MATH 582, INTRODUCTION TO SET THEORY, WINTER 1999
Answersto Problem Set 3 (Revised)

Problem 3.8 Considerary setA. Then

zedomUA <<= (Fy)z,y)eUA (by definitionof dom)

< (Fy)(3AR € A){z,y) € R (by definitionof union)

< (@ReA)Fy)(z,y) €R

<~ (HRe Az edomR (by definitionof dom)
< zel|J{domR | R e A} (bydefinitionof union)

Theprooffor “ran” is similar.

Problem 3.9 If we replacethe union operationby intersectionin the previous problem (assumingthat A is non-
empty),the correspondingesultis not true. For a simpleexample let A = {{{a,b)}, {{(a,c)}}, whereb # c¢. Then
dom( A = dom @ = 0, whereaf\{dom R | R € A} = N{{a}} = {a}. However, theinclusionfrom left to right
is still valid, namelydom (A C N{dom R | R € A}. Comparethe proofto thatof Problem3.8:

z€domNA <= (Gy)z,y)eNA (by definitionof dom)
<~ (y)(VR e A){z,y) € R (bydefinitionof intersection)
= (YRe A)Fy)(z,y) e R ()
<<~ (VRe Az edomR (by definitionof dom)
< z€(){domR|Re A} (bydefinitionofintersection)

Notice thatin the stepmarked (*), the corverseimplication doesnot hold: JyVR... impliesVYR3y.. ., but not the
otherway around.

Problem 3.11 Assumethat F' andG arefunctionswith dom F' = dom G. Assumethat F(z) = G(x) for all z in
thecommondomain.We claimthat 7' = G. We will show this by proving ' C G andG C F (recallthatfunctions
aresets,namelycertainsetsof orderedpairs). Sosupposez € F. Then,sinceF is afunction, z is anorderedpair,
i.e, z = (z,y) for somez,y. By definition of F(z), we have F(z) = y. Sincez is in thedomainof F, we have
G(z) = F(z) by hypothesisandthusG(z) = y. Thisimpliesz = (z,y) € G by definitionof G(z). This proves
F C G, thecorversefollows by a similar agument.

Problem 3.15 Let.A beasetof functionssuchthatfor ary f,g € A, eitherf C gorg C f. WeclaimthatJ A is
afunction. First, noticethateachelementof | A is anorderedpair, andthus| J A is arelation. To prove thatit is a
function,considerary (z,y) and(z,y') in | J A. We haveto shaw thaty = y'. First, by definitionof union,we know
that(z,y) € f and(z,y') € g for somef, g € A. By hypothesiswe know thateitherf C g org C f. Wedoacase
distinction:if f C g,then(z,y) € g, whichimpliesy = ¢', sinceg is afunction. Similarly, if g C f, then(z,y') € f,
which againimpliesy = ', sincef is afunction. In eithercasey = y', andwe aredone.

Problem 3.29 Givenf : A — B, defineG : B - #ZAbyG(b) = {z € A | f(z) = b}. Assumingthat f is onto
B, wewantto shov thatG is one-to-one Soconsidem, b’ € B with G(b) = G(b'). We haveto shav b = ¥'. Since
f is onto,we know thatthereis somea € A with f(a) = b. It follows, by definitionof G, thata € G(b), andthus,
a € G(b") by hypothesisUsingthe definitionof G again thisin turnsimplies f (a) = V', andthusb = f(a) = b'; we
aredone.

The corversedoesnotin generahold. In otherwords,it is possiblefor G to be one-to-oneavenif f is notonto. To
be precise:if thereis at mostoneelementof B thatis notin therangeof f, thenG will still be one-to-one.Proof:
Assumethatthereis at mostoneelementf B thatis notin therangeof f. SupposeZ(b) = G(b'). If bisin therange
of f, thenb = b’ follows asabove; similarly if ' is in therangeof f. Theonly caseleft is if neitherb nord’ is in the
rangeof f; in thiscasep = b’ by hypothesis.

However, if thereareatleasttwo differentelement®of B thatarenotin therangeof f, thenG will notbeone-to-one:
Letd, b’ besuchdifferentelementsthenG(b) = G(b') = @ butb # ', andhenceG is notone-to-one.



Problem 3.30 Let F : #A — & A havethemonotonicitypropertyX CY € #A = F(X) C F(Y). Define
B=({XCA|F(X)CX} and C=([{XCA|XCFX)}

Notethat F(A) C A, andthustheset{X C A | F(X) C X} is non-empty makingthe above intersectiorwell-
defined.

(a) Let # betheset{X C A | F(X) C X}, sothatB =) %. WeclaimthatF(B) = B.

e First,we claimthat F(B) C B. Sotakeary z € F(B). To show thatz € B, consideran arbitrary
X € %, we have to shaw thatz € X. By definition of B, we know that B C X, and henceby
monotonicity F(B) C F(X), whichimpliesz € F(X). Ontheotherhand,sinceX € 4, we know that
F(X) C X,andthusz € X. SinceX € % wasarbitrary, this provesz € B, andwe have F'(B) C B as
desired.

e To provethecorverse,B C F(B), we usethe factthatwe alreadyknow F'(B) C B. By monotonicity
thisimplies F(F(B)) C F(B), andhencewe have F'(B) € 4. It followsthatB = (& C F(B).

Now, let ¢ betheset{X C A | X C F(X)}, sothatC = |J¥. WeclaimthatC = F(C).

e First,weclaimthatC C F(C). Sotakeary z € C. ThenthereexistssomeX € ¥ suchthatz € X.
By definitionof ¢, we know thatX C F(X), andthusz € F(X). Also, sinceC = |J %, we know that
X C C, andhenceby monotonicity F(X) C F(C). It followsthatz € F(C), asdesired.

e To provethecorverse F'(C) C C, we usethefactthatwe alreadyknow C C F(C'). By monotonicity
thisimplies F(C') C F(F(C)), andhencewe have F(C) € . It followsthatF(C) C |J% = C.

(b) Supposé'(X) = X. ThenX € £, andhenceB = (% C X. Similarly, X € ¢, andhenceX C |J% = C.

Homework for Feb. 5:

1. We gave two definitionsof linear orderin class,onein termsof < andonein termsof <. Shaw thatthey are
equivalent,i.e., shav thatif (A, <) is alinearorderin thefirst senseandif onedefines

rLy<=zc<yVe=y,

then(A, <) is alinearorderin the secondsenseandif (A, <) is alinearorderin the secondsenseandif one
defines
r<y<=z<ynz#y,

then(A, <) is alinearorderin thefirst sense.

2. Provethatarelation E on A is anequialencerelationif andonly if, forall z,y € A,

2By <= Vz € A(zEz = yEz).
3. SupposeR and(@ areequivalencerelationson setsA and B respectiely, andf : A — B is afunction. Prove
thatthereexistsa functiong : A/R — B/Q satisfyingg([z]r) = [f(z)]g for all z € A, if andonly if zRy
implies f(z) @ f(y), forall z,y € A.

Chapter3, Problems34, 36,41, 44,45. Chapter6, Problem22 [or 18]. Chapter7, Probleml.



