MAT 3343, APPLIED ALGEBRA, FALL 2003

Handout 1: What is a proof?

This handout summarizes some basic techniques used in "everyday" proofs. We use the usual logical notations $P \land Q$ for "P and Q", $P \lor Q$ for "P or Q", $P \Rightarrow Q$ for "P implies Q", $\neg P$ for "not P", $\forall x \in A.P(x)$ for "for all $x \in A, P(x)$ ", $\exists x \in A.P(x)$ for "there exists an $x \in A$ such that P(x)",

There are certain patterns that occur over and over in mathematical proofs; for instance, to prove a statement of the form $\forall x \in A.P(x)$, we have to take an arbitrary $x \in A$ and then prove P(x). To prove $P \Rightarrow Q$, we assume P and then prove Q. The following table summarizes some phrases and formulations that are commonly used in proofs. The parts in [*brackets*] must be filled in.

To prove:	you might write the following:
$P \Rightarrow Q$	Assume P . [Prove Q]. Since we assumed P ,
	this proves $P \Rightarrow Q$.
Or:	Assume $\neg Q$. [<i>Prove</i> $\neg P$]. We have proved
	$\neg Q \Rightarrow \neg P$, which, by taking the contraposi-
	tive, implies $P \Rightarrow Q$.
$P \wedge Q$	First we prove P . [Prove P]. Then we prove
	Q. [Prove Q].
$\forall x \in A.P(x)$	Take an arbitrary $x \in A$. [Prove $P(x)$]. Since
	x was arbitrary, this proves $\forall x \in A.P(x)$.
$\neg P$	Assume P. [Derive a contradiction]. The as-
	sumption P led to a contradiction, therefore we
	have shown $\neg P$.
$\exists x \in A.P(x)$	[Construct an object a]. [Prove $P(a)$].
$P \lor Q$	[<i>Prove</i> P]. This implies $P \lor Q$.
Or:	[<i>Prove</i> Q]. This implies $P \lor Q$.
Or:	By contradiction: Assume neither P nor Q
	holds. [Derive a contradiction]. Therefore, ei-
	ther P or Q must be true.
Or:	If P holds, we are done. So assume $\neg P$. [Prove
	Q]. Therefore $P \lor Q$.

To prove:	you might write the following:
P (by contradiction)	Assume $\neg P$. [Derive a contradiction]. The as-
	sumption $\neg P$ led to a contradiction, thus we
	have proved P.
P (by case distinction)	(Here, Q is some statement). We distinguish
	two cases. Case 1: Q holds. [Prove P]. Case
	2: $\neg Q$ holds. [<i>Prove</i> P]. In either case, we
	have proved P.
(to divide a long proof)	We will first show P . [Show P]. We have
	shown P. (etc.)

Another question is how you can *use* assumptions, hypotheses, axioms, and previously proved statements.

The statement:	can be used as follows:
$P \Rightarrow Q$	If you know P , you may conclude Q .
$P \wedge Q$	You may use P . You many also use Q .
$\forall x \in A.P(x)$	If you know $x \in A$, you may conclude $P(x)$.
$\neg P \land P$	This is a contradiction. Use it to conclude that
	the most recent assumption was false.
$\exists x \in A.P(x)$	You may conclude $P(b)$, for some <i>unknown</i> el-
	ement $b \in A$. (You cannot choose b).
$P \lor Q$	You can use this in a case distinction. Suppose
	you are in the process of proving some state-
	ment C . Case 1: Assume P . [Prove C]. Case
	2: Assume Q . [<i>Prove</i> C]. Then you know C is
	true.
a = b	If you know $P(a)$, you may conclude $P(b)$.

Here are a few more useful patterns, some from set theory.

To prove:	you have to show:
$P \Leftrightarrow Q$	$P \Rightarrow Q \text{ and } Q \Rightarrow P.$
$A \subseteq B$	For all $x \in A$, we must show that $x \in B$.
A = B (for sets)	$A \subseteq B$ and $B \subseteq A$.
$x\in A\cap B$	$x \in A \text{ and } x \in B.$
$x\in A\cup B$	$x \in A \text{ or } x \in B.$

(continued on the next page)