MATH 582, INTRODUCTION TO SET THEORY, WINTER 1999
Answersto Problem Set 4

Problem 1 Recallthatabinaryrelation< on A is saidto bealinearorder(in thestrict sense)f it is:
1. irreflexive:Vz € A(—z < x),
2. transitve:Vz,y,z € Az < yAy < z =z < 2),
3. connectedVz,y € A(z <yVz=yVy<x).
A binaryrelationg on A is saidto bealinearorder(in the non-strictsensejf it is:
1. reflexive:Vz € A(z < ),
2. anti-symmetricVz,y € A(x <yAy <z =2z =y),
3. transitve:Vz,y,z € A(z <yAy <z=>2 < 2),
4. linear:Vz,y € A(x <yVy< ).

Suppos€ 4, <) is alinearorderin thestrict senseanddefiner < y to meanz < y V z = y. We claimthat (4, <)
is alinearorderin the non-strictsense Refleivity: for all z, onehasz = z andthusz < z. Anti-symmetrySuppose
z < y andy < z. Assume,for the sale of contradictionthatz # y. Thenz < y andy < z, thus,z < z by
transitvity of <, contradictingrreflexivity of <. Thusz = y. Transitivity: Supposer < y andy < z. If z = y then
z < z followsfrom y < 2, andwe aredone. Similarly if y = z, thenz < 2 follows from z < y, andagainwe are
done.Theonly caseleft to consideris whenz # y andy # z. Butthenz < y < z,andz < z, thusz < z, follows
by transitvity of <. Linearity: Take z,y € A. By connectednessf <, eitherz < y orz = y ory < z. In eachof
thesecasesit followsthatx < y ory < z.

Corversely suppos€ A, <) is alinearorderin the non-strictsenseanddefinex < y tomeanz < y Az # y. We
claimthe (4, <) is alinearorderin the strict sense Irr eflexivity: For ary z, sincez # z doesnothold,z < x does
not hold. Transitivity: Supposer < y andy < z. Thenz < y andy < z, andalsoz # y andy # z. It followsthat
x < z by transitvity of <. Assumethatz = z, thenz = y follows by antisymmetryof <, a contradiction.Hence
x # z,andthusz < z. Connectednesstakez,y € A. If z = y, we aredone,soassumer # y. By linearity of <,
weknow thatz < y ory < z, andthusz < y ory < x by definitionof < andthefactthatz # y.

Problem 2 First, assumehat E is an equivalencerelationon A, andconsiderary z,y € A. We mustshawv that
zEBy <= Vz € A(zEz = yEz). To prove the left-to-right half of this equivalence,assumerEy. ThenyEx
by symmetry andthereforefor all z € A, zEz impliesyEz by transitvity. To prove the right-to-left implication,
assumehatVz € A(zEz = yEz) holds. In particulayt xEx = yE=z. But x Ex by reflexivity, andhencey Ex, and
by symmetryz Ey.

Corversely assumdhatzEy <= Vz € A(xEz = yEz) holdsfor all z,y € A. We wantto shav that E is
anequialencerelationon A. Refleivity: For ary x € A, thestatemenVz € A(xEz = xEz) is logically valid,
andthusz Ex by hypothesis.Symmetry:SupposecEy. Then,by hypothesisyz € A(xEz = yEz). In particular
xEx = yFEz. But we have alreadyprovedthat E is reflexive, soy Ex holdsasdesired. Transitivity: SupposexEy
andyEz. ThelattergivesVw € A(yEw = zEw) by hypothesisandin particular y Ex = 2z Ez. We alreadyknow
thatE is symmetricsowe have y Ex, andthusz Exz. Anotherapplicationof symmetrygivesz Ez, asdesired.

Problem 3 Supposek and(@ areequivalencerelationson setsA and B respectiely, andf : A — B is afunction.
We wantto prove thatthereexistsafunctiong : A/R — B/Q satisfyingg([z]r) = [f(z)]g for all z € A, if and
only if zRxz' implies f(z) Q f(z'), for all z, 2’ € A.

For the right-to-left implication, assumehat g is sucha function. If zRz’, then[z]g = [2']r, thusg([z]r) =
9([#']r). thus[f (z)]q = [/(=")]q by hypothesisthus £ (z) Q f («”).

For the left-to-right implication, defineg = {{[z]r,[f(x)]g) | * € A}. Theng is certainlya relation of the
appropriateype;we mustcheckthatit is afunction. Soconsiderary (u, v), (u,w) € g. By definitionof g, theremust
bez,z' € A suchthatu = [z]g = [2']r, v = [f(z)]g, andw = [f(z')]g. It followsthatzRz', hencef (z) Q f(z')
by hypothesishencev = w. Thisshawvsthatg is afunction. Do seethatthedomainof g is all of A/ R, noticethatfor
every [z]g € A/R, onehas([z]g,[f(x)]Q) € g, hencelx]r € domg. Thus,g : A/R — B/Q. Moreover, it follows
directly from thedefinitionof g thatit satisfieghedesiredproperty



Problem 3.34 Assumethat.A is anon-emptysetof transitive relations.

(a) Theset() A is atransitverelation.Beinga subsebf someA € A, it is arelation. To show thatit is transitive,
take two pairs{z, v}, (v, z) € [).A. Consideranarbitrary A € A. By definitionof intersection{z, y), (y, z) €
A. SinceA is atransitverelation,it followsthat(x, z) € A. SinceA wasarbitrary, it followsthat(z, z) € [ A.

(b) ThesetlJ .4 is notin generak transitive relation. The simplestcountergampleis A = {{(0,1)}, {(1,2)}}.

Problem 3.36 By definition,wehave @ C A x A, so(Q is arelationon A. We wantto shav that @ is anequivalence
relationon A. Reflivity: For any z € A, we have (f(z), f(z)) € R, by reflexivity of R. Thus, (z,z) € Q.
SymmetrySupposéz,y) € Q. Then{f(x), f(y)) € R,thus(f(y), f(z)) € Rbysymmetryof R. Hence{y,z) € Q.

Transitivity: Supposéz, y), (v, z) € Q. Then(f(z), f(y)), {f(y), f(2)) € R, hencef(z), f(z)) € R by transitiity
of R. Thus(z, z) € Q.

Problem 3.41

(@) @ is anequialencerelation: Refleivity: For ary (u,v) € R X R, u + v = u + v, andhence(u, v)Q{u, v).
SymmetrySupposéu, v)Q{z,y). Thenu+y = x+wv, hencer +v = u+y, hence(z, y)Q{u, v). Transitivity:
Supposgu, v)Q{z, y) and({z,y)Q{w, z). Thenu + y =  + v andz + 2z = w + y. Adding thetwo equations,
wegetu +y + x + z =  + v+ w + y. Subtractinge + y, we obtainu + z = w + v, andthus(u, v)Q(w, 2).

(b) By Theorem3Q (or Problem3), whatwe mustcheckis whether{u, v)Q{z, y) implies{u + 2v,v + 2u)Q{z +
2y,y + 2z). Thatis, we mustcheckwhether +y = x4+ v implies (u + 2v) + (y + 22) = (z +2y) + (v + 2u).
By addingu + v + = + y to eachside of the equation,and exchangingleft andright sides,this doesindeed
follow. ThereforetherequiredG exists.

Problem 3.44 To show that f is one-to-onefake ary = # y in A; we haveto shaw f(z) # f(y). By connectedness
of <, we have eitherz < y ory < z. By hypothesisthisimplies f(z) < f(y) or f(y) < f(z). In eithercase
f(z) # f(y) by irreflexivity. This shovsthat f is one-to-one.

Now assumehat f(z) < f(y); we wantto shav z < y. We cannothave x = y, becausehis would imply
f(z) = f(y), contradictingf (z) < f(y) (by irreflexivity). Neithercanwe have y < z, becausehis would imply
f(y) < f(z) by hypothesisandwe would have f(z) < f(z) by transitvity, againcontradictingirreflexivity. Since
< is connectedtheonly possibilityleft is x < y.

Problem 3.45 Considerlinearly orderedsets(A, <4) and(B, <p). The lexicographic orderingon A x B is the
relation<, definedasfollows:

<a1,b1> <r ((Ig,bg) iff a1 <A ag\/(al =as ANb; <p b2)

We shaw that <, is alinearordering: Irr eflexivity: Considerary (a,b) € A x B. Sinceneithera <4 anorb <g b
hold (by irreflexivity of < 4 and<g), wedonothave {(a,b) <r {a,b). Transitivity: Suppos€ay, b)) <r (az,bs) and
<a2, b2) <r (ag, bg) We wantto shav <a1,b1) <r <a3, bg) Noticethata; < as andas < as. If wehavea; <4 as
oras <4 as, thena; <4 as, andwe aredone. Otherwisea; = a» = a3 andb; <g by <p bsz. In this casewe
haveb; <p bs by transitvity, andagain,this implies (a1, b1) <1, {as, b3) asdesired.ConnectednessConsiderary
(a1,b1), {as2,b2) € A x B. By connectednessf < 4, we have eithera; <4 a2 0ra; = az 0ras <4 a;. In thefirst
casewe have {a1,b1) <z, {as,b2), andin thelastcasewe have (a2, b2) <1, {(a1,b1); if eitherof thesehappensye
aredone.Theremainingcasels a; = as. By connectednessf < g, we have eitherb; <p by 0rby = by Orby <p by.
In thefirst casewe have (a1, b1) <1 (a2, bs), andin thelastcasewe have (a2, b2) <1 {(a1,b1). Theonly remaining
caseis whenb, = be, butthenwe have (a;, b1) = (a2, b2). Thuswe aredone.

Problem 6.22 We will shov thatthe statement
For ary setA thereis afunctionF : | J A — A suchthatz € F(z) forallz € |J A *

is equivalentto the axiom of choice. We discussedour equivalentstatement®f the axiom of choicein class.Here,
we will shov (AC2)= (*) = (AC3).

To shaw thefirst implication,assumgAC2) andlet A beary set. ConsidertherelationR C (|J A) x A defined
by (z,a) € R <= =z € a € A. By thedefinitionof union,for eachz € |J A, thereexistsa € A with z € a; thus



J A is thedomainof R. By (AC2),thereexistsafunctionF' : | J A — A with F C R. Thisfunction F' satisfieghe
property(*): namelyfor all z € |J A, wehave(z, F(z)) € F C R, thusz € F(z) by definitionof R.

Now assume*). We will shav (AC3),i.e. the existenceof a choicefunctionG : (#A — {0}) — A, for ary set
A. Soconsiderary setA. Forary z € A, definethesetl, ={a CA|z€ca} € PFPA LetA* ={I, | z € A} C
PPA. Letgp: A — A* bethefunctiondefinedby ¢(z) = I,. We claim:

1. ¢ is one-to-oneandonto. Thus¢~! : A* — A is awell-definedfunction. Proof: To shav that¢ is one-to-one,
assumep(y) = ¢(z) for somey, z € A. Thenl, = I. Since{y} is amemberof I, it mustalsobeamember
of I, which meanspy definitionof I, thatz € {y}, hencey = z. This provesthat¢ is one-to-oneClearly, ¢
is onto A* by definitionof A*.

2. |JA* = PA—{0}. Proofa € JA* iff 32 € A(a € I,)iff 32 € a C Aiffa C Aanda # 0 iff
a€ PA—{0}.

By thehypothesig*), whenappliedto thesetA*, it followsthatthereexistsafunctionF : | J A* — A* suchthata €
F(a) foralla € | J A*. We definenew defineafunctionG : (#A — {0}) — A asfollows: Let G(a) = ¢~ (F(a)).
By claims1 and2 above, this is a well-definedfunction. Now considerary a € #A — {0}. Letz = G(a). Then
I, = ¢(z) = ¢(G(a)) = ¢(¢~1(F(a))) = F(a) by definitionsof ¢ andG. Also a € F(a) by constructionof F,
hencea € I,. Thelatterimplies z € a by definitionof I,. Sincez wasG(a), we have G(a) € a. Sincea was
arbitrary this holdsfor all a € A — {0}, which provesthatG is the desiredchoicefunction.

Problem 7.1 Unlike in Problem3.44, both claims are wrong for partial orders. Considerthe following function
betweerpartially orderedsets:

This function satisfiesr <4 y = f(z) <p f(y), butit is neitherone-to-onenor doesit satisfy f(z) <p f(y) =
x <4 y. Noticethattheelements andc satisfy f(c) <p f(b), butnote <4 b.



