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1 Algebra vs. abstract algebra

Operations such as addition and multiplication can be considered at several dif-

ferent levels:

• Arithmetic deals with specific calculation rules, such as 8 + 3 = 11. It is

usually taught in elementary school.

• Algebra deals with the idea that operations satisfy laws, such as a(b+c) =
ab + ac. Such laws can be used, among other things, to solve equations

such as 3x+ 5 = 14.

• Abstract algebra is the idea that we can use the laws of algebra, such as

a(b + c) = ab + ac, while abandoning the rules of arithmetic, such as

8 + 3 = 11. Thus, in abstract algebra, we are able to speak of entirely

different “number” systems, for example, systems in which 1 + 1 = 0.

The entities of abstract algebra need not be “numbers” in the usual sense. They

can be made-up things, such as {A,B,C,D,E}, together with made-up calcu-

lation rules, such as C + E = B and D · C = A. We could say that abstract

algebra is the study of “alternative arithmetics”. What is important, however, is

that the made-up rules must satisfy the correct laws of algebra.

Example 1.1. Consider the set of bits (binary digits) {0, 1}. We can multiply

them as usual, and add them as usual, subject to the alternative rule 1 + 1 =
0 (instead of 1 + 1 = 2). Here is a summary of the rules for addition and

multiplication:

+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

This particular alternative arithmetic is called “arithmetic modulo 2”. In com-

puter science, the addition is also called the “logical exclusive or” operation,
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and multiplication is also called the “logical and” operation. For example, we

can calculate like this:

1 · ((1 + 0) + 1) + 1 = 1 · (1 + 1) + 1
= 1 · 0 + 1
= 0 + 1
= 1.

2 Abstract number systems in linear algebra

As you already know, Linear Algebra deals with subjects such as matrix multi-

plication, linear combinations, solutions of systems of linear equations, and so

on. It makes heavy use of addition, subtraction, multiplication, and division of

scalars (think, for example, of the rule for multiplying matrices).

It turns out that most of what we do in linear algebra does not rely on the spe-

cific laws of arithmetic. Linear algebra works equally well over “alternative”

arithmetics.

Example 2.1. Consider multiplying two matrices, using arithmetic modulo 2

instead of the usual arithmetic.




0 1 1
1 1 0
0 0 1



 ·





1 0 0
0 1 1
1 0 1



 =





1 1 0
1 1 1
1 0 1





For example, to calculate the entry in the first row and column, we compute

0 · 1 + 1 · 0 + 1 · 1 = 1.

There are important applications of linear algebra over such abstract number

systems, particularly in the area of cryptography. This is the reason we introduce

the concept of a field.

3 The field axioms

Definition. A field is a set F , together with two binary operations + : F ×F →
F and · : F × F → F , called addition and multiplication, respectively, and

satisfying the following nine axioms:
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(A1) for all a, b, c ∈ F , we have (a+ b) + c = a+ (b+ c);

(A2) there exists an element in F , usually denoted by 0, such that

for all a ∈ F :

0 + a = a;

(A3) for each a ∈ F , there exists an element b ∈ F such that

a+ b = 0;

(A4) for all a, b ∈ F , we have a+ b = b+ a;

(FM1) for all a, b, c ∈ F , (ab)c = a(bc);

(FM2) there exists an element in F , usually denoted by 1, such that

1 6= 0 and for all a ∈ F :

1a = a;

(FM3) for each a ∈ F with a 6= 0, there exists an element b ∈ F

such that

ab = 1;

(FM4) for all a, b ∈ F , we have ab = ba;

(D) for all a, b, c ∈ F , we have a(b+ c) = ab+ ac.

Notes. Axioms (A1)–(A4) are about addition, and axioms (FM1)–(FM4) are

about multiplication. The final axiom (D) is called the distributive law and it

relates addition and multiplication to each other. The element 0 in axiom (A2) is

called the additive unit or the zero element; the element b in axiom (A3) is called

the negative of a and is usually denoted (−a); the element 1 in (FM2) is called

the multiplicative unit; and the element b in (FM3) is called the multiplicative

inverse of a, and is usually denoted a−1.

4 Examples

Example 4.1. (a) The set R of real numbers, with the usual addition and

multiplication, is a field.

(b) The set C of complex numbers, with the usual addition and multiplication,

is a field.

3

(c) The set Q of rational numbers, with the usual addition and multiplication,

is a field.

(d) The set Z of integers, with the usual addition and multiplication, satisfies

all field axioms except (FM3). It is therefore not a field.

(e) The set N = {0, 1, 2, . . .} of natural numbers, with the usual addition

and multiplication, satisfies all field axioms except (A3) and (FM3). It is

therefore not a field.

This means we can do linear algebra taking the real numbers, the complex num-

bers, or the rational numbers as the scalars.

Example 4.2. Consider the set Z2 = {0, 1} from Example 1.1, with the addition

and multiplication given by the rules of arithmetic “modulo 2”:

+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

With these operations, Z2 is a field.

This means we can do linear algebra over Z2.

Problem 1. What is subtraction in Z2?

Problem 2. Multiply the following matrices, taking scalars in Z2.




0 1 1
1 1 0
0 0 1



 ·





0 1 0
1 0 0
1 1 1





Compare your answer to what you get when doing the calculation with rational

scalars.

Problem 3. Find the inverse of the matrix

M =





0 1 1
1 1 0
0 0 1





using Z2 as the set of scalars. Hint: follow the usual steps of Gaussian elimina-

tion, but use the modulo 2 operations. Compare this to the inverse of M when

interpreted over the rational numbers.

4



Problem 4. Consider the set {0, 1} with the following different addition and

multiplication rules:

+ 0 1

0 0 1
1 1 1

· 0 1

0 0 0
1 0 1

Note that we have set 1+1 = 1. Which of the nine axioms are satisfied? Which

of the nine axioms fail, if any? Is this a field?

Example 4.3. The integers modulo 5 are the set Z5 = {0, 1, 2, 3, 4}, with the

following addition and multiplication rules:

+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

+ 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

This is called “arithmetic modulo 5”, because the numbers are wrapped after 4:

5 is treated the same as 0, 6 is treated the same as 1, 7 is treated the same as 2,

and so on. With these operations, Z5 is a field.

Example 4.4. The integers modulo 6 are the set Z6 = {0, 1, 2, 3, 4, 5}, with the

addition and multiplication modulo 6:

+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

+ 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

Then Z6 satisfies all of the field axioms except (FM3). To see why (FM3) fails,

let a = 2, and note that there is no b ∈ Z6 such that ab = 1. Therefore, Z6 is

not a field.

Example 4.5. More generally, for any natural number n > 2, the integers mod-

ulo n are given by Zn = {0, 1, . . . , n − 1}, with addition and multiplication
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“modulo n”. For all n, Zn satisfies the axioms (A1)–(A4), (FM1), (FM2),

(FM4), and (D). However, the axiom (FM3) is only satisfied when n is a prime

number. It is a fact that Zn is a field if and only if n is prime.

Problem 5. Solve the following system of linear equations with scalars in Z5:

2x + z = 1
x + 4y + z = 3
x + 2y + 3z = 2

5 Elementary properties of fields

Our goal is to make arithmetic in a field look “as much as possible” as arithmetic

in the real numbers. For this reason, it will be useful to state some additional

algebraic laws, which are consequences of the field axioms.

Proposition 5.1 (Cancellation of addition). For all elements x, y, a of a field, if

x+ a = y + a, then x = y.

Proof. Assume x+ a = y + a. By axiom (A3), there exists an element b such

that a+ b = 0. But then we have:

x = 0 + x by (A2)

= x+ 0 by (A4)

= x+ (a+ b) by assumption on b

= (x+ a) + b by (A1)

= (y + a) + b by assumption

= y + (a+ b) by (A1)

= y + 0 by assumption on b

= 0 + y by (A1)

= y by (A2)

Note how all four axioms of addition have been used. �

Proposition 5.2 (Cancellation of multiplication). For all elements x, y, a of a

field, if xa = ya and a 6= 0, then x = y.

Problem 6. Prove Prop. 5.2.
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Proposition 5.3. For all elements a of field, 0a = 0.

Proof. Using distributivity and (A2), we have 0 + 0a = 0a = (0 + 0)a =
0a+ 0a, therefore the claim follows by cancellation. �

Proposition 5.4. In any field, if ab = 0, then a = 0 or b = 0.

Proof. Suppose a and b are elements in a field such that ab = 0. We must show

that a = 0 or b = 0. We consider two cases:

Case 1: a = 0. Then the conclusion holds and we are done.

Case 2: a 6= 0. In this case, by (FM3), there exists an element c such that

ac = 1. We have:

b = 1b by (FM2)

= (ac)b by definition of c

= (ca)b by (FM4)

= c(ab) by (FM1)

= c0 by assumption ab = 0
= 0 by Prop. 5.3

In each of the two cases, we have proved a = 0 or b = 0. �

The following four propositions show that certain elements, whose existence is

guaranteed by the field axioms, are in fact unique.

Proposition 5.5. In a field, the element 0 is uniquely determined by axiom (A2).

Proof. Suppose that z is another element also satisfying z + a = a for all a.

Then z+0 = 0, by definition of z, but also 0+ z = z, by definition of 0. Using

commutativity, it follows that z = 0 + z = z + 0 = 0, so there cannot be more

than one zero element. �

Proposition 5.6. For any element a of a field, the element b in axiom (A3) is

uniquely determined.

Proof. Let a be arbitrary, and suppose that there are two elements b and b′ such

that both a + b = 0 and a + b′ = 0. By commutativity, b + a = 0 = b′ + a,

and by cancellation, b = b′. It follows that there is no more than one element b

satisfying the condition of axiom (A3).
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Remark. If a, b are elements such that a+ b = 0, we usually write b = (−a).
This notation is justified by Prop. 5.6.

Proposition 5.7. In a field, the element 1 is uniquely determined by axiom

(FM2).

Problem 7. Prove Prop. 5.7.

Proposition 5.8. For any element a 6= 0 of a field, the element b in axiom (FM3)

is uniquely determined.

Problem 8. Prove Prop. 5.8.

The next two propositions are also useful.

Proposition 5.9. Distributivity also holds on the right: (b+ c)a = ba+ ca.

Proof. This is a direct consequence of (D) and (FM4). �

Proposition 5.10. The following hold in any field, for all a, b:

(a) −(−a) = a,

(b) −(ab) = (−a)b = a(−b),

(c) −a = (−1)a.

Proof. (a) By definition of (−a), we have a+ (−a) = 0. Also, by definition of

−(−a) (and commutativity), we have (−(−a))+ (−a) = 0. By cancellation, it

follows that a = −(−a).

(b) To show that −(ab) = (−a)b, we need to show that (−a)b is the negative

of ab, in other words, that ab + (−a)b = 0. This follows from the axioms as

follows:
ab+ (−a)b = (a+ (−a))b by distributivity

= 0b by (A3)

= 0 by Prop. 5.3

The proof of −(ab) = a(−b) is similar.

(c) By (FM2) and (b), we have −a = −(1a) = (−1)a. �
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