MATH 582, INTRODUCTION TO SET THEORY, WINTER 1999

Answers to Problem Set 5

Problem 4.2 Suppose a is a transitive set. Then $\bigcup (a^+) = a \subseteq a^+$ by Theorem 4E. This shows that a^+ is transitive.

Problem 4.3

- (a) Suppose a is a transitive set. To show that $\mathscr{P}a$ is transitive, take any $x \in \mathscr{P}a$; it suffices to show that $x \in \mathscr{P}a$. We know $x \in y \subseteq a$, hence $x \in a$. Since a is transitive, this implies $x \subseteq a$, thus $x \in \mathscr{P}a$, as desired.
- (b) Suppose 𝒫a is a transitive set. To show that a is transitive, take any y ∈ a. It suffices to show that y ⊆ a. We know that {y} ⊆ a, hence {y} ∈ 𝒫a. Since 𝒫a is transitive, this implies {y} ⊆ 𝒫a, hence y ∈ 𝒫a, thus y ⊆ a, as desired.

Problem 4.4 Suppose that a is a transitive set. To show that $\bigcup a$ is transitive, take any $y \in \bigcup a$. It will suffice to show that $y \subseteq \bigcup a$. We know that $y \in z \in a$ for some z, by definition of union. Thus $y \in a$ by transitivity of a, which implies $y \subseteq \bigcup a$, as desired.

Problem 4.6 Suppose $\bigcup (a^+) = a$. To prove that *a* is transitive, observe that $a \subseteq a^+$, hence $\bigcup a \subseteq \bigcup (a^+) = a$ by Problem 2.4. This shows *a* is transitive.

Problem 4.8 Assume $f: A \to A$ is one-to-one and $c \in A - \operatorname{ran} f$. Define $h: \omega \to A$ by recursion:

$$\begin{aligned} h(0) &= c, \\ h(n^+) &= f(h(n)) \end{aligned}$$

Remark: First observe that $h(n^+) \neq h(0)$ for all $n \in \omega$, since $h(n^+)$ is in the range of f, whereas h(0) is not. Also recall from Theorem 4C that every natural number is either 0 or a successor.

To show that h is one-to-one, we have to show that h(n) = h(m) implies n = m, for all $n, m \in \omega$. We prove this by induction on n. So let

$$T = \{ n \in \omega \mid (\forall m \in \omega) \ h(n) = h(m) \Rightarrow n = m \}.$$

We show that T is inductive. Base case: Suppose h(0) = h(m). By the above remark, m is not a successor, hence m = 0. Induction step: Assume $n \in T$. To show that $n^+ \in T$, assume $h(n^+) = h(m)$. By the remark, $m \neq 0$, so $m = k^+$ for some $k \in \omega$. Then $h(n^+) = h(k^+)$ implies f(h(n)) = f(h(k)), which implies h(n) = h(k), since f is one-to-one. By induction hypothesis, h(n) = h(k) implies n = k, and thus $n^+ = k^+ = m$. This shows that T is inductive, and thus that h is one-to-one.

Problem 4.9 To show that $C^* = C_*$, we show each inclusion separately. Let

$$\mathscr{B} = \{ X \mid A \subseteq X \subseteq B \land f[\![X]\!] \subseteq X \}.$$

To prove the left-to-right inclusion, we first claim that $f[\![C_*]\!] \subseteq C_*$. To prove this, consider any $y \in f[\![C_*]\!]$. Then y = f(x) for some $x \in C_*$. Since $C_* = \bigcup_{i \in \omega} h(i)$, this implies $x \in h(i)$ for some $i \in \omega$, by definition of union. It follows that $y = f(x) \in f[\![h(i)]\!] \subseteq h(i^+) \subseteq C_*$. Since y was arbitrary, this proves our first claim.

Also, note that $A = h(0) \subseteq C_* \subseteq B$. Thus, C_* is a member of the set \mathscr{B} . But $C^* = \bigcap \mathscr{B}$, and hence $C^* \subseteq C_*$, which proves the first inclusion.

Before we prove the right-to-left inclusion, notice that for all $X, Y \subseteq B, X \subseteq Y$ implies $f[X] \subseteq f[Y]$. This is proved as in Theorem 3K.

We claim that $h(n) \subseteq C^*$ for all $n \in \omega$. We prove this by induction: *Base case:* Since $A \subseteq X$ holds for all $X \in \mathscr{B}$, we have $A \subseteq \bigcap \mathscr{B}$, and thus $h(0) \subseteq C^*$. *Induction step:* Suppose $h(n) \subseteq C^*$. Then for all $X \in \mathscr{B}$, one has $h(n) \subseteq X$, and hence, by the above remark, $f[[h(n)]] \subseteq f[[X]]] \subseteq X$. Since this holds for all $X \in \mathscr{B}$, we also have $f[[h(n)]] \subseteq \bigcap \mathscr{B} = C^*$. We already know $h(n) \subseteq C^*$, and thus $h(n^+) = h(n) \cup f[[h(n)]] \subseteq C^*$. This finishes the induction step.

We have shown that $h(n) \subseteq C^*$ for all $n \in \omega$. This implies the desired inclusion $C_* = \bigcup_{i \in \omega} h(i) \subseteq C^*$. So the proof is finished.

Problem 4.13 Suppose to the contrary that there are natural numbers $m, n \neq 0$ such that $m \cdot n = 0$. Then $m = k^+$ and $n = l^+$ for some $k, l \in \omega$. We calculate

$$m \cdot n = k^{+} \cdot l^{+}$$

= $k^{+} \cdot l + k^{+}$ by (M2)
= $(k^{+} \cdot l + k)^{+}$ by (A2),

Thus, $m \cdot n$ is a successor, a contradiction.

Problem 4.17 First notice that for all $m \in \omega$, one has $m \cdot 1 = m \cdot 0^+ = m \cdot 0 + m = 0 + m = m + 0 = m$, by definition of 1, (M2), (M1), commutativity of +, and (A1).

We now prove $m^{n+p} = m^n \cdot m^p$ by induction on *p. Base case:* For p = 0, we have

$$m^{n+0} = m^n$$
 by (A1)
= $m^n \cdot 1$ by the above remark
= $m^n \cdot m^0$ by (E1)

Induction step: Suppose the claim holds for p. To show that it holds for p^+ , we calculate

$$m^{n+p^{+}} = m^{(n+p)^{+}} \qquad \text{by (A2)}$$

= $m^{n+p} \cdot m \qquad \text{by (E2)}$
= $(m^{n} \cdot m^{p}) \cdot m \qquad \text{by ind. hyp.}$
= $m^{n} \cdot (m^{p} \cdot m) \qquad \text{by associativity of multiplication}$
= $m^{n} \cdot m^{p^{+}} \qquad \text{by (E2).}$