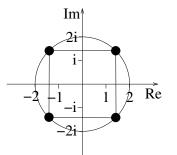
MAT 3321, COMPLEX ANALYSIS AND INTEGRAL TRANSFORMS, WINTER 2005

Answers to Homework 2 12.2 #24,28; 12.5 #6,10; 12.6 #18

Problem 12.2 #24 To calculate $\sqrt[4]{-4}$, we first express z = -4 in polar coordinates. We have r = |z| = 4 and $\theta = \operatorname{Arg} z = \pi$, hence $z = re^{i\theta} = 4e^{i\pi}$.

The 4th roots will be of the form $w = Re^{i\varphi}$, where $R = \sqrt[4]{r} = \sqrt{2}$ and $\varphi = \pi/4 + 2\pi k/4$, where k is any integer. Thus, we have:

 $\begin{array}{ll} \mbox{For } k = 0 \mbox{:} & w = \sqrt{2}e^{\pi/4} = 1 + i \\ \mbox{For } k = 1 \mbox{:} & w = \sqrt{2}e^{3\pi/4} = -1 + i \\ \mbox{For } k = 2 \mbox{:} & w = \sqrt{2}e^{5\pi/4} = -1 - i \\ \mbox{For } k = 3 \mbox{:} & w = \sqrt{2}e^{7\pi/4} = 1 - i \end{array}$



These are the four 4th roots of z.

Problem 12.2 #28 Recall that a quadratic equation $az^2 + bz + c = 0$ is solved by the quadratic formula:

$$z_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The same holds true when a, b, c and z are complex numbers. Thus, to solve $z^2 - (5+i)z + 8 + i = 0$, we have a = 1, b = -5 - i, and c = 8 + i, hence

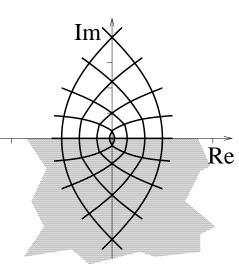
$$\begin{array}{rcl} z_{1/2} & = & \frac{5+i\pm\sqrt{(-5-i)^2-4(8+i)}}{2} \\ & = & \frac{5+i\pm\sqrt{25+10i-1-32-4i}}{2} \\ & = & \frac{5+i\pm\sqrt{-8+6i}}{2}. \end{array}$$

By using the same method as in Problem #24, we find that the two square roots of -8 + 6i are $\pm(1 + 3i)$, and therefore the two answers are:

$$z_1 = \frac{5+i+(1+3i)}{2} = 3+2i$$

$$z_2 = \frac{5+i-(1+3i)}{2} = 2-i$$

Problem 12.5 #6 The region R in the z-plane is given by x > 0, y < 0. This is the open 4th – quadrant of the plane. In polar coordinates, it corresponds to r > 0, $-\frac{\pi}{2} < \theta < 0$, where $z = re^{i\theta} = x + iy$. Under the function w = z^2 , we get $w = Re^{i\varphi} = r^2e^{2i\theta}$, where R = $r^2 > 0$ and $-\pi < \varphi = 2\theta < 0$. Thus, the angles are doubled. The image of the region R under $f(z) = z^2$ is therefore the open 3rd and 4th quadrant, in other words, y < 0.



i Im

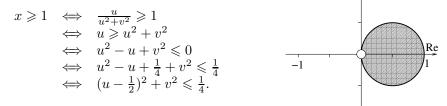
Problem 12.5 #10 The constraint is $x \ge 1$, and we have w = 1/z, where z = x + iy and w = u + iv. We want to express the constraint $x \ge 1$ in terms of u and v. We have:

$$x + iy = z = \frac{1}{w} = \frac{1}{u + iv} = \frac{u - iv}{u^2 + v^2} = \frac{u}{u^2 + v^2} + i\frac{-v}{u^2 + v^2},$$

therefore

$$x = \frac{u}{u^2 + v^2} \text{ and } y = \frac{-v}{u^2 + v^2}$$

We therefore have (assuming that $u^2 + v^2 \neq 0$):



This is the equation of a closed disc of radius $\frac{1}{2}$ centered at $(u, v) = (\frac{1}{2}, 0)$. From the closed disc, we further have to remove the point (0, 0), since x is undefined when (u, v) = (0, 0).

Problem 12.6 #18 We are given $w = e^z$, where $\pi < y \leq 3\pi$ and z = x + iy. We are supposed to sketch the image of this region in the *w*-plane. Writing $w = Re^{i\varphi}$

in polar coordinates, we have $w = e^z = e^{x+iy} = e^x e^{iy}$, hence $R = e^x$ and $\varphi = y$. Since the is no constraint on x, R can be any value with R > 0. Further, the argument $\theta = y$ is between π and 3π , which is a full turn. The image is therefore the entire w-plane, minus the origin.