Math 4680, Topics in Logic and Computation, Winter 2012
Lecture Notes 1: The Language of Sentential Logic
Peter Selinger

1 Induction and recursion

1.1 Induction

Let X be a set, and le?X = {A | A C X} be the powerset of. Let
. X — X be amonotone operation, i.e., fordl B € #X, we have
A C Bimplies®(A) C ®(B).

Definition. We say thata set C X is closed unde® if ®(A) C A.

Proposition 1. (a) Let(A;);c; be a family of sets such that eadh is closed

under®. Then the intersectiod = (1, ; A; is also closed undep.
(b) If B C X is any set, then there exists a smallest sulbset X such that

B C BandB s closed unde.

Proof. (a) Leti € I be arbitrary. By hypothesis, we have thdt is closed

under®, so®(A;) C A;. SinceA C A; for all i, we haved(A) C ®(4;)

by monotonicity of®. Hence®(A) C A;. Sincei was arbitrary, it follows

that®(A) C ,.; Ai, therefored(A) C A andA is closed unded.

(b) This is a trivial consequence of (a). LBtbe the intersection of all sets
A € 2X such thatB C A andA is closed undef. By (a), B is itself
closed undes, and it also containd. Since itis the intersection of all such
sets, it is therefore the smallest with those properties. O

Corollary 2 (Induction principle) Let B C X be defined as in Proposition 1, i.e.,
B is the smallest subset &f that containsB and is closed undeb. Suppose that
P is a property of elements of. Further suppose that

(a) forall z € B, the propertyP(x) holds (base case), and
(b) the set{x | P(x)} is closed undef (induction step).

Then the property?(z) holds for allx € B.

Proof. Let A = {z | P(x)}. By the base casd&} C A, and by the induction step,
A is closed unde®. SinceB was the smallest set with these two properties, it
follows thatB C A. O

Example3. Let X be a set) € X be an element, and: X — X a one-to-one
function whose image does not includeFor A C X, let®(A) = {s(x) | x €
A}. Then a setl is closed unde® if and only if for allz € A, we haves(x) € A.
We also say that the sditis closed undes in this case.

Let N be the smallest subset &f containing) and closed undey. In this case, the
induction principle asserts the following: I is a property such tha®(0) holds

(base case) and such that for allif P(z) holds thenP(s(x)) holds (induction
step), then it follows thaP(z) holds for allz € N.

This is just the usual induction principle on the natural ens; note thatV as

defined above is isomorphic to the natural numbers. In faistj$ how the natural
number are defined from the axiom of infinity (the axiom of iitfinn set theory
asserts that there exists an infinite set; aeis by definition infinite if there
exists a one-to-one function: X — X that is not onto. By taking to be some
element ofX not in the range of, one arrives at the above definition &1.

Exampled. Let X be a set, letB C X be a subset, and lgt : X — X and
g : X x X — X be functions. Defin@(A) = {f(z) | z € A} U{g(z,y) |

x,y € A}. Then a setd is closed unde® if and only if for all x,y € A, we have
f(x) € Aandg(z,y) € A. We also say thatl is closed undetf andg in this
case.

Let B be the smallest subset &f containingB and closed undef andg. In
this case, the induction principle asserts that if some gntyP is true of all the
elements ofB (base case), and moreover, if for all elementg satisfying P, it
is also true thaf (x) andg(z, y) satisfy P (induction step), then it follows that

is true for all elements ob.

If some property of subsetd of X can be expressed in the formi‘is closed
under®”, for some monotone operatich : X — £ X, then we say that it is
aclosure property

1.2 Recursion
Let us consider again the situation from Example 4, i.e.:

e X is aset,



e f: X — Xandg: X xX — X are functions.

For a given subsd® C X, we know that there exists a smallest Bethat contains
B and is closed undef andg.

We are now interested in the question of how one can defindifurscon the set
B. In particular, we would like to define such functions by neston. We have the
following recursion principle:

Theorem 5(Recursion principle) Assume thaB is defined as in the preceding
paragraph. Moreover, assume that the functignsX — X andg : X x X — X
are one-to-one and have disjoint ranges, and that their esraye disjoint fron3.
Let.S be some set and let there be given three function®? — S,y : § — S,
andy, : S x S — S. Then there exists a unique functibn B — S such that:

(@) forallz € B, h(z) = p(x);
(b) forallx € B, h(f(z)) = ¢¢(h(z)); and
() forallz,y € B, h(g(w,y)) = ¢g(h(z), h(y)).

Proof. Uniqueness is easy, because we can prove it by inductioposeghat
andh’ are two such functions. Then use induction to prove ttay = »’(z) for
all z € B. Both the base case and the induction step are trivial.

The difficult part of this proofis existence of a functibiaving the stated proper-
ties. We prove this by first considering an analogous prgperpartial functions.
We say that a partial functioh: B — S is consistentf it satisfies the following
partial version of properties (a)—(c) above:

(@) forall x € B, if k(x) is defined, theik(x) = ¢(z);

(b’) forall z € B, if k(f(z)) is defined, therk(x) is defined, and(f(z)) =
Yy(k(x)); and

(c) forall z,y € B, if k(g(x,y)) is defined, therk(z) andk(y) are defined,
andk(g(x, y)) = 1y (k(x), k(y))-
We then prove the following claims (the details were dondass):

(1) There exists a consistent partial functian(Proof: the empty partial func-
tion k = 0 will do.)

(2) If k andk’ are consistent partial functions, then foralE B, if k(z) and
k' (x) are both defined, theia(xz) = k/(z). (Proof: by induction).

(3) If (ki)icr is any family of consistent partial functions, thefy_; k; is a
consistent partial function. (Proof: the fact that it’s atjzd function follows
from (2). The proof of its consistency is trivial).

(4) Everyx € B isin the domain of some consistent partial functior{Proof:
by induction. Base case: Farc B, we can choosé : B — S defined
by k(z) = ¢(z) if x € B, andk(z) = undefined otherwise. Clearly
this satisfies (@); the fact that it also satisfies (b’) anylf@lows from the
assumption that the rangesf and), are disjoint fromB. For the first
induction step, assume thats in the domain of; we want show thaf (z)
is in the domain of some consistérit We definet’ (y) = k(y) if y # f(z),
andk’(f(x)) = ¢s(k(z)) otherwise. The fact that this satisfies (a’)—(c’)
hinges on the fact that the rangesjfofy are disjoint from each other and
from B, and thatf is one-to-one. The details are left to the reader).

Now let k£ be the union ofill consistent partial functions B — S. By (3), k is
consistent, and by (4 is total. It follows thatk satisfies (a)—(c), which proves
the theorem. O

An analogous theorem of course holds for any number of fanstfy, ..., f, of
any arity, instead of, g.

2 The language of sentential logic

2.1 Well-formed formulas

We define thelphabet of sentential logic to be the set consisting of the following
symbols:

- A V — <+ T _L (connectives)
() (parentheses)
A Ay Aj (sentence symbols)

Notice that there are infinitely many distinct sentence syimb Each of them
counts as an individual, indivisible symbol. The connexdifall into three classes:



binary connectives/, Vv, —, and<»), unary connectives), and nullary con-
nectives, also known as logical constanisgnd_L). We often writex to denote
any of the binary connectives.

Let . A* denote the set of finite strings over the alphalietf « andj are strings,
then we denote their concatenationdy.

Definition 6. The set'W C A* of well-formed formulas (wff's) of sentential
logic is the smallest subset gf* such that

1. A, e W, foralln. AlsoT,L e W.
2. faeWthen( na) € W.

3. Ifa,p e Wthen(an ) € W, wherex € {A,V, —,+>}.

The formulasA,,, T, and_L are calledatomic formulas. All other well-formed
formulas are calledomposite formulas.

Example7. Which of the following are well-formed formulas?

1L(AIANAY) 2.((A3))
4.(((TAA) VA)) — 1)

3.(A4\/A7) — Ag
5( —|A3—)A3)

Answer: only 1. and 4. are well-formed.

Remark. The existence of a “smallest” s&V satisfying conditions 1-3 is of
course guaranteed by the fact that conditions 1-3 are @gsuaperties in the
sense of Section 1.1.

2.2 Induction for well-formed formulas

From Section 1.1, we get an induction principle for wellsfi@md formulas. Since
we will use it a lot, let’s state it explicitly:

Theorem 8 (Induction Principle for well-formed formulas)To prove that a cer-
tain property P holds for all well-formed formulag, it suffices to show that

1. P holds for all atomic formulasg.

2. If P holds for a well-formed formulg, then also fo( — f) .

3. If P holds for well-formed formulag and~, then also for( 5 0 ~) , for
each binary connective. O

We now give some examples of proofs by induction on well-fedformulas.

Example9. Every well-formed formulax has an equal number of left and right
parentheses.

Proof. By induction on the well-formed formula.

1. Base caseSupposey is atomic. Then it has neither left nor right parenthe-
ses, and thus an equal number of each.

2. Induction step for negationSupposex = ( = 3) for some well-formed
formulas. By the induction hypothesis, we may assume thiaas an equal
number of left and right parentheses, sapf each. Theny = ( = ) has
n + 1 left andn + 1 right parentheses.

3. Induction step for binary connectiveket 0 be a binary connective. Sup-
posea = (5 O+) for some well-formed formulag and~. By the in-
duction hypothesis, we may assume tAand~ each have an equal num-
ber of left and right parentheses, sayandm of each, respectively. Then
a = wbinfvy hasn+m+1 left parentheses antt-m + 1 right parentheses.

By induction, this proves the claim. O

As you can see in this example, a proof by induction on weitafed formulas
looks very much like a case distinction: Cased.:is atomic, cases 2 and 3:

« is composite. The only difference to a case distinction & ghesence of an
induction hypothesis: ity is composite, then we may already assume that the
induction hypothesis holds for its immediate subformulas.

To show that a case distinction is really a special case obaffry induction,
consider the next example, in which the induction hypothésiactually never
used!

ExamplelQ. A well-formed formulac does never start with the symbel
Proof. By induction on the well-formed formula.

1. Base caself « is atomic, then it is eitheA,, or T or L. In neither case
does it start with—.



2. Induction step for negationSupposex = ( — 3) for some well-formed
formulag. Thena starts with( and not with—.

3. Induction step for binary connectiveket 0 be a binary connective. Sup-
posea = (S O~) for some well-formed formulag and~. As in the
previous casey starts with( and not with—. O

We give a third example of an induction proof, to establishr@pprty of well-
formed formulas that we will need later. Here, a strihg A* is called annitial
segment of a stringa: € A* if there exists someg € A* such thatw = 3. We
say thats is aproper initial segment of « if it is an initial segment, and if; is
neither equal tex nor to the empty string. We say that a string contains an exces
of left parentheses if it contains strictly more left thaghti parentheses.

Examplell. Every proper initial segment of a well-formed formulacontains
an excess of left parentheses.

Proof. By induction on the well-formed formula.

1. Base caself « is atomic, then it has length 1 and thus it has no proper
initial segments. Thus, there is nothing to show.

2. Induction step for negationSupposex = ( = 3) for some well-formed
formulag. Then the proper initial segments @fare:

(
(—,
(-3 wheres is a proper initial segment ¢f, and

(-8

In the first two cases, there is one left parenthesis and igrbanes. Thus,
there is an excess of left parentheses. In the third ¢dsentains an excess
of left parentheses by induction hypothesis. Adding oneenteft parenthe-
sis certainly leaves the left in the majority. In the laste;ascontains an
equal number of left and right parentheses by Example 9. Wgddine more
left parenthesis creates, again, a majority of left paresdk.

3. Induction step for binary connective$his is very similar to the previous
case. O

Corollary 12. No proper initial segment of a well-formed formula is a well-
formed formula.

Proof. This is an easy consequence of Examples 9 and 11: Every profialr
segment of a well-formed formula contains an excess of Etptheses, and thus
cannot be a well-formed formula. O

2.3 An alternative definition of well-formed formulas

Instead of defining the set of well-formed formulas “from a&§ as the smallest
set satisfying a certain closure property, we could hawerrsdtively defined it
“from below”, by starting from the atoms and iteratively dfig more and more
formulas. We will now give this alternative definition andope that they are
equivalent.

Definition. Let Wy, = {T, L, Ay, Ay, As,...} be the set of atomic formulas.
Foreveryn =0,1,2, ..., define

Wit1 = WhoU{( na) |aeW,}
UW(aAp),(aVP),(a—=p),(asB) |a,B €W}

We define the setV, = (J,—, Wh.

Proposition 13. The two definitions of well-formed formulas coincides, V.=
Wi.

Proof. First, note thatV,, € W, 11, and by a simple induction on the natural
numbers)V,, C W,,, whenevemn < m.

To prove the proposition, we first show that C W,. SinceWV is the smallest
inductive set, it will suffices to prove thad, is inductive. 1.: If « is atomic,
thena € W,, hencea € W,. 2.: Suppose3 € W,. Theng € W,, for
somen. It follows from the definition oV, that( = 5) € W, 11, and thus
(=B € W,. 3.: Supposes,y € W,. Thens € W,, andy € W,, for some
n, m. Assume without loss of generality that< m. In this caseg,y € Wi,
and thug 8 0v) € Wy,+1. Itfollows that( 5 0~) € W.. This proves thatV,
is inductive, and thus thayy C W...

Conversely, we will show thaty, C W. It suffices to show thayy,, C W, for
alln=0,1,2,.... Thisis easy to show by induction on the natural numhel]

Remarkl4. We define theank of a well-formed formulax to be the least such
thata € W,. Thus, the rank of a formula is the number of nesting levelgsof
unary and binary connectives.



2.4 Unique readability

We can think of the set of well-formed formulas as an algelith ane unary and
four binary operations. On the 98¢, consider the following five operations:

L. w - W @ — (—a)

Frn: WxW —W (a, B) = (aAp)
F: WxW —W (a, B) = (aVpP)
F,: WxW —W (a,B) = (a—p)
Foy: WxW —W (a, B) = (a+p)

The following theorem ensures that every well-formed folanzan be read in a
unique way. In practical terms, this means that we have potigim parentheses
into our definition of well-formed formulas to avoid any ambities.

Theorem 15(Unique Readability)

1. Each of the functionB_,, Fa, F\,, F_,, and F., is one-to-one.
2. The ranges of these five functions are pairwise disjoint.

3. The ranges of these five functions are all disjoint fidiy the set of atomic
formulas.

Proof. 1. We show, for instance, that the functidéin is one-to-one. All the
other cases are similar. So assume thaps, ~, andé§ are well-formed
formulas, and thata A 5) = (v A J) . Then, by deleting the first symbol
of the strings on the left-hand-side and right-hand-side]lows that

aAfB) =vA0).

Then eithera = ~, or « is a proper initial segment of, or v is a proper
initial segment otv. Becausex and~y are well-formed formulas, it follows
from Corollary 12 that the last two cases are impossible.dden= ~. By
deletinga from the beginning of each string in our equation, we get

NB) = NI),
and finally, by deleting the first and last symbol,
B =4.

It follows that Fs is one-to-one.

2. We first show that the ranges Bk and F\, are disjoint. The argument is
the same for the other pairs of binary connectives. So su#pihes, 3, -,
ando are well-formed formulas, and théte A ) = (v V §) . By deleting
the first symbol, we get

aApB) =yVi),

and as before, we can use Corollary 12 to concludedhaty. Hence, it
follows that
AB) = V).

However, this is clearly a contradiction, since these twimgs start with a
different symbol.

We now show that the ranges Bf, and F; are disjoint, where is a binary
connective. So suppose thats, andy are well-formed formulas, and that
(—~a) =(B0O%). As before, we delete the first symbol to get

—a) =[£079).

wn

Thus, the well-formed formul& begins with the symbol*”, contradicting
Example 10.

3. We want to show that the images of the five functions areidisfrom V.
From the definition of the five functions, it is clear thatifis in the image
of any of these functions, then it starts with the symk(dl.“On the other
hand, none of the elements W, = {T,L,A;, As, Ag, ...} start with
the symbol (. Thus, the claim follows. O

The Unigue Readability Theorem states that a well-formechéda cannot be
atomic and composite at the same time. It also states thédiifraula is composite,
then in a unique way. This is an important property of our ayntevery well-
formed formula can bearsedin a unique way. Notice that this would not have
been true if we had omitted parentheses. For instance, theufa— a A 3, which

is not well-formed according to our definition, is ambiguniisould be parsed
eitheraq ( ~a) AB) oras( = (aAp)). Ifwe had chosen to allow this more
liberal syntax, then we would have had to introdpcecedence rules, i.e., rules
that determine which connectives bind stronger than otidrieh ones associate
to the left and which ones to the right, and so on. This woulkehaade our
formaltreatment much more complicated.
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2.5 Recursion for well-formed formulas

The unique readability theorem precisely ensures thatuhetionsrF, ..., F,
and the setV, satisfy the hypothesis of Theorem 16. We therefore have the
following recursion principle for defining functions on wébrmed formulas:

Theorem 16(Recursion Principle) Recall that, is the set of atomic formulas.
Suppose we are given a 9éf together with functions

H@ : W() — V,
H.: V-V, and
Hy: V xV =V foreach binary connective.

Then there exists a unique functign W — V such that for allo, 5 € W and
for all binary connectives,

f(a) = Ha(a), if«aisatomic,
f((—~a)) = Ho(f(),
f((anp)) = Hao(f(a), f(B)).

We give some examples of definitions by recursion.

Examplel?7. Therank of a well-formed formulay, in symbolsr(a), is defined
recursively as:

r(a) = 0, if aisatomic,
r((—a)) = ra)+1
r((ecpB)) = max{r(a),r(8)}+1.

Verify that this definition fits the schema of the general Rsimn Principle. What
are the function$f/a, H-, andH5? What isV?

Notice that the notion of rank defined in the previous exarmsplacides with the
notion of rank defined in Remark 14. It is the “nesting depthd dormula.

Examplel8. The function/ : W — N, is defined recursively as:

() = 1, if aisatomic,
((—a)) = (a)+1
(((aoB)) = ta)+0B)+1.

What does the functionrepresent?

11

Examplel9. We define a function subWW — W to compute the set of sub-
formulas of a well-formed formula. It is defined recursively as

sub{«) = {a}, if aisatomic,
sub(( ma)) = sube)U{( ~a)}
su(a0f)) = suba)Usub(B)U{(aDp)}.

We say thap3 is asubformula of « if 5 € suba).

Example20. The set offree sentence symbols of a well-formed formulax, de-
noted F%«), is defined recursively as follows:

FS(An) = {An}v
FST) = FS(1L) = 0,

FS(( —a)) = FSa)
FS(aDp)) = FSa) UFS(p).

2.6 Informal precedence rules

Having established unique readability and the recursiorciple for well-formed
formulas, we now know that the formal language of senteldgit is unambigu-
ous. Secure in this knowledge, we will now relax the syntaaties as far as our
informal treatment is concerned. This means that, when we write flagrftom
now on, we will take more liberties with parentheses.

Convention (Informal precedence rules) From now on, when we write formu-
las, we will sometimes omit certain parentheses. It is ustded that the formulas
that we write are only shorthands, and that they denote fesited formulas in
the formal sense. The following rules determine how misgiagentheses are to
be filled in:

1. Negation takes precedence over binary connectives., Fhas\ 5 means
((ma) AB).

2. "A” and "V take precedence overs” and “«". Thus,a A3 — vy A
meany (aAB) = (yAd)).

3. If we mix “A” with “ v”, or “—" with “ «»”, then we will still write paren-
theses.

4. All binary connectives associate to the right, so that3 Ay meanq a A
(BA7)),anda— B —~ymeand a— (S —7)).
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