
MAT 3343, APPLIED ALGEBRA, FALL 2003

Answers to Problem Set 3 (due Oct. 10)

Problem 1 Suppose we want to encrypt “Applied Algebra”, or 0116; 1612;
0905; 0400; 0112; 0705; 0218; 0100. Each message M is encoded as C =
M e(mod 65). Exponentiation modulo 65 is easy to calculate by the method of
repeated squaring, e.g. for M = 116, we have

M = 116
M2 = 1162 = 13456 = 1817 (mod 11639)
M4 = 134562 = 3301489 = 7652 (mod 11639)
M8 = 33014892 = 58553104 = 8934 (mod 11639)
M16 = 585531042 = 79816356 = 7733 (mod 11639)
M32 = 798163562 = 59799289 = 9746 (mod 11639)
M64 = 597992892 = 94984516 = 10276 (mod 11639)
M65 = 10276 · 116 = 1192016 = 4838 (mod 11639)

This method requires only about 8 digits of accuracy and can be done on a normal
calculator. Of course, you could also calculate the exponentiation in a single step,
and then reduce modulo 11639:

11665 = 154799409523344334074993461813540527506892338871507199
315763363264668645961962753402002709347078669374262285
069522260484535042730622976

= 4838(mod11639)

However, this is more than most calculators can handle, and it is not very efficient
computationally either.

The complete encryption of the above message is 4838; 5646; 6555; 8036; 2485;
10062; 6384; 11391.

Problem 2 We are given x ∈ ZN such that x2 = x, thus x2 − x = 0, thus
x(x − 1) = 0 in ZN . This means that N |x(x − 1). On the other hand, x 6= 0, 1,
so N6 |x and N6 |(x − 1). Now consider a = gcd(N, x). Then a|N and a|x by
definition of gcd. But we cannot have a = 1, or else N and x are relatively prime,
and N |(x− 1) by Theorem 5(2), p.41. Also, we cannot have a = N , or else N |x.
It follows that a is a non-trivial factor of N (and thus a prime factor, since N = pq
is a product of two primes).
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Problem 3 The generalized Chinese Remainder Theorem: Let n1, . . . , nk be
integers such that gcd(ni, nj) = 1 for all i 6= j, and let n = n1n2 · · ·nk. Given
integers a1, . . . , ak, there exists a unique a ∈ Zn such that a ≡ ai(mod ni) for
all i = 1, . . . , k.

Proof. Existence: By induction on k. If k = 1, there is nothing to show, and
if k = 2, this is just the ordinary Chinese Remainder Theorem. For k > 2, let
n′ = n1n2 · · ·nk−1. By induction hypothesis, we can find a ′ ∈ Zn′ such that
a′ ≡ ai(mod ni) for all i = 1, . . . , k − 1. Now observe that gcd(n ′, nk) = 1,
and use the ordinary Chinese Remainder Theorem to find a ∈ Zn such that a ≡
a′(mod n′) and a ≡ ak(mod nk). Then a ≡ ai(mod ni) for all i = 1, . . . , k as
required.

Uniqueness: Suppose a, a′ ∈ Zn such that a ≡ ai(mod ni) and a′ ≡ ai(mod ni)
for all i = 1, . . . , k. Then a ≡ a′(mod ni) for all i, hence ni|(a − a′) for all i,
hence n1n2 · · ·nk|(a − a′) (because all the ni are relatively prime to each other,
by repeated application of Theorem 5(1), p.41). Therefore a ≡ a ′(mod n), so
a = a′ in Zn. �

Problem 4 (a) From the Chinese Remainder Theorem, we know that we can find
elements a1, . . . , a8 ∈ ZN such that

a1 ≡ +1(mod p) a1 ≡ +1(mod q) a1 ≡ +1(mod r)
a2 ≡ +1(mod p) a2 ≡ +1(mod q) a2 ≡ −1(mod r)
a3 ≡ +1(mod p) a3 ≡ −1(mod q) a3 ≡ +1(mod r)
a4 ≡ +1(mod p) a4 ≡ −1(mod q) a4 ≡ −1(mod r)
a5 ≡ −1(mod p) a5 ≡ +1(mod q) a5 ≡ +1(mod r)
a6 ≡ −1(mod p) a6 ≡ +1(mod q) a6 ≡ −1(mod r)
a7 ≡ −1(mod p) a7 ≡ −1(mod q) a7 ≡ +1(mod r)
a8 ≡ −1(mod p) a8 ≡ −1(mod q) a8 ≡ −1(mod r)

Clearly, each such element satisfies a2

i ≡ 1 modulo p, q, r, and thus modulo N ;
thus, each ai is a square root of unity. On the other hand, any square root of unity
b in ZN must also be a square root of unity in Zp, Zq , and Zr, and must therefore
satisfy b ≡ ±1 modulo p, q, r, and must thus be one of the a i. Finally, all the ai

are different, since +1 6= −1 modulo an odd prime. Therefore, there are precisely
8 square roots of unity.

(b) The Chinese Remainder Theorem, along with the equations in part (a), allows
us to compute a1, . . . , a8 efficiently.
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(c) To compute this efficiently, we first compute the solutions x, y, z to the follow-
ing equations:

x ≡ 1(mod7) x ≡ 0(mod 11) x ≡ 0(mod13)
y ≡ 0(mod7) y ≡ 1(mod 11) y ≡ 0(mod13)
z ≡ 0(mod7) z ≡ 0(mod 11) z ≡ 1(mod13)

This can be done by Euclid’s algorithm, and we find x = −286, y = 364, and
z = −77. Then a1, . . . , a8 can be rapidly computed in this basis:

a1 = x + y + z = 1
a2 = x + y − z = 155
a3 = x − y + z = −727
a4 = x − y − z = −573
a5 = −x + y + z = 573
a6 = −x + y − z = 727
a7 = −x − y + z = −155
a8 = −x − y − z = −1

(d) Let x be a square root of unity in ZN with x 6= ±1. Then x2 = 1 in ZN ,
thus N |(x − 1)(x + 1). Let a = gcd(x + 1, N). Then a|N . We cannot have
a = 1, or else x + 1 and N are relatively prime, thus N |(x − 1), contradicting
x 6= 1(modN). On the other hand, we cannot have a = N , or else N |(x + 1),
contradicting x 6= −1(modN). Thus, a is a non-trivial factor of N . Since N =
pqr is the product of three primes, either a or N/a is prime, thus we have found
one of the prime factors of N . We cannot do any better with the given information.

Problem 5 (a) This problem is most fun (and most realistic) if we actually pick
random numbers b ∈ {1, . . . , 118} to do the test.

Random number: Test: Result:
b = 74 b118 = 25(mod119) fail

The test has already failed on our first random choice of b. Therefore, 119 is not
prime. In order not to spoil our fun, we continue testing some more numbers:

Random number: Test: Result:
b = 77 b118 = 21(mod 119) fail
b = 109 b118 = 60(mod 119) fail
b = 102 b118 = 102(mod119) fail
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As we can see, the probability of failing the test seems to be very much in our
favor; indeed we did not find any b which passed the test.

(b) Again, we pick our candidates b ∈ {1, . . . , 560} at random. Note that 560 =
24 · 35. All calculations are modulo 560.

b (random) b35 b70 b140 b280 b560 Result:
344 353 67 1 1 1 fail
297 495 429 33 528 528 fail
300 243 144 540 441 375 fail
224 452 100 463 67 1 fail
468 219 276 441 375 375 fail
545 494 1 1 1 1 fail

Again, the test failed with the first random number we picked; we could have
stopped right there. (We continued just for the fun of it). Again, the odds seemed
to be heavily stacked in our favor, as we could not in fact find any b which passed
the test in the first 6 trials.

Note that 3 of our 6 random number would have passed the Fermat pseudoprime
test.
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