KL \mid M = L$, as desired. Since w was arbitrary, this shows that $L' \subseteq L$. Since L was an arbitrary solution of (1), this proves that L' is the least solution. \hfill \Box

Remark 1.2. If K and M are languages such that $\epsilon \notin K$, then the equation (1) has a unique solution, which is given by $L' = K^*M$.

Proof. We already know that $L' = K^*M$ is the least solution of (1). Let L' be some other solution, and assume that $L' \neq L$. Since $L' \subseteq L$, this means that there exists some $w \in L - L'$. Let w be such a word of shortest length. We will derive a contradiction.

By assumption, $w \in L = KL \mid M$. It cannot be the case that $w \in M$, or else we would have $w \in L'$. Therefore, we must have $w \in KL$. It follows that $w = kl$, where $k \in K$ and $l \in L$. By assumption, $\epsilon \notin K$, therefore $k \neq \epsilon$. It follows that l is of shorter length than w. Since w was the shortest element of $L - L'$, it follows that $l \in L'$, but then $w = kl \in KL' = KK^*M \subseteq K^*M = L'$, which is the desired contradiction. \hfill \Box

2 Finite state automata

Definition. Let Σ be an alphabet. A (deterministic) finite-state automaton A over Σ is a labelled directed graph whose vertices are called states and whose edges are labelled by elements of Σ, together with

- a distinguished vertex s_0, called the initial state;
- a distinguished set of vertices T, called the accepting states;

such that the following condition holds:

- Determinism: for every vertex s and symbol $a \in \Sigma$, there exists exactly one edge labelled a with source s.

We write S for the set of states. The edges are also called transitions. The *next-state function* $N : S \times \Sigma \rightarrow S$ is defined so that $N(s, a)$ is the unique state s' for which there exists an edge $s \xrightarrow{a} s'$.

Given a finite-state automaton, the *eventual-state function* $N^* : S \times \Sigma^* \rightarrow S$ is defined recursively as:

$$
N^*(s, \epsilon) = s, \\
N^*(s, aw) = N^*(N(s, a), w).
$$
In other words, for a word $w = a_1a_2\ldots a_n \in \Sigma^*$, $N^*(s, w)$ is defined to be the unique state s' such that there exists a sequence of edges

\[s \xrightarrow{a_1} s_1 \xrightarrow{a_2} \ldots \xrightarrow{a_n} s'. \]

The language accepted by A (in the alphabet Σ) is defined as

\[L(A) = \{ w \mid N^*(s_0, w) \in T \}. \]

3 Translation from finite-state automata to regular expressions

Theorem 3.1 (Kleene’s theorem, part 1). Let L be the language accepted by some finite-state automaton A. Then L is defined by some regular expression.

3.1 An example

Converting a finite-state automaton into a regular expression amounts to solving a system of equations. We will illustrate how this works in a few examples. It should then be clear that this can be done in general.

Consider the following finite-state automaton, which accepts all binary strings that do not contain repeated zeros:

![Finite-state automaton diagram]

Let $N^* : S \times \Sigma^* \rightarrow S$ be the eventual-state function. For each state s_i, let L_i be the language accepted by the state s_i, which is defined as:

\[L_i = \{ w \mid N^*(s_i, w) \in T \} \]

Then from the description of the automaton, it is immediately clear that L_0, L_1, and L_2 satisfy the following equations:

\[
\begin{align*}
L_0 &= 0L_1 \mid 1L_0 \mid \epsilon \quad (2) \\
L_1 &= 0L_2 \mid 1L_0 \mid \epsilon \quad (3) \\
L_2 &= 0L_2 \mid 1L_2. \quad (4)
\end{align*}
\]

Note that these equations essentially tabulate the next-state function, and that we have added ϵ to the equation for L_i if and only if s_i is an accepting state.

Note that the equations are of the form of Remark 1.2, and we can solve them explicitly to obtain a regular expression for $L_0 = L(A)$.

We rewrite (4) as

\[L_2 = (0 \mid 1)L_2 \mid \emptyset, \]

and solve it:

\[L_2 = (0 \mid 1)^*\emptyset = \emptyset. \quad (5) \]

Substituting (5) into (3), we obtain

\[L_1 = 0\emptyset \mid 1L_0 \mid \epsilon = 1L_0 \mid \epsilon. \quad (6) \]

Substituting (6) into (2), we obtain

\[L_0 = 0(1L_0 \mid \epsilon) \mid 1L_0 \mid \epsilon, \]

which can be rewritten by the laws of regular expressions as

\[
\begin{align*}
L_0 &= 01L_0 \mid 0\epsilon \mid 1L_0 \mid \epsilon \\
&= 01L_0 \mid 1L_0 \mid 0 \mid \epsilon \\
&= (01 \mid 1)L_0 \mid (0 \mid \epsilon).
\end{align*}
\]

This has solution

\[L_0 = (01 \mid 1)^*(0 \mid \epsilon). \quad (7) \]

And indeed, this is the desired regular expression for the language of binary strings containing no repeated zeros.
3.2 Another example

Consider the automaton

\[\begin{array}{c}
 \text{\textcircled{1}} \\
 \downarrow 1 \\
 \rightarrow s_0 \\
 \downarrow 0 \\
 \rightarrow s_1 \\
 \downarrow 0 \\
 \rightarrow s_2 \\
 \end{array} \]

which is the complement of the automaton of the previous example (i.e., it accepts exactly those binary strings that do contain a repeated zero). The system of equation then becomes

\[\begin{align*}
 L_0 &= 0L_1 | 1L_0 \\
 L_1 &= 0L_2 | 1L_0 \\
 L_2 &= 0L_2 | 1L_2 | \epsilon.
\end{align*} \]

Notice that the only change is that we have added \(\epsilon \) the last equation, instead of the first two. Solving the last equation for \(L_2 \), we get

\[L_2 = (0 | 1)^* | \epsilon = (0 | 1)^* \].\]

Substituting this into the second equation, we get

\[L_1 = 0(0 | 1)^* | 1L_0. \]

Substituting this into the first equation, we get

\[\begin{align*}
 L_0 &= 0(0 | 1)^* | 1L_0 | 1L_0 \\
 &= 00(0 | 1)^* | (01 | 1)1L_0,
\end{align*} \]

which we solve as

\[L_0 = (01 | 1)^*00(0 | 1)^*. \]

4 Non-deterministic finite state automata

A non-deterministic finite state automaton is defined similarly to a deterministic one, with the following exceptions:

- Edges are labelled by elements of \(\Sigma \cup \{ \epsilon \} \), where \(\epsilon \) is a special symbol not contained in the alphabet \(\Sigma \). An edge that is labelled by \(\epsilon \) is called an \(\epsilon \)-transition or an \(\epsilon \)-edge.

- We drop the condition of determinism. Therefore, there could be more than one edge labelled \(a \) from a given state, or none.

- We allow a set of initial states, instead of just one.

More formally:

Definition. Let \(\Sigma \) be an alphabet and let \(\epsilon \) be a symbol that is different from all elements of \(\Sigma \). A non-deterministic finite-state automaton \(A \) over \(\Sigma \) is a labelled directed graph whose vertices are called states and whose edges are labelled by elements of \(\Sigma \cup \{ \epsilon \} \), together with

- a distinguished set of vertices \(I \), called the initial states;

- a distinguished set of vertices \(T \), called the accepting states.

As before, we write \(S \) for the set of states. We write \(s \overset{a}{\rightarrow} s' \) if there exists an \(a \)-labelled edge from \(s \) to \(s' \). We write \(s \Rightarrow s' \) if \(s' \) can be reached from \(s \) by following zero or more \(\epsilon \)-edges.

For a word \(w = a_1a_2\ldots a_n \in \Sigma^* \), we write \(s \overset{w}{\Rightarrow} s' \) if there exists a sequence of edges

\[s \Rightarrow a_1 \Rightarrow a_2 \Rightarrow \ldots \Rightarrow a_n \Rightarrow s'. \]

We write \(N^*(s, w) = \{ s' \mid s \overset{w}{\Rightarrow} s' \} \). Note that this is a set of states, so the eventual-state function of a non-deterministic automaton is a function \(N^* : S \times \Sigma^* \rightarrow \mathcal{P}S \).

A word \(w \in \Sigma^* \) is accepted by \(A \) if there exists some initial state \(s \in I \) and some accepting state \(s' \in T \) such that \(s \overset{w}{\Rightarrow} s' \). We define \(L(A) \), the language accepted by \(A \), to be the set of all \(w \in \Sigma^* \) accepted by \(A \).
Translation from non-deterministic finite-state automata to deterministic finite-state automata

If X is a set of states of a non-deterministic finite state automaton, we write $X = \{s' \mid \exists s \in X. s \Rightarrow s'\}$. In other words, X is the set of all states reachable from X by zero or more ϵ-transitions. We say that X is ϵ-closed if $X = \bar{X}$.

Definition. Suppose we are given a non-deterministic finite state automaton A with state set S, initial states I, and accepting states T. We define a deterministic finite state automaton $\text{det}(A)$ as follows:

- The states of $\text{det}(A)$ are the ϵ-closed sets of states of A.
- The initial state of $\text{det}(A)$ is \bar{I}.
- A state X is accepting if and only if $X \cap T \neq \emptyset$.
- For any $a \in \Sigma$, and any state X is $\text{det}(A)$, there is an edge $X \xrightarrow{a} X'$ if and only if $X' = N^*(X, a)$. This means that X' is the set of all states of A that can be reached from a state in X by means of a single a-transition and zero or more ϵ-transitions.

Proposition 5.1. The automata A and $\text{det}(A)$ accept the same language. Moreover, $\text{det}(A)$ is a deterministic finite state automaton.

Corollary 5.2. A language is accepted by some non-deterministic finite state automaton if and only if it is accepted by some deterministic finite state automaton.

Proof. If L is accepted by some non-deterministic finite state automaton A, then it is also accepted by the deterministic finite state automaton $\text{det}(A)$ by Proposition 5.1. Conversely, every deterministic finite state automaton can be regarded as a non-deterministic finite state automaton, which happens to have a single initial state and no ϵ-transitions. \hfill \square

5.1 An example

In theory, if A is a non-deterministic finite state automaton with n states, then $\text{det}(A)$ has up to 2^n states. However, in practice, it suffices to enumerate the states of $\text{det}(A)$ that can actually be reached from the initial state, and these are often much fewer than 2^n.

Consider the following non-deterministic finite state automaton A, which accepts the language $(ab|aba)^*$.

We can represent this automaton by its state transition table. At first, let's ignore the ϵ-transitions:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>t, w</td>
<td>∅</td>
</tr>
<tr>
<td>t</td>
<td>∅</td>
<td>u</td>
</tr>
<tr>
<td>u</td>
<td>v</td>
<td>∅</td>
</tr>
<tr>
<td>v</td>
<td>∅</td>
<td>∅</td>
</tr>
<tr>
<td>w</td>
<td>∅</td>
<td>x</td>
</tr>
<tr>
<td>x</td>
<td>∅</td>
<td>∅</td>
</tr>
</tbody>
</table>

Next, we ϵ-close each entry in the table. For example, any state that can reach v can also reach s.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>t, w</td>
<td>∅</td>
</tr>
<tr>
<td>t</td>
<td>∅</td>
<td>u</td>
</tr>
<tr>
<td>u</td>
<td>v, s</td>
<td>∅</td>
</tr>
<tr>
<td>v</td>
<td>∅</td>
<td>∅</td>
</tr>
<tr>
<td>w</td>
<td>∅</td>
<td>x, s</td>
</tr>
<tr>
<td>x</td>
<td>∅</td>
<td>∅</td>
</tr>
</tbody>
</table>
Now the states of \(\det(A) \) are \(\epsilon \)-closed sets of states of \(A \), and the transitions of \(\det(A) \) are calculated as unions of rows of the transition table of \(A \). We start from the initial state \(s \), and enumerate only states that occur in the columns for \(a \) or \(b \) in a previous row.

<table>
<thead>
<tr>
<th>(s)</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s)</td>
<td>(t, w)</td>
<td>(\emptyset) accepting, initial</td>
</tr>
<tr>
<td>(t, w)</td>
<td>(\emptyset)</td>
<td>(u, x, s)</td>
</tr>
<tr>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(u, x, s)</td>
<td>(v, s, t, w)</td>
<td>(\emptyset) accepting</td>
</tr>
<tr>
<td>(v, s, t, w)</td>
<td>(t, w)</td>
<td>(u, x, s) accepting</td>
</tr>
</tbody>
</table>

The process ends after 5 states (of the \(2^6 = 64 \) possible) have been enumerated. Renaming these states \(\{ s \} = s_0, \{ t, w \} = s_1, \emptyset = s_2, \{ u, x, s \} = s_3, \{ v, s, t, w \} = s_4 \), we can rewrite the transition table of the deterministic FSA as follows:

<table>
<thead>
<tr>
<th>(s)</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_0)</td>
<td>(s_1)</td>
<td>(s_2) accepting, initial</td>
</tr>
<tr>
<td>(s_1)</td>
<td>(s_2)</td>
<td>(s_3)</td>
</tr>
<tr>
<td>(s_2)</td>
<td>(s_2)</td>
<td>(s_2) accepting</td>
</tr>
<tr>
<td>(s_3)</td>
<td>(s_4)</td>
<td>(s_2) accepting</td>
</tr>
<tr>
<td>(s_4)</td>
<td>(s_1)</td>
<td>(s_3) accepting</td>
</tr>
</tbody>
</table>

Here is a picture of the reachable states of \(\det(A) \):

6 Translation from regular expressions to non-deterministic finite-state automata

We will translate each regular expression as a non-deterministic automaton. The base-case regular expressions \(\emptyset, \epsilon, \) and \(a \) are easy to express as non-deterministic finite state automata. The are, respectively:

\[
\begin{array}{c}
\rightarrow s_0 \\
\rightarrow s_0 \\
\rightarrow s_0 \xrightarrow{a} s_1
\end{array}
\]

Given non-deterministic finite state automata \(A \) and \(B \), we will define automata \(A|B, AB, \) and \(A^* \), such that

\[
L(A|B) = L(A) \cup L(B), \quad L(AB) = L(A)L(B), \quad L(A^*) = L(A)^*.
\]

Definition (Union). The automaton \(A|B \) is defined as the disjoint union of \(A \) and \(B \), with their original transitions, initial states, and accepting states. In pictures:

\[
\begin{array}{c}
\xrightarrow{A} \\
\xrightarrow{B}
\end{array}
\]

Definition (Concatenation). The automaton \(AB \) is defined as follows: take the disjoint union \(A \) and \(B \), with their original transitions. Keep the initial states of \(A \) initial, and keep the accepting states of \(B \) accepting. Add an \(\epsilon \)-transition from each old accepting state of \(A \) to each old initial state of \(B \). In pictures:

\[
\begin{array}{c}
\xrightarrow{A} \\
\xrightarrow{B}
\end{array}
\]

Definition (Iteration). The automaton \(A^* \) is defined as follows: take the same states, initial states, accepting states, and transitions as \(A \), but add
an ϵ-transition from each accepting state to each initial state, and make all initial states accepting. In pictures:

![Diagram showing an ϵ-transition from each accepting state to each initial state]

Lemma 6.1. The following hold:

$L(A|B) = L(A) \cup L(B)$, $L(AB) = L(A)L(B)$, $L(A^*) = L(A)^*$.

7 Kleene’s theorem, part 2

Theorem 7.1 (Kleene’s theorem, part 2). Let L be the language defined by some regular expression. Then L is accepted by some deterministic finite state automaton.

Proof. First, by induction on the size of the regular expression, and using the constructions of Section 6, we can construct a non-deterministic finite state automaton A that accepts the language L. Second, by Proposition 5.1, $\text{det}(A)$ is a deterministic finite state automaton that accepts L. \hfill \square

Remark. The number of states of the non-deterministic automaton A is proportional to the size of the regular expression. The number of states of the deterministic automaton $\text{det}(A)$ is exponentially larger in the worst case. However, in practice, the size of the deterministic automaton can be reduced in two ways: first, by removing non-reachable states (as discussed in Section 5.1), and second, by identifying $*$-equivalent states (as discussed in Chapter 12.3 of the textbook).