MATH 582, INTRODUCTION TO SET THEORY, WINTER 1999 Answers to Problem Set 4

Problem 1 Recall that a binary relation < on A is said to be a linear order (in the strict sense) if it is:

- 1. irreflexive: $\forall x \in A(\neg x < x)$,
- 2. transitive: $\forall x, y, z \in A(x < y \land y < z \Rightarrow x < z)$,
- 3. connected: $\forall x, y \in A(x < y \lor x = y \lor y < x)$.

A binary relation \leq on A is said to be a linear order (in the non-strict sense) if it is:

- 1. reflexive: $\forall x \in A(x \leq x)$,
- 2. anti-symmetric: $\forall x, y \in A(x \leq y \land y \leq x \Rightarrow x = y)$,
- 3. transitive: $\forall x, y, z \in A (x \leq y \land y \leq z \Rightarrow x \leq z)$,
- 4. linear: $\forall x, y \in A (x \leq y \lor y \leq x)$.

Suppose $\langle A, < \rangle$ is a linear order in the strict sense, and define $x \leq y$ to mean $x < y \lor x = y$. We claim that $\langle A, \leq \rangle$ is a linear order in the non-strict sense. *Reflexivity:* for all x, one has x = x and thus $x \leq x$. *Anti-symmetry:* Suppose $x \leq y$ and $y \leq x$. Assume, for the sake of contradiction, that $x \neq y$. Then x < y and y < x, thus, x < x by transitivity of <, contradicting irreflexivity of <. Thus x = y. *Transitivity:* Suppose $x \leq y$ and $y \leq z$. If x = y then $x \leq z$ follows from $y \leq z$, and we are done. Similarly if y = z, then $x \leq y < z$, and x < z, thus $x \leq z$, follows by transitivity of <. Linearity: Take $x, y \in A$. By connectedness of <, either x < y or x = y or y < x. In each of these cases, it follows that $x \leq y$ or $y \leq x$.

Conversely, suppose $\langle A, \leqslant \rangle$ is a linear order in the non-strict sense, and define x < y to mean $x \leqslant y \land x \neq y$. We claim the $\langle A, < \rangle$ is a linear order in the strict sense. *Irreflexivity:* For any x, since $x \neq x$ does not hold, x < x does not hold. *Transitivity:* Suppose x < y and y < z. Then $x \leqslant y$ and $y \leqslant z$, and also $x \neq y$ and $y \neq z$. It follows that $x \leqslant z$ by transitivity of \leqslant . Assume that x = z, then x = y follows by antisymmetry of \leqslant , a contradiction. Hence $x \neq z$, and thus x < z. *Connectedness:* Take $x, y \in A$. If x = y, we are done, so assume $x \neq y$. By linearity of \leqslant , we know that $x \leqslant y$ or $y \leqslant x$, and thus x < y or y < x by definition of < and the fact that $x \neq y$.

Problem 2 First, assume that *E* is an equivalence relation on *A*, and consider any $x, y \in A$. We must show that $xEy \iff \forall z \in A(xEz \Rightarrow yEz)$. To prove the left-to-right half of this equivalence, assume xEy. Then yEx by symmetry, and therefore for all $z \in A$, xEz implies yEz by transitivity. To prove the right-to-left implication, assume that $\forall z \in A(xEz \Rightarrow yEz)$ holds. In particular, $xEx \Rightarrow yEx$. But xEx by reflexivity, and hence yEx, and by symmetry, xEy.

Conversely, assume that $xEy \iff \forall z \in A(xEz \Rightarrow yEz)$ holds for all $x, y \in A$. We want to show that E is an equivalence relation on A. *Reflexivity:* For any $x \in A$, the statement $\forall z \in A(xEz \Rightarrow xEz)$ is logically valid, and thus xEx by hypothesis. *Symmetry:* Suppose xEy. Then, by hypothesis, $\forall z \in A(xEz \Rightarrow yEz)$. In particular, $xEx \Rightarrow yEx$. But we have already proved that E is reflexive, so yEx holds as desired. *Transitivity:* Suppose xEyand yEz. The latter gives $\forall w \in A(yEw \Rightarrow zEw)$ by hypothesis, and in particular, $yEx \Rightarrow zEx$. We already know that E is symmetric, so we have yEx, and thus zEx. Another application of symmetry gives xEz, as desired.

Problem 3 Suppose R and Q are equivalence relations on sets A and B respectively, and $f : A \to B$ is a function. We want to prove that there exists a function $g : A/R \to B/Q$ satisfying $g([x]_R) = [f(x)]_Q$ for all $x \in A$, if and only if xRx' implies f(x) Q f(x'), for all $x, x' \in A$.

For the right-to-left implication, assume that g is such a function. If xRx', then $[x]_R = [x']_R$, thus $g([x]_R) = g([x']_R)$, thus $[f(x)]_Q = [f(x')]_Q$ by hypothesis, thus f(x) Q f(x').

For the left-to-right implication, define $g = \{\langle [x]_R, [f(x)]_Q \rangle \mid x \in A\}$. Then g is certainly a relation of the appropriate type; we must check that it is a function. So consider any $\langle u, v \rangle, \langle u, w \rangle \in g$. By definition of g, there must be $x, x' \in A$ such that $u = [x]_R = [x']_R, v = [f(x)]_Q$, and $w = [f(x')]_Q$. It follows that xRx', hence f(x) Q f(x') by hypothesis, hence v = w. This shows that g is a function. Do see that the domain of g is all of A/R, notice that for every $[x]_R \in A/R$, one has $\langle [x]_R, [f(x)]_Q \rangle \in g$, hence $[x]_R \in \text{dom } g$. Thus, $g : A/R \to B/Q$. Moreover, it follows directly from the definition of g that it satisfies the desired property.

Problem 3.34 Assume that A is a non-empty set of transitive relations.

- (a) The set ∩ A is a transitive relation. Being a subset of some A ∈ A, it is a relation. To show that it is transitive, take two pairs (x, y), (y, z) ∈ ∩ A. Consider an arbitrary A ∈ A. By definition of intersection, (x, y), (y, z) ∈ A. Since A is a transitive relation, it follows that (x, z) ∈ A. Since A was arbitrary, it follows that (x, z) ∈ ∩ A.
- (b) The set $\bigcup A$ is not in general a transitive relation. The simplest counterexample is $A = \{\{\langle 0, 1 \rangle\}, \{\langle 1, 2 \rangle\}\}$.

Problem 3.36 By definition, we have $Q \subseteq A \times A$, so Q is a relation on A. We want to show that Q is an equivalence relation on A. *Reflexivity:* For any $x \in A$, we have $\langle f(x), f(x) \rangle \in R$, by reflexivity of R. Thus, $\langle x, x \rangle \in Q$. *Symmetry:* Suppose $\langle x, y \rangle \in Q$. Then $\langle f(x), f(y) \rangle \in R$, thus $\langle f(y), f(x) \rangle \in R$ by symmetry of R. Hence $\langle y, x \rangle \in Q$. *Transitivity:* Suppose $\langle x, y \rangle, \langle y, z \rangle \in Q$. Then $\langle f(x), f(y) \rangle, \langle f(y), f(z) \rangle \in R$, hence $\langle f(x), f(z) \rangle \in R$ by transitivity of R. Thus $\langle x, z \rangle \in Q$.

Problem 3.41

- (a) *Q* is an equivalence relation: *Reflexivity:* For any $\langle u, v \rangle \in \mathbb{R} \times \mathbb{R}$, u + v = u + v, and hence $\langle u, v \rangle Q \langle u, v \rangle$. *Symmetry:* Suppose $\langle u, v \rangle Q \langle x, y \rangle$. Then u + y = x + v, hence x + v = u + y, hence $\langle x, y \rangle Q \langle u, v \rangle$. *Transitivity:* Suppose $\langle u, v \rangle Q \langle x, y \rangle$ and $\langle x, y \rangle Q \langle w, z \rangle$. Then u + y = x + v and x + z = w + y. Adding the two equations, we get u + y + x + z = x + v + w + y. Subtracting x + y, we obtain u + z = w + v, and thus $\langle u, v \rangle Q \langle w, z \rangle$.
- (b) By Theorem 3Q (or Problem 3), what we must check is whether ⟨u, v⟩Q⟨x, y⟩ implies ⟨u + 2v, v + 2u⟩Q⟨x + 2y, y + 2x⟩. That is, we must check whether u + y = x + v implies (u + 2v) + (y + 2x) = (x + 2y) + (v + 2u). By adding u + v + x + y to each side of the equation, and exchanging left and right sides, this does indeed follow. Therefore, the required G exists.

Problem 3.44 To show that f is one-to-one, take any $x \neq y$ in A; we have to show $f(x) \neq f(y)$. By connectedness of <, we have either x < y or y < x. By hypothesis, this implies f(x) < f(y) or f(y) < f(x). In either case $f(x) \neq f(y)$ by irreflexivity. This shows that f is one-to-one.

Now assume that f(x) < f(y); we want to show x < y. We cannot have x = y, because this would imply f(x) = f(y), contradicting f(x) < f(y) (by irreflexivity). Neither can we have y < x, because this would imply f(y) < f(x) by hypothesis, and we would have f(x) < f(x) by transitivity, again contradicting irreflexivity. Since < is connected, the only possibility left is x < y.

Problem 3.45 Consider linearly ordered sets $\langle A, \langle A \rangle$ and $\langle B, \langle B \rangle$. The *lexicographic ordering* on $A \times B$ is the relation $\langle A, \langle B \rangle$ defined as follows:

$$\langle a_1, b_1 \rangle <_L \langle a_2, b_2 \rangle$$
 iff $a_1 <_A a_2 \lor (a_1 = a_2 \land b_1 <_B b_2).$

We show that \langle_L is a linear ordering: *Irreflexivity:* Consider any $\langle a, b \rangle \in A \times B$. Since neither $a \langle_A a$ and $b \langle_B b$ hold (by irreflexivity of \langle_A and \langle_B), we do not have $\langle a, b \rangle \langle_L \langle a, b \rangle$. *Transitivity:* Suppose $\langle a_1, b_1 \rangle \langle_L \langle a_2, b_2 \rangle$ and $\langle a_2, b_2 \rangle \langle_L \langle a_3, b_3 \rangle$. We want to show $\langle a_1, b_1 \rangle \langle_L \langle a_3, b_3 \rangle$. Notice that $a_1 \leq a_2$ and $a_2 \leq a_3$. If we have $a_1 \langle_A a_2$ or $a_2 \langle_A a_3$, then $a_1 \langle_A a_3$, and we are done. Otherwise, $a_1 = a_2 = a_3$ and $b_1 \langle_B b_2 \rangle_B b_3$. In this case, we have $b_1 \langle_B b_3 \rangle \in A \times B$. By connectedness of \langle_A , we have either $a_1 \langle_A a_2$ or $a_1 = a_2$ or $a_2 \langle_A a_1$. In the first case, we have $\langle a_1, b_1 \rangle \langle_L \langle a_2, b_2 \rangle$, and in the last case, we have $\langle a_2, b_2 \rangle \langle_L \langle a_1, b_1 \rangle$; if either of these happens, we are done. The remaining case is $a_1 = a_2$. By connectedness of \langle_B , we have either $b_1 \langle_B b_2$ or $b_1 = b_2$ or $b_2 \langle_B b_1$. In the first case, we have $\langle a_1, b_1 \rangle \langle_L \langle a_2, b_2 \rangle$, and in the last case, we have $\langle a_2, b_2 \rangle \langle_L \langle a_1, b_1 \rangle$. The only remaining case is when $b_1 = b_2$, but then we have $\langle a_1, b_1 \rangle = \langle a_2, b_2 \rangle$. Thus we are done.

Problem 6.22 We will show that the statement

For any set A there is a function $F : \bigcup A \to A$ such that $x \in F(x)$ for all $x \in \bigcup A$ (*)

is equivalent to the axiom of choice. We discussed four equivalent statements of the axiom of choice in class. Here, we will show (AC2) \Rightarrow (*) \Rightarrow (AC3).

To show the first implication, assume (AC2) and let A be any set. Consider the relation $R \subseteq (\bigcup A) \times A$ defined by $\langle x, a \rangle \in R \iff x \in a \in A$. By the definition of union, for each $x \in \bigcup A$, there exists $a \in A$ with $x \in a$; thus

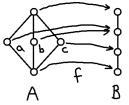
 $\bigcup A$ is the domain of R. By (AC2), there exists a function $F : \bigcup A \to A$ with $F \subseteq R$. This function F satisfies the property (*): namely, for all $x \in \bigcup A$, we have $\langle x, F(x) \rangle \in F \subseteq R$, thus $x \in F(x)$ by definition of R.

Now assume (*). We will show (AC3), i.e. the existence of a choice function $G : (\mathscr{P}A - \{\emptyset\}) \to A$, for any set A. So consider any set A. For any $z \in A$, define the set $I_z = \{a \subseteq A \mid z \in a\} \in \mathscr{PPA}$. Let $A^* = \{I_z \mid z \in A\} \subseteq \mathscr{PPA}$. Let $\phi : A \to A^*$ be the function defined by $\phi(z) = I_z$. We claim:

- φ is one-to-one and onto. Thus φ⁻¹: A* → A is a well-defined function. Proof: To show that φ is one-to-one, assume φ(y) = φ(z) for some y, z ∈ A. Then I_y = I_z. Since {y} is a member of I_y, it must also be a member of I_z, which means, by definition of I_z, that z ∈ {y}, hence y = z. This proves that φ is one-to-one. Clearly, φ is onto A* by definition of A*.
- 2. $\bigcup A^* = \mathscr{P}A \{\emptyset\}$. Proof: $a \in \bigcup A^*$ iff $\exists z \in A (a \in I_z)$ iff $\exists z \in a \subseteq A$ iff $a \subseteq A$ and $a \neq \emptyset$ iff $a \in \mathscr{P}A \{\emptyset\}$.

By the hypothesis (*), when applied to the set A^* , it follows that there exists a function $F : \bigcup A^* \to A^*$ such that $a \in F(a)$ for all $a \in \bigcup A^*$. We define new define a function $G : (\mathscr{P}A - \{\emptyset\}) \to A$ as follows: Let $G(a) = \phi^{-1}(F(a))$. By claims 1 and 2 above, this is a well-defined function. Now consider any $a \in \mathscr{P}A - \{\emptyset\}$. Let z = G(a). Then $I_z = \phi(z) = \phi(G(a)) = \phi(\phi^{-1}(F(a))) = F(a)$ by definitions of ϕ and G. Also $a \in F(a)$ by construction of F, hence $a \in I_z$. The latter implies $z \in a$ by definition of I_z . Since z was G(a), we have $G(a) \in a$. Since a was arbitrary, this holds for all $a \in \mathscr{P}A - \{\emptyset\}$, which proves that G is the desired choice function.

Problem 7.1 Unlike in Problem 3.44, both claims are wrong for partial orders. Consider the following function between partially ordered sets:



This function satisfies $x <_A y \Rightarrow f(x) <_B f(y)$, but it is neither one-to-one, nor does it satisfy $f(x) <_B f(y) \Rightarrow x <_A y$. Notice that the elements b and c satisfy $f(c) <_B f(b)$, but not $c <_A b$.