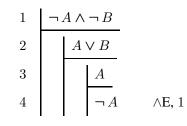
MAT 3361, INTRODUCTION TO MATHEMATICAL LOGIC, Fall 2004

Answers to Problem Set 1: Handout 1, Problems 1-4, 10, 20, 30, 50

Peter Selinger

Problem 1 (a) $\neg (A \land B) \vdash \neg A \lor \neg B$

(b) $\neg A \land \neg B \vdash \neg (A \lor B)$



Problem 2 (a) The definition of rank is:

$$\begin{aligned} r(p_i) &= 0\\ r(\bot) &= 0\\ r((\varphi \Box \psi)) &= 1 + \max\{r(\varphi), r(\psi)\}\\ r((\neg \varphi)) &= 1 + r(\varphi). \end{aligned}$$

The number of connectives of a formula can be defined as:

$$\begin{aligned} c(p_i) &= 0\\ c(\bot) &= 1\\ c((\varphi \Box \psi)) &= 1 + c(\varphi) + c(\psi)\\ c((\neg \varphi)) &= 1 + c(\varphi). \end{aligned}$$

(b) We prove that $r(\varphi) \leq c(\varphi)$, for all φ . Base case: $r(p_i) = 0 \leq 0 = c(p_i)$ and $r(\bot) = 0 \leq 1 = c(\bot)$. Induction step: If $r(\varphi) \leq c(\varphi)$ and $r(\psi) \leq c(\psi)$, then

$$r((\varphi \Box \psi)) = 1 + \max\{r(\varphi), r(\psi)\} \\ \leqslant 1 + r(\varphi) + r(\psi) \\ \leqslant 1 + c(\varphi) + c(\psi) \\ = c((\varphi \Box \psi)).$$

Here, we used the fact that the maximum of two non-negative numbers is \leq their sum. For the remaining induction step, assume $r(\varphi) \leq c(\varphi)$. Then

$$r((\neg \varphi)) = 1 + r(\varphi)$$

$$\leqslant 1 + c(\varphi)$$

$$= c((\neg \varphi))$$

Problem 3 Let $l(\varphi)$ denote the length of a proposition in symbols. Note that this is always a positive integer. We prove the following statement by induction: "for all propositions φ , $l(\varphi) \notin \{2,3,6\}$ ".

Base case: if φ is atomic, then $l(\varphi) = 1 \notin \{2, 3, 6\}$.

Induction step 1: if $\varphi = (\varphi' \Box \varphi'')$, then $l(\varphi) = 3 + l(\varphi') + l(\varphi'')$. Evidently this quantity is not 2 or 3. Also, if it were 6, then $l(\varphi') + l(\varphi'') = 3$, but this is not possible since then either $l(\varphi') = 2$ or $l(\varphi'') = 2$, contradicting the induction hypothesis.

Induction step 2: if $\varphi = (\neg \varphi')$, then $l(\varphi) = 3 + l(\varphi')$. Evidently this quantity is not 2 or 3; also it cannot be 6 since by induction hypothesis, $l(\varphi') \neq 3$.

Problem 4 (a) Base case: if $\varphi = p_i$ is atomic, then $\varphi = dm(\varphi)$, hence $r(\varphi) = r(dm(\varphi))$. Induction step: assume $\varphi = (\varphi' \land \varphi'')$. By induction hypothesis, $r(\varphi') = r(dm(\varphi'))$ and $r(\varphi'') = r(dm(\varphi''))$. But then

$$r(\varphi) = = 1 + max\{r(\varphi'), r(\varphi'')\}$$

= 1 + max\{r(dm(\varphi')), r(dm(\varphi''))\}
= r((dm(\varphi') \neq dm(\varphi'')))
= r(dm(\varphi)).

The case for $\varphi = (\varphi' \lor \varphi'')$ is similar. Finally, assume $\varphi = (\neg \varphi')$. By induction hypothesis, $r(\varphi') = r(dm(\varphi'))$. But then

$$\begin{aligned} r(\varphi) &= = 1 + r(\varphi') \\ &= 1 + r(dm(\varphi')) \\ &= r((\neg dm(\varphi'))) \\ &= r(dm(\varphi)). \end{aligned}$$

(b) We have:

 $[\![\varphi]$

$$\begin{split} \wedge \psi]\!]' &= 1 - \llbracket dm(\varphi \wedge \psi) \rrbracket \\ &= 1 - \llbracket dm(\varphi) \lor dm(\psi) \rrbracket \\ &= 1 - \max\{\llbracket dm(\varphi) \rrbracket, \llbracket dm(\psi) \rrbracket\} \\ &= \min\{1 - \llbracket dm(\varphi) \rrbracket, 1 - \llbracket dm(\psi) \rrbracket\} \\ &= \min\{\llbracket \varphi \rrbracket', \llbracket \psi \rrbracket'\} \end{split}$$

$$\begin{split} [\varphi \lor \psi]' &= 1 - [[dm(\varphi \lor \psi)]] \\ &= 1 - [[dm(\varphi) \land dm(\psi)]] \\ &= 1 - \min\{[[dm(\varphi)]], [[dm(\psi)]]\} \\ &= \max\{1 - [[dm(\varphi)]], 1 - [[dm(\psi)]]\} \\ &= \max\{[[\varphi]]', [[\psi]]'\} \end{split}$$
$$\begin{aligned} [\neg \varphi]' &= 1 - [[dm(\neg \varphi)]] \\ &= 1 - [[\neg dm(\varphi)]] \\ &= 1 - (1 - [[dm(\varphi)]]) \\ &= 1 - [[\varphi]]' \end{split}$$

Thus, [-]' is a valuation.

(c) In this proof, we use the fact that $dm(dm(\varphi))=\varphi,$ which is easily shown by induction.

Suppose φ is satisfiable. Then there is some valuation $[\![-]\!]$ such that $[\![\varphi]\!] = 1$. Then $[\![-]\!]'$ is a valuation, and we have $[\![dm(\varphi)]\!]' = 1 - [\![dm(dm(\varphi))]\!] = 1 - [\![\varphi]\!] = 0$, thus $dm(\varphi)$ is not valid.

Conversely, suppose that $dm(\varphi)$ is not valid, then there exists some valuation $\llbracket - \rrbracket$ such that $\llbracket dm(\varphi) \rrbracket = 0$. Then $\llbracket - \rrbracket'$ is a valuation, and we have $\llbracket \varphi \rrbracket' = 1 - \llbracket dm(\varphi) \rrbracket = 1$, hence φ is satisfiable.

Problem 20 $A \Rightarrow B \vdash \neg (A \land \neg B).$

Problem 10 (a) $A \lor (B \land C) \vdash (A \lor B) \land (A \lor C)$

1	$A \lor (B \land C)$	
2	A	
3	$A \lor B$	\vee I, 2
4	$A \lor C$	\vee I, 2
5	$(A \lor B) \land (A \lor C)$	\wedge I, 3, 4
6	$B \wedge C$	
7	В	$\wedge E$, 6
8	C	$\wedge E$, 6
9	$A \lor B$	\vee I, 7
10	$A \lor C$	∨I, 8
11	$(A \lor B) \land (A \lor C)$	∧I, 9, 10
12	$(A \lor B) \land (A \lor C)$	∨E, 2, 3–5, 6–11

(b) $(A \lor B) \land (A \lor C) \vdash A \lor (B \land C)$

1	$(A \lor B) \land (A \lor C)$	
2	$A \lor B$	$\wedge E$, 1
3	$A \lor C$	$\wedge E$, 1
4	A	
5	$A \lor (B \land C)$	∨ I , 4
6	B	
7	A	
8	$A \lor (B \land C)$	∨ I , 4
9	C	
10	$B \wedge C$	\wedge I, 6, 9
11	$ \begin{array}{c} B \wedge C \\ A \vee (B \wedge C) \\ A \vee (B \wedge C) \end{array} $	∨ I , 10
12	$A \lor (B \land C)$	∨E, 3, 7–8, 9–11
13	$A \lor (B \land C)$	∨E, 2, 4–5, 6–12
	-	

Problem 30 See Problem 1.

Problem 50 See Problem 1.