MATH 316, DIFFERENTIAL EQUATIONS, WINTER 2000

Answers to the First Midterm

Problem 1 (12 points) Suppose the temperature of a cup of coffee obeys Newton's law of cooling. A cup of coffee is freshly poured and placed outdoors on a cold day. Suppose the coffee has a temperature of 200° F when it is first poured, and after ten minutes is has cooled down to 146° F. If the outside temperature is 38° F, then at what time does the coffee reach 86° F? (You may use the facts that $\ln \frac{2}{3} \approx -0.4$ and that $\ln \frac{8}{27} \approx -1.2$).

Answer: Let y be the temperature, in ${}^{\circ}F$, as a function of time t, in minutes. Newton's law of cooling states that y' is proportional to the temperature difference, so y' = k(y-38). Separating, we get $dy/(y-38) = k \, dt$. Integrating, we obtain $\ln |y-38| = kt+C$, or $y-38 = Ae^{kt}$, where A is any constant. We plug in the first initial condition t=0 and y=200, to obtain A=162. Next, we plug in the second "initial" condition t=10 and y=146 to obtain $146-38=162e^{10k}$, or $k=\frac{1}{10}\ln\frac{108}{162}=\frac{1}{10}\ln\frac{2}{3}$. Finally, we set y=86 and solve for t. We get $86-38=162e^{kt}$, or $t=\frac{1}{k}\ln\frac{48}{162}=10\frac{\ln\frac{8}{27}}{\ln\frac{2}{3}}=10\cdot 3=30$. Thus the coffee reaches $86^{\circ}F$ thirty minutes after it is poured.

Problem 2 (12 points) For each of the following differential equations, state its type (for instance linear, non-linear, separable, exact, homogeneous) and find the general solution to each equation. (You do not need to solve your answer for y).

(a)
$$\frac{dy}{dx} = \frac{x^2}{y^2} + \frac{y}{x}$$
.

Answer: This equation is homogeneous. If we do the substitution y = vx (thus y' = v'x + v), we get $v'x + v = 1/v^2 + v$, or $v^2dv = dx/x$. Integrating, we obtain $v^3/3 = \ln|x| + C$. Resubstituting v = y/x, we get $\frac{y^3}{2\pi^3} = \ln|x| + C$.

(b)
$$y' + y = t$$
.

Answer: This is a linear equation of the form y' + p(t)y = g(t), where p(t) = 1, g(t) = t. We find an integrating factor $\mu(t) = \exp \int p(t) dt = e^t$. We calculate $\int \mu(t)g(t) dt = \int t e^t dt = t e^t - e^t + C$ (using integration by parts). Thus the general solution is

$$y = rac{\int \mu(t)g(t)dt + C}{\mu(t)} = rac{te^t - e^t + C}{e^t} = t - 1 + Ce^{-t}.$$

(c)
$$(x^2 + 2x^3y)\frac{dy}{dx} + 2xy + 3x^2y^2 = 0.$$

Answer: This is an exact equation, because $\frac{d}{dx}(x^2+2x^3y)=2x+6x^2y=\frac{d}{dy}(2xy+3x^2y^2)$. We find the potential $\phi(x,y)=x^2y+x^3y^2$. The solution is $\phi(x,y)=C$, or $x^2y+x^3y^2=C$.

Problem 3 (12 points) Suppose that the size y of a certain fish population in a pond is governed by the differential equation

$$y' = y(1 - \frac{y}{400}) - R.$$

Here R is the rate at which fish are being removed from the pond (and turned into cat food by a nearby cannery).

1

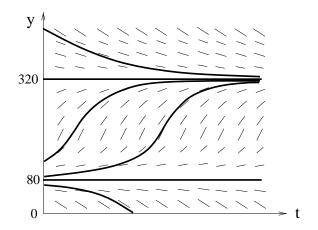
(a) Suppose the cannery harvests fish at a rate of R=64. Sketch a slope field for the differential equation. Make sure you indicate the scale on the y-axis. In your slope field, draw all equilibrium solutions, and at least two increasing and two decreasing solution curves.

Answer: We first determine the equilibrium solutions by setting y' = 0:

$$y(1 - y/400) - 64 = 0 \iff -y^2/400 + y - 64 = 0$$

 $\iff y = \frac{-1 \pm \sqrt{1 - 64/100}}{-2/400}$
 $\iff y = 80 \text{ or } y = 320.$

Moreover, y' is positive for 80 < y < 320, and negative for y < 80 and 320 < y. Thus we get the following sketch:

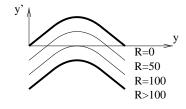


(b) With R = 64, what will be the size of the fish population in the long run (as $t \to \infty$) if y(0) = 100? What if y(0) = 50?

Answer: From the slope field, you can see that y will tend towards the stable equilibrium (y=320) if the initial condition is y(0) = 100. If the initial condition is y(0) = 50, the fish population will go to zero.

(c) What is the maximal rate R at which the cannery can harvest fish without risking the extinction of the fish population?

Answer: If the harvest rate is R, then the equilibrium solutions are determined by $y=\frac{-1\pm\sqrt{1-R/100}}{-2/400}$ as in part (a). By looking at the term under the square root, we find that when R>100, then there is no equilibrium solution and y' is always negative, whereas when $R\leqslant 100$, there are some equilibrium solutions. Thus R=100 is the maximum harvest rate at which the fish population has a chance to survive.



2