
experience in a list-processing language such as LISP or PROLOG; you can safely
ignore these examples if you want to.

Pairs. If M and N are lambda terms, we define the pair 〈M, N〉 to be the lambda
term λz.zMN . We also define two terms left = λp.p(λxy.x) and right =
λp.p(λxy.y). We observe the following:

left 〈M, N〉 →→β M
right 〈M, N〉 →→β N

The terms left and right are called the left and right projections.

Tuples. The encoding of pairs easily extends to arbitrary n-tuples. If M1, . . . , Mn

are terms, we define the n-tuple 〈M1, . . . , Mn〉 as the lambda term λz.zM1 . . . Mn,
and we define the ith projection πn

i = λp.p(λx1 . . . xn.xi). Then

πn
i 〈M1, . . . , Mn〉 →→β Mi, for all 1 6 i 6 n.

Lists. A list is different from a tuple, because its length is not necessarily fixed.
A list is either empty (“nil”), or else it consists of a first element (the “head”)
followed by another list (the “tail”). We write nil for the empty list, and H :: T
for the list whose head is H and whose tail is T . So, for instance, the list of the
first three numbers can be written as 1 :: (2 :: (3 :: nil )). We usually omit the
parentheses, where it is understood that ”::” associates to the right. Note that every
list ends in nil .

In the lambda calculus, we can define nil = λxy.y and H :: T = λxy.xHT .
Here is a lambda term that adds a list of numbers:

addlist l = l(λh t. add h(addlist t))(0).

Of course, this is a recursive definition, and must be translated into an actual
lambda term by the method of Section 3.3. In the definition of addlist , l and t are
lists of numbers, and h is a number. If you are very diligent, you can calculate the
sum of last weekend’s Canadian lottery results by evaluating the term

addlist (4 :: 22 :: 24 :: 32 :: 42 :: 43 :: nil ).

Note that lists enable us to give am alternative encoding of the natural numbers:
We can encode a natural number as a list of booleans, which we interpret as the
binary digits 0 and 1. Of course, with this encoding, we would have to care-
fully redesign our basic functions, such as successor, addition, and multiplication.

21

However, if done properly, such an encoding would be a lot more efficient (in
terms of number of β-reductions to be performed) than the encoding by Church
numerals.

Trees. A binary tree is a data structure that can be one of two things: either a leaf,
labeled by a natural number, or a node, which has a left and a right subtree. We
write leaf (N) for a leaf labeled N , and node (L, R) for a node with left subtree L
and right subtree R. We can encode trees as lambda terms, for instance as follows:

leaf (n) = λxy.xn, node (L, R) = λxy.yLR

As an illustration, here is a program (i.e., a lambda term) that adds all the numbers
at the leafs of a given tree.

addtree t = t(λn.n)(λl r. add (addtree l)(addtree r)).

Exercise 11. This is a voluntary programming exercise.

(a) Write a lambda term that calculates the length of a list.

(b) Write a lambda term that calculates the depth (i.e., the nesting level) of a
tree. You may need to define a function max that calculates the maximum
of two numbers.

(c) Write a lambda term that sorts a list of numbers. You may assume given a
term less that compares two numbers.

22



4 The Church-Rosser Theorem

4.1 Extensionality, η-equivalence, and η-reduction

In the untyped lambda calculus, any term can be applied to another term. There-
fore, any term can be regarded as a function. Consider a term M , not containing
the variable x, and consider the term M ′ = λx.Mx. Then for any argument A,
we have MA =β M ′A. So in this sense, M and M ′ define “the same function”.
Should M and M ′ be considered equivalent as terms?

The answer depends on whether we want to accept the principle that “if M and M ′

define the same function, then M and M ′ are equal”. This is called the principle
of extensionality, and we have already encountered it in Section 1.1. Formally, the
extensionality rule is the following:

(ext∀) ∀A.MA = M ′A
M = M ′

.

In the presence of the axioms (ξ), (cong), and (β), it can be easily seen that MA =
M ′A is true for all terms A if and only if Mx = M ′x, where x is a fresh variable.
Therefore, we can replace the extensionality rule by the following equivalent, but
simpler rule:

(ext) Mx = M ′x, where x 6∈ FV (M, M ′)

M = M ′
.

Note that we can apply the extensionality rule in particular to the case where M ′ =
λx.Mx, where x is not free in M . As we have remarked above, Mx =β M ′x,
and thus extensionality implies that M = λx.Mx. This last equation is called the
η-law (eta-law):

(η) M = λx.Mx, where x 6∈ FV (M).

In fact, (η) and (ext) are equivalent in the presence of the other axioms of the
lambda calculus. We have already seen that (ext) and (β) imply (η). Conversely,
assume (η), and assume that Mx = M ′x, for some terms M and M ′ not con-
taining x freely. Then by (ξ), we have λx.Mx = λx.M ′x, hence by (η) and
transitivity, M = M ′. Thus (ext) holds.

We note that the η-law does not follow from the axioms and rules of the lambda
calculus that we have considered so far. In particular, the terms x and λy.xy

23

are not β-equivalent, although they are clearly η-equivalent. We will prove that
x 6=β λy.xy in Corollary 4.5 below.

Single-step η-reduction is the smallest relation →η satisfying (cong1), (cong2),
(ξ), and the following axiom (which is the same as the η-law, directed left to
right):

(η) M →η λx.Mx, where x 6∈ FV (M).

Single-step βη-reduction →βη is defined as the union of the single-step β- and
η-reductions, i.e., M →βη M ′ iff M →β M ′ or M →η M ′. Multi-step η-
reduction →→η, multi-step βη-reduction →→βη, as well as η-equivalence =η and
βη-equivalence =βη are defined in the obvious way as we did for β-reduction and
equivalence. We also get the evident notions of η-normal form, βη-normal form,
etc.

4.2 Statement of the Church-Rosser Theorem, and some con-
sequences

Theorem (Church and Rosser, 1936). Let →→ denote either →→β or →→βη. Suppose
M , N , and P are lambda terms such that M →→ N and M →→ P . Then there
exists a lambda term Z such that N →→ Z and P →→ Z.

In pictures, the theorem states that the following diagram can always be com-
pleted:

M

�� ��
??

??
?

������
��

�

P

����

N

�� ��

Z

This property is called the Church-Rosser property, or confluence. Before we
prove the Church-Rosser Theorem, let us highlight some of its consequences.

Corollary 4.1. If M =β N then there exists some Z with M, N →→β Z. Similarly
for βη.

Proof. Please refer to Figure 1 for an illustration of this proof. Recall that =β is
the reflexive symmetric transitive closure of →β . Suppose that M =β N . Then
there exist n > 0 and terms M0, . . . , Mn such that M = M0, N = Mn, and

24



M5

��
??

??
?

����
��

�

M6

��
??

??
?

����

M7

����

M3

��
??

??
?

����
��

�

M4

����

M2

����
��

�
M0

��
??

??
?

M1

�� ��

Z ′′

�� ��

Z ′

�� ��

Z

Figure 1: The proof of Corollary 4.1

for all i = 1 . . . n, either Mi−1 →β Mi or Mi →β Mi−1. We prove the claim
by induction on n. For n = 0, we have M = N and there is nothing to show.
Suppose the claim has been proven for n−1. Then by induction hypothesis, there
exists a term Z ′ such that M →→β Z ′ and Mn−1 →→β Z ′. Further, we know that
either N →β Mn−1 or Mn−1 →β N . In case N →β Mn−1, then N →→β Z ′,
and we are done. In case Mn−1 →β N , we apply the Church-Rosser Theorem
to Mn−1, Z ′, and N to obtain a term Z such that Z ′ →→β Z and N →→β Z.
Since M →→β Z ′ →→β Z, we are done. The proof in the case of βη-reduction is
identical. �

Corollary 4.2. If N is a β-normal form and N =β M , then M →→β N , and
similarly for βη.

Proof. By Corollary 4.1, there exists some Z with M, N →→β Z. But N is a
normal form, thus N =α Z. �

Corollary 4.3. If M and N are β-normal forms such that M =β N , then M =α

N , and similarly for βη.

Proof. By Corollary 4.2, we have M →→β N , but since M is a normal form, we
have M =α N . �

25

Corollary 4.4. If M =β N , then neither or both have a β-normal form. Similarly
for βη.

Proof. Suppose that M =β N , and that one of them has a β-normal form. Say,
for instance, that M has a normal form Z. Then N =β Z, hence N →→β Z by
Corollary 4.2. �

Corollary 4.5. The terms x and λy.xy are not β-equivalent. In particular, the
η-rule does not follow from the β-rule.

Proof. The terms x and λy.xy are both β-normal forms, and they are not α-
equivalent. It follows by Corollary 4.3 that x 6=β λy.xy. �

4.3 Preliminary remarks on the proof of the Church-Rosser
Theorem

Consider any binary relation → on a set, and let →→ be its reflexitive transitive
closure. Consider the following three properties of such relations:

(a) M

�� ��
??

??
?

������
��

�

P

����

N

�� ��

Z

(b) M

��
??

??
?

����
��

�

P

����

N

�� ��

Z

(c) M

��
??

??
?

����
��

�

P

��

N

��

Z

Each of these properties states that for all M, N, P , if the solid arrows exist, then
there exists Z such that the dotted arrows exist. The only difference between (a),
(b), and (c) is the difference between where → and →→ are used.

Property (a) is the Church-Rosser property. Property (c) is called the diamond
property (because the diagram is shaped like a diamond).

A naive attempt to prove the Church-Rosser Theorem might proceed as follows:
First, prove that the relation →β satisfies property (b) (this is relatively easy to
prove); then use an inductive argument to conclude that it also satisfies property
(a).

Unfortunately, this does not work: the reason is that in general, property (b) does
not imply property (a)! An example of a relation that satisfies property (b) but not

26



•

��
@@

@@
•

��~~
~~

��
@@

@@
•

��
@@

@@

•

��~~
~~

•

��~~
~~

��
@@

@@
•

��~~
~~

•

��
@@

@@
•

��~~
~~

��
@@

@@
•

��
@@

@@

•

��~~
~~

•

��~~
~~

��
@@

@@
•

��~~
~~

•

��
@@

@@
•

��~~
~~

��
@@

@@
•

��
@@

@@

•

��~~
~~

•

��~~
~~

��
@@

@@
•

��~~
~~

•

��
@@

@@
•

��~~
~~

��
@@

@@
•

��
@@

@@

•

����
��

��
•

����
��

��

��
::

::
::

•

����
��

��

...
...

...

Figure 2: An example of a relation that satisfies property (b), but not property (a)

•

��
??

?
����

�

•

��
??

?
��

•

��
??

?
��

•

��

•

������
�

•

����

•

����

•

��

•

������
�

•

����

•

����

•

��

•

������
�

•

����

•

����

•

��

•

��

•

��

•

��

•

Figure 3: Proof that property (c) implies property (a)

27

property (a) is shown in Figure 2. In other words, a proof of property (b) is not
sufficient in order to prove property (a).

On the other hand, property (c), the diamond property, does imply property (a).
This is very easy to prove by induction, and the proof is illustrated in Figure 3. But
unfortunately, β-reduction does not satisfy property (c), so again we are stuck.

To summarize, we are faced with the following dilemma:

• β-reduction satisfies property (b), but property (b) does not imply property
(a).

• Property (c) implies property (a), but β-reduction does not satisfy property
(c).

On the other hand, it seems hopeless to prove property (a) directly. In the next
section, we will solve this dilemma by defining yet another reduction relation .,
with the following properties:

• . satisfies property (c), and

• the transitive closure of . is the same as that of →β (or →βη).

4.4 Proof of the Church-Rosser Theorem

In this section, we will prove the Church-Rosser Theorem for βη-reduction. The
proof for β-reduction (without η) is very similar, and in fact slighly simpler, so we
omit it here. The proof presented here is due to Tait and Martin-Löf. We begin by
defining a new relation M . M ′ on terms, called parallel one-step reduction. We
define . to be the smallest relation satisfying

(1)
x . x

(2)
P . P ′ N . N ′

PN . P ′N ′

(3)
N . N ′

λx.N . λx.N ′

(4)
Q . Q′ N . N ′

(λx.Q)N . Q′[N ′/x]

(5)
P . P ′, where x 6∈ FV (P )

λx.Px . P ′
.

28


