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Lecture Notes 1: A Hahn-Banach style theorem for normed cones

1 Abstract cones

Let R+ be the set of non-negative reals. An abstract cone is analogous to a real vector
space, except that we take the non-negative reals as scalars. Since the non-negative
reals do not form a field, we have to replace the vector space law v + (−v) = 0 by a
cancelation law v + u = w + u ⇒ v = w. We also require strictness, which means,
no non-zero element has a negative.

Definition (Abstract cone). An abstract cone is a set C, together with two operations
+ : C × C → C and · : R+ × C → C and a distinguished element 0 ∈ C, satisfying
the following laws for all v, w, u ∈ C and λ, µ ∈ R+:

Additive laws:
0 + v = v

v + (w + u) = (v + w) + u

v + w = w + v

v + u = w + u ⇒ v = w (cancelation)
v + w = 0 ⇒ v = w = 0 (strictness)

Multiplicative laws:
1v = v

(λµ)v = λ(µv)
(λ + µ)v = λv + µv

λ(v + w) = λv + λw,

Examples. R+ is an abstract cone. The set

R
n

+ = {(x1, . . . , xn) | x1, . . . , xn ∈ R+}

is an abstract cone, with the coordinatewise operations. More generally, if C 1, . . . , Cn

are abstract cones, then so is C1 × . . .×Cn. The set of all complex hermitian positive
n × n-matrices,

Pn = {A ∈ C
n×n | A = A∗ and ∀v ∈ C

n.v∗Av > 0}

is an abstract cone. Also, for any signature σ = n1, . . . , ns, the set of positive matrix
tuples Pσ := Pn1

× . . . ×Pns
is an abstract cone.

Definition (Linear function of abstract cones). A linear function of abstract cones
is a function f : C → D such that f(v + w) = f(v) + f(w) and f(λv) = λf(v), for
all v, w ∈ C and λ ∈ R+.

Remark. Every abstract cone C can be completed to a real vector space VC . The
elements of VC are pairs (v, w), where v, w ∈ C, modulo the equivalence relation
(v, w) ∼ (v′, w′) if v + w′ = v′ + w. Addition and multiplication by non-negative
scalars are defined pointwise, and we define −(v, w) = (w, v). Moreover, any linear
function of abstract cones f : C → C ′ extends uniquely to a linear function of vector
spaces f : VC → VC′ .

We say that an abstract cone C is finite dimensional if VC is a finite dimensional
vector space. Note that, unlike vector spaces, finite dimensional cones need not be
spanned by a finite set. A counterexample is C = {(x, y, z) ∈ R3 |

√

x2 + y2 6 z}.
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Definition (Convexity). A subset D of an abstract cone C is said to be convex if for
all u, v ∈ D and λ ∈ [0, 1], λu + (1 − λ)v ∈ D. The convex closure of a set D is
defined to be the smallest convex set containing D.

2 The cone order

Definition (Cone order). Let C be an abstract cone. The cone order is defined by
setting v v w if there exists u ∈ C such that v + u = w. Note that the cone order is a
partial order. If v v w, then the element u such that v + u = w is necessarily unique,
and thus we may also write u = w − v.

Remark. Note that every linear function of abstract cones f : C → D is also monotone,
i.e., v v v′ implies f(v) v f(v′).

Examples. On R+, the cone order is just the usual order 6 of the reals. On Rn
+, it is

the pointwise order. On Pσ, it is the so-called Löwner partial order.

Definition (Down closure). Let D ⊆ C be a subset of an abstract cone. We define its
down-closure ↓D to be the set {u ∈ C|∃v ∈ D.u v v}. We say that D is down-closed
if D = ↓D. The concept of up-closure is defined dually.

Lemma 2.1. The down-closure of a convex set is convex.

Proof. We use the easily verified fact that addition and scalar multiplication are mono-
tone, thus u′ v u and v′ v v implies λu′ + (1 − λ)v′ v λu + (1 − λ)v. �

3 A separation theorem for abstract cones

Definition (Generating set). Let C be an abstract cone, and let D ⊆ C be a down-
closed, convex set. We say that D generates C if for all v ∈ C, there exists some
λ > 0 such that λv ∈ D.

Theorem 3.1 (Separation). Let C be an abstract cone, let U and D be convex sets
such that U is up-closed, D is down-closed, and U ∩ D = ∅. Moreover, assume that
D generates C. Then there exists a linear function f : C → R+ such that f(v) 6 1
for all v ∈ D and f(u) > 1 for all u ∈ U .

Proof. Let E be the class of subsets E ⊆ C with the following properties: E is convex
and down-closed, D ⊆ E, and E ∩ U = ∅. Clearly D ∈ E , and moreover, E is closed
under unions of chains; therefore, by Zorn’s Lemma, there is a maximal element in E
with respect to inclusion.

Let E be maximal in E , and let Ec = C \ E be its complement. We will prove
that Ec is convex. We use the following convention: for scalars λ ∈ [0, 1], we write
λ = 1−λ. We first claim that for every v ∈ Ec, the convex closure of E∪{v} intersects
U . Namely, let Ev be this convex closure. Then ↓Ev is convex by Lemma 2.1. By
maximality of E, we must have ↓Ev ∩ U 6= ∅, and therefore Ev ∩ U 6= ∅ since U is
up-closed.
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Now assume that Ec is not convex. Then there exist v0, v1 ∈ Ec and λ ∈ [0, 1]
such that λv0 + λv1 ∈ E. By the previous paragraph, for i = 0, 1, we can find e i ∈ E

and µi ∈ [0, 1] such that µivi + µiei ∈ U . Note that ei 6∈ U implies µi 6= 0. Let
w = λv0 + λv1 and ui = µivi + µiei. Then we have:

λµ1

λµ1 + λµ0

u0 +
λµ0

λµ1 + λµ0

u1 =
λµ1µ0

λµ1 + λµ0

e0 +
λ µ1µ0

λµ1 + λµ0

e1 +
µ1µ0

λµ1 + λµ0

w.

The left-hand-side is a convex combination of u 0, u1 ∈ U , and the right-hand-side is
a convex combination of e0, e1, w ∈ E. This contradicts the fact that U and E are
convex and disjoint, proving that E c is convex.

If A is a subset of a cone, we write λA = {λa | a ∈ A}. Note that A is convex iff
for all λ, µ > 0, λA + µA ⊆ (λ + µ)A. We now define the function f by

f(v) = inf{λ | v ∈ λE, λ > 0}.

Note that because D ⊆ E and D generates C, the set E also generates C. Therefore,
for all v ∈ C, there exists some λ such that v ∈ λE. Thus, f(v) is well-defined and
finite. Moreover, since D ⊆ E, it follows that f(v) 6 1 for all v ∈ D. On the other
hand, if u ∈ U , then for all λ 6 1, u 6∈ λE; thus f(u) > 1. It remains to be shown that
f is linear.

First, we show that f is monotone; this follows directly from the definition and
the fact that E is down-closed. Also immediate is the fact that f(λv) = λf(v). The
inequality f(v + w) 6 f(v) + f(w) follows from the convexity of E.

To prove the opposite inequality f(v) + f(w) 6 f(v + w), we consider two cases.
If f(v) = 0 or f(w) = 0, then this inequality follows from monotonicity. Otherwise,
suppose f(v), f(w) 6= 0. Consider any λ, µ > 0 such that λ < f(v) and µ < f(w).
Then by definition of f , we have v 6∈ λE and w 6∈ µE, hence v ∈ λE c and w ∈ µEc.
Convexity of Ec implies that v + w ∈ (λ + µ)Ec, hence λ + µ 6 f(v + w). Since
λ, µ were arbitrary, this shows f(v) + f(w) 6 f(v + w). �

4 Normed cones

Definition (Normed cone). Let C be an abstract cone. A norm on C is a function
‖−‖ : C → R+ satisfying the following conditions for all v, w ∈ C and λ ∈ R+:

‖v + w‖ 6 ‖v‖+ ‖w‖ (triangle inequality)
‖λv‖ = λ‖v‖ (linearity)
‖v‖ = 0 ⇒ v = 0 (strictness)
v v w ⇒ ‖v‖ 6 ‖w‖ (monotonicity)

A normed cone C = 〈C, ‖−‖C〉 is an abstract cone C equipped with a norm ‖−‖C.

The first three conditions are just the usual conditions for a norm on a vector space,
except of course that the scalar property is restricted to non-negative scalars. The last
condition ensures that the norm is monotone. Note that monotonicity does not follow
from the remaining three axioms.
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If C = 〈C, ‖−‖C〉 is a normed cone, we define its unit ideal to be the set

DC = {v ∈ C | ‖v‖C 6 1}

The unit ideal is a down-closed and convex subset of C.

Definition (Non-expanding linear function). Let C and C
′ be normed cones. A

linear function f : C → C
′ is non-expanding (or norm non-increasing) if for all

v ∈ C, ‖f(v)‖C′ 6 ‖v‖C.

5 A Hahn-Banach style theorem for normed cones

Theorem 5.1. Let C be a normed cone, and let u ∈ C with ‖u‖C = 1. Then there
exists a non-expanding linear function f : C → R+ such that f(u) = 1.

Proof. Apply Theorem 3.1 to the sets D = DC and U = ↑{λu | λ > 1}. �
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