MATH 582, INTRODUCTION TO SET THEORY, WINTER 1999

Answers to Problem Set 7

Problem from Class. Using the replacement axiom, give an alternative proof that $A \times B = \{\langle a, b \rangle \mid a \in A \land b \in B\}$ is a set, for sets A and B.

The trick is that we must apply the replacement axiom in each component separately. First, for each $b \in B$, we apply the replacement axiom to the set A and the formula $\phi(x,y) \equiv (y=\langle x,b\rangle)$ to obtain the set $A_b=\{\langle a,b\rangle\mid a\in A\}$. Then, we can apply the replacement axiom again, this time to the set B and the formula $\psi(x,y) \equiv (y=A_x)$, to obtain the set $C=\{A_b\mid b\in B\}$. Then $x\in\bigcup C$ if and only if for some $b\in B$, $x\in A_b$, if and only if for some $b\in B$ and some $a\in A$, $x=\langle a,b\rangle$. Thus, $\bigcup C=A\times B$ is the desired product.

Problem 7.4 First, notice that the definition of R is equivalent to

$$mRn \iff \phi(m) <_L \phi(n),$$

where $\phi: P \to P \times P$ is the function $\phi(n) = \langle f(n), n \rangle$, and $\langle f(n), n \rangle$, and $\langle f(n), n \rangle$ is one-to-one.

We prove that R is a well-order by showing two things: (a) $<_L$ is a well-order on $P \times P$, and (b) well-orders are reflected by one-to-one functions. The last statement means that if $\langle W, < \rangle$ is a well-order and $\phi : B \to W$ is a one-to-one function, then the relation R that is defined on R by R is a well-order on R.

Clearly, from these two statements it follows that R is a well-order.

- (a) We know from Problem 3.45 that the lexicographic order $<_L$ is a linear order on $P \times P$. To show that $<_L$ is a well-order, take any non-empty subset A of $P \times P$. Let $A_0 = \{m \in P \mid \exists n. \langle m, n \rangle \in A\}$. Then A_0 is non-empty, thus it has a least element m_0 , by the well-order property of P. Now let $A_1 = \{n \in P \mid \langle m_0, n \rangle \in A\}$. Then A_1 is non-empty, thus it has a least element n_0 . We claim that $\langle m_0, n_0 \rangle$ is the least element of $\langle A, <_L \rangle$. Clearly, by construction, $\langle m_0, n_0 \rangle \in A$. Consider any other $\langle m, n \rangle \in A$. Then $m \in A_0$, and thus $m_0 \leqslant m$ by leastness of m_0 . There are two cases: either $m_0 < m$, in which case $\langle m_0, n_0 \rangle <_L \langle m, n \rangle$ by definition of the lexicographic order. Or else, $m_0 = m$. In the latter case, we have $n \in A_1$, and by the leastness of n_0 , it follows that $n_0 \leqslant n$. Again, by the definition of the lexicographic order, this implies $\langle m_0, n_0 \rangle \leqslant_L \langle m, n \rangle$, showing that $\langle m_0, n_0 \rangle$ is the least element of A. Thus, $\langle m_0, n_0 \rangle \in A$.
- (b) Suppose $\langle W, < \rangle$ is a well-order and $\phi: B \to W$ is a one-to-one function. Define a relation R on B by $xRy \iff \phi(x) < \phi(y)$. One easily sees that this relation is irreflexive, transitive, and connected: thus it is a linear order. Now if A is a non-empty subset of B, then $\phi[\![A]\!]$ is a non-empty subset of W, thus it has a least element $\phi(x)$. This means that for all $y \in A$, $\phi(x) \leqslant \phi(y)$, hence xRy. Thus, x is a least element of A, showing that R is a well-order.

The claim follows. Actually, the well-order R resembles that shown in Fig. 45(d).

Problem 7.5 Suppose $x \le f(x)$ does not hold for all $x \in A$; then there is a least $x \in A$ such that f(x) < x. By hypothesis, this implies f(f(x)) < f(x), i.e. f(y) < y, where y = f(x). But y < x, contradicting the leastness of x.

Problem 7.7 Let C be a fixed set, and let $\gamma(x,y)$ be the formula

$$y = C \cup \bigcup \bigcup \operatorname{ran} x.$$

Clearly, for every set x, there exists a unique y with $\gamma(x,y)$. Thus, we can apply transfinite recursion to obtain a function F with domain ω , such that for all $n \in \omega$, $\gamma(F \upharpoonright \operatorname{seg} n, F(n))$, which is to say,

$$\begin{array}{rcl} F(n) & = & C \cup \bigcup \bigcup \operatorname{ran}(F {\upharpoonright} \operatorname{seg} n) \\ & = & C \cup \bigcup \bigcup F \llbracket \operatorname{seg} n \rrbracket. \end{array}$$

(a)

$$\begin{array}{lll} F(0) &=& C \cup \bigcup \bigcup \emptyset = C \\ F(1) &=& C \cup \bigcup \bigcup \{F(0)\} = C \cup \bigcup C \\ F(2) &=& C \cup \bigcup \bigcup \{F(0), F(1)\} = C \cup \bigcup (C \cup \bigcup C) \\ &=& C \cup \bigcup C \cup \bigcup \bigcup C \text{ (by Problem 2.21)} \end{array}$$

Our best guess is that $F(n) = C \cup \bigcup C \cup ... \cup \bigcup^n C$.

(b) Suppose $a \in F(n)$. Then

$$\begin{array}{ll} a & \subseteq & \bigcup F(n) & \text{by Problem 2.3} \\ & = & \bigcup \bigcup \{F(n)\} \\ & \subseteq & C \cup \bigcup \bigcup F[\![\operatorname{seg} n^+]\!] & \operatorname{because} \, \{F(n)\} \subseteq F[\![\operatorname{seg} n^+]\!] \\ & = & F(n^+). \end{array}$$

(c) Let $\bar{C} = \bigcup \operatorname{ran} F = \bigcup_{n \in \omega} F(n)$. Then $C = F(0) \subseteq \bar{C}$, and \bar{C} is transitive: if $a \in \bar{C}$, then $a \in F(n)$ for some $n \in \omega$, and thus $a \subseteq F(n^+)$ by (b), which implies $a \subseteq \bar{C}$.

Moreover, one can show that \bar{C} is actually the *smallest* transitive set containing C. To prove this, one first proves that if C is already a transitive set, then F(n) = C, for all n, and thus $\bar{C} = C$. One can prove this claim by transfinite induction on n: for the induction hypothesis, assume that F(x) = C has already been shown for all $x \in \text{seg } n$. Then $F[\![\text{seg } n]\!] \subseteq \{C\}$, and equality holds if and only if $n \neq 0$. We have $F(n) = C \cup \bigcup \bigcup F[\![\text{seg } n]\!] \subseteq C \cup \bigcup \bigcup \{C\} = C \cup \bigcup C = C$. The last step follows because C is transitive. On the other hand, clearly $C \subseteq F(n)$, hence C = F(n) as desired.

Next, one proves that $C \subseteq D$ implies $\bar{C} \subseteq \bar{D}$; this is again shown by transfinite induction. Now it follows that if C is any set, and D is a transitive set containing C, then $\bar{C} \subseteq \bar{D} = D$. Hence \bar{C} is contained in any transitive set containing C, as desired. For this reason, \bar{C} is called the *transitive closure* of C.

Problem 7.8 Let $\phi(x)$ be any formula not containing the variable B. ($\phi(x)$ may contain some other variables). We want to prove the subset axiom

$$\forall A \exists B \forall x (x \in B \iff x \in A \land \phi(x))$$

from the other axioms. Consider the formula $\psi(x,y) \equiv (x=y \land \phi(y))$. Clearly, $\psi(x,y_1)$ and $\psi(x,y_2)$ implies $y_1=y_2=x$, and we can apply the replacement axiom schema to ψ to obtain a set B such that for all $y,y\in B$ if and only if there exists $x\in A$ such that $\psi(x,y)$. By definition of ψ , we thus have $y\in B$ if and only if $y\in A$ and $\phi(y)$, and thus B is the set that the subset axiom requires.

Problem 7.9 First, use the empty set axiom and twice the power set axiom to get the set $\mathscr{PP}\emptyset = \{\emptyset, \{\emptyset\}\}$. This set has precisely two elements. Given any sets u and v, we can construct the pair set $\{u,v\}$ by the replacement axiom: Let $\psi(x,y)$ be the formula

$$(x = \emptyset \land y = y) \lor (x = \{\emptyset\} \land y = y).$$

Clearly, for each x there exists at most one y such that $\psi(x,y)$, so by replacement, there exists a set B such that $y \in B$ if and only if $\psi(x,y)$ for some $x \in \{\emptyset, \{\emptyset\}\}$, if and only if $y \in \{u,v\}$.