Math 4680, Topics in Logic and Computation, Winter 2012

Lecture Notes 2:
Truth, Proofs, Soundness, and Completeness for Sententiabgic

Peter Selinger

1 Truth tables

Fix some two-element s& = {7, F'}, whose members we catlith values The
truth valuesl" and F' are called “truth” and “falsity”, respectively.

On the se, consider the functions_ : B — Bandfa, f—, f—, f« :Bx B —
B whose values are defined in the following table:

z y | f- f/\ z,9) | [~z ) | fo(2,9) | folzy)
T T T T T
T F T F F
F T T T F
F F F T T

We will now define the interpretation of the language of sefiélogic. Recall
thatV is the set of well-formed formulas. Le¥ be the set of sentence symbols.

Definition. A truth assignments a functionv : . — B. It assigns a truth value
to each sentence symbol.

Given a truth assignment we can calculate the truth value of any formula. For-
mally, we define amterpretation functions : WW — B which maps well-formed
formulas to truth values, by the following recursive defonit
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The functionv can be conveniently calculated, for the different possiblen a
truth table. For example, the following truth table shows the valuesiefformula

|
Q
T
=

o(—(— A1 A Ay)) for various different truth assignmentsEach row in the table
corresponds to a different truth assignment.

’U(Al) ’U(AQ) || ?7(—1 Al) | ’TJ(—| Al A Ag) | ’T)(—|(—| AN Ag))
T T F F T
T F F F T
F T T T r
F F T F T

The headers in this table are usually written more sucgird|
A, A ||—|A1|—|A1/\A2|—|(—|A1/\A2)
T T I I T
T F r r T
r T T T F
r F T r T

Definition. If v is a truth assignment andis a formula, we calba theinterpre-
tation of o with respect ta. We sayv satisfiesw if v(a) = T'. We say thaty is
valid or atautologyif every truth assignment satisfies If X is a set of formulas
anda is a formula, then we say tautologically impliese, in symbolsY = «, if
for all truth assignments,

(Vo € 2.5(0) =T) = 9(a) = T.

In words, we say thaX | « if every truth assignment that satisfies all the formu-
las inX also satisfies.. We often abbreviatéo,...,0,} Eatooy,...,on E
a,andX U {c} E ato 3,0 [ a. Also, instead of) = «, we simply writel= a.
Notice that= « if and only if « is a tautology.

If o = 8 andp E «, then we sayy andg aretautologically equivalentand we

write o == f.

It is easy to check whether two formulas are tautologicaijyigalent with truth
tables: « and 8 are tautologically equivalent if their corresponding traable
columns are identical. Alsay tautologically impliesg if in each row wherex
has a truth table entry df, § also has a truth table entry @f. For instance, the
following truth table shows that A; cot As == A; — As:

A A ||—|A1|—|A1\/A2|A1—)A2
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Remark. We never use the symbol “=" to denote tautological equivedenThe
equality symbol is reserved to denatntacticequality of formulas, i.e., equality
of formulas as strings. For tautological equivalence, weagb use = =".

Remark. The statements-i « is a tautology” and & is not a tautology” are not
equivalent. For instance, if is a sentence symbol, then neitkenor -« is a
tautology.

For a list of tautologies, see Endertéh p.37].

2 Natural deduction

There are many possible ways of formalizing proofs. For ¢bisrse, we choose
the formalism ofnatural deductionwhich was first introduced by Gentzen in
1935 ?, 7], and further developed by Prawitz in the 196 [

2.1 Anintuitive explanation of natural deduction

The representation of a proof in the natural deduction syssecalled aderiva-
tion. Loosely speaking, a derivation is a tree-like structur@sehleaves are la-
beled by well-formed formulas. The formulas that occur atldaves are called
the hypothese®r assumptionf the derivation, and the unique formula that oc-
curs at the root of the derivation is called ésnclusion

Here is a simple example of a derivation:

p
aNp

(AT)

The hypotheses are and 3, and the conclusion i& A 5. Thus, this particular
derivation formalizes a proof that the formulaand the formula5 imply the
formulaa A 5. The horizontal line corresponds to an instance ofrd@rence
rule, in this case the rule whose naméAs) or “and introduction”. The formulas
that occur immediately above the horizontal line are calleglpremisesof the
inference rule (as opposedhigpothesesf a derivation). Here is another inference
rule, which is known as “modus ponens”, or “arrow eliminatio

f—=a f

(0%

(=€)

From hypotheses — 3 anda, we may concludg. We can put more than one
rule together to form a derivation:

Pza B g
@]

Y (A7)
a Ny

This derivation has three hypotheses;, anda — 3, and the conclusion A 5.
It is important to remember that each derivation may havdipielhypotheses,
but only a single conclusion.

The following two inference rules are collectively knowntme name “and elim-
ination”. They are very similar, but not quite the same.

(A&1)

NS aNp (AE2)
B

As you see, an inference rule can have two premises or onagaevile will later
see other inference rules that have zero or three premises.

The inference rules that we have seen so far employdsfiyite reasoningfrom
the hypotheses, we derive the conclusion directly withoakimg any additional
assumptions. Another mode of logical reasoning that yodieandiar with is hy-
pothetical reasoningln hypothetical reasoning, one make®mporary(or hypo-
thetical) assumption in order to explore its consequences. Oncetisequences
have been satisfactorily explored, the temporary asswmptiay bediscardedor
canceled An example of hypothetical reasoning is shown in the folfayproof
in the English language:

We want to show that: A (« — ) — . Soassumex A (a — f3)
(we make a temporary assumption). Theholds, as well asc — .
By modus ponens, we ggt Since we have assumed A (a«— 3), it
follows thata A (« — ) — S (at this pointa A (¢ — 3) is no longer
a current assumption, and we may go on to proving other things

In natural deduction, we can introduce a temporary hypd@leany time. Certain
rules allow us to cancel such a temporary hypothesis. Itaa fhut into square
brackets to indicate that it is no longer active. An exampkhis is the following



rule for “arrow introduction”:

T (—)I)
a—

Here, the vertical dots denote an arbitrary derivatiof éfom hypothesisy (and
possibly other hypotheses as well). Notice thég a temporary hypothesis, which
gets canceled when the arrow introduction rule is appliedrder to keep track of
when a particular hypothesis was canceled, we decoratéhiawower case letter,
such asr, y, z, and we put the same letter next to the rule that canceledythe h
pothesis. A temporary hypothesis that has been canceled$dered taken care
of and is no longer considered a hypothesis of the currermathderivation. The
above proof from the English language would be translatedrestural deduction
derivation as follows.

oA @B,

(=€)

x(—)I)
aN(a—8)—p

As you can see, we may use a temporary hypothesis more than loriact, we
may use a temporary hypothesis any number of times. We evgrusaait zero
times, as the following derivation demonstrates:

D
_)
b8— Y
This is a legal derivation g8 —« from «, which makes a hypothetical assumption
5 and uses it zero times!

2.2 The issue of when to introduce a hypothesis

One issue that is often confusing to beginners when they steiritroduced to
natural deduction, or indeed to mathematical hypotheteasoning in general,
is the question of when one is “allowed” to make a hypothétisaumption. At

first, it seems that if one were allowed to make just any assiomghen one could
prove just any statement simply by assuming it.

In fact, the real issue with hypothetical assumptions ishowt to make them, but
how to get rid of therinYou may introduce an assumption at any time, but there
are very strict limitations on when you may cancel one. Thfugou think that
you have finished a proof, but you still have unwanted assmgtying around
that you couldn’t cancel, then you simply have not provedtwia wanted to
prove, at least not from the assumptions that you wantedaweeqt from. So as a
rule, you should only introduce a hypothetical assumptigiou intend to cancel

it sometime later.

For instance, suppose you want to prove the fornulas> 5 A v) — a A 5. You
produce the following derivation:

[0 = BAY]: «

Notice that you have made an assumptiowhich you did not cancel. So you
have a proof ofa — 3 Av) — a A 5 from hypothesig.. Is this what you wanted,
or did you intend to provéa — 5 A v) — a A 8 from no assumptions? In the
latter case, you have not succeeded.

As this example demonstrates, extra assumptions do notdepibofs that are
invalid. They simply lead to proofs that are not quite what yeanted.

2.3 The natural deduction system

Definition. The rules of natural deduction are shown in Table 1. We ongit th
formal definition here; for details, see e.g. van Dalen’sijéd.

2.4 Remarks

Most rules of natural deduction, with the exception of theaxand thecontra)
rule, are either introductio(@) or elimination(€) rules. The introduction rules



Table 1: The rules of natural deduction

Axiom
(0%
And
A
X [J’B (AT) % (AEL) P (AE2)
Arrow
[O‘}x
fza B g
«
o 5 T (—)Z)
Not
[a]s
) . o
n (=&)
z (0 72)
o4
Top andBot
—= (T2
T — (L&)
«
Or
Y w) [a]e [B1y
Vv B :
aVvp Y v
B VI) . 2,y (VE)
Contra

1
— z (contra)
(6%

introduce a connective, and the elimination rules elingrmate. Note, however,
that there is no rule fot. introduction and no rule fof elimination.

Some of the rules have traditional names. We have alreadyioned that the
(—¢€) rule is known asnodus ponensThe(L¢) rule is known asbsurdityor ex

falsum quodlibeffrom a falsity, what you want). An application of ti¢e£) rule

is called acase distinctionand an application of thontra)rule is called groof

by contradiction

If one omits the(contra)rule from the system of natural deduction, one obtains
a logic that is calledntuitionistic logic. It has many applications in computer
science, but we do not consider it further in this course. dfallow the(contra)
rule, the resulting logic is calledlassical logic As we will see soon, classical
logic corresponds precisely to our boolean truth table seics in the sense that
a formula is derivable in classical logic if and only if it ighd in the truth table
semantics.

Notice the difference between tite 7) rule and thgcontra)rule. Since— -« is
a different formula fromy, these rules are not derivable from each other.

Also notice that in the presence of twentra)rule, the(_L£) rule is actually redun-
dant: it corresponds to an application of thentra)rule in which zero hypotheses
are canceled.

The axiom seems strange at first. Why would one need a praofr@im hypoth-
esisa? One example where this is useful is illustrated in the foilhg derivation.
Notice that in the first case of the case distinction, we dlydmve the formula

as a hypothesis, and we needs a conclusion in order to apply thef) rule.

[a A 5]

YN

aV (04/\5) [Oé]q; z,y (VE)

«

We have not introduced any rules for “if and only if”, or thentctive<>. One
could easily add such rules to the system:

Arrow

[0
(+&1)

18, acf  «a

I} «
— (1) M (&)




However, we do not afford ourselves this luxury, since itasily seen that these
rules are derivable if we regards 5 as an abbreviation fdix — 8) A (8 — «).

2.5 Examples

For examples of derivations, see the solutions to Problar8 Sest part.

3 Soundness

Definition. If X is a set of formulas, and a formula, we writeX - « if there
is a derivation with conclusion whose active hypotheses are containelirin
this case, we say thatis derivablefrom ¥ or thatX entailsa. We say thaty is
a theoremof natural deduction if- «, i.e., if there is a derivation af from no
hypotheses.

Notice that entailment - « is defined in terms of derivations, whereas tautolog-
ical implicationY = «, from Section 1, is defined in terms of truth tables. The
following soundness theorem shows that the inference ofleatural deduction
are correct with respect to truth table semantics, i.ey; tleenot derive any false
conclusions.

Theorem 1(Soundness)Y + a = ¥ | «a.

Proof. We need to prove the following statement4fis a derivation ofx from
hypothese&, thenX = «. We prove this by complete induction on the size of
the derivationZ, and by case distinction on the last rule use&in

Here, the size of a derivation is, per definition, the numbdeute applications
(i.e., horizontal lines) that occur in it. Notice that anyridation & of size> 1
has a unique last rule, whose conclusion is the conclusian o the following,
we write

b

(&%

to denote a derivation af whose hypotheses are contained in theXsetWhen
using this notation, it is understood that not all formulasi may actually be
used.

3.1 Case: Axiom
Suppose the derivatio consists of an axiom only, i.e., of a single formula
Since the hypotheses &f are contained irt;, we havea € X. It follows that
¥ = a, as desired.
3.2 Casei(rD)
Suppose the last rule useddnis (AZ). ThenZ is of the form
b 3
o B
A B

Since the subderivations are of smaller size, by inductigothesisy. = « and
¥ = §. Itfollows thaty = a A .

(NT)

3.3 Case(n&)
Suppose the last rule useddnis (A&1). ThenZ is of the form
b
aNp

(%

(NE1)

Since the subderivation is of smaller size, by inductiondthipsisy. = a A S. It
follows thatX |= .

3.4 Casei(n&)

Similar to the previous case.

10



3.5 Case(—1)
Suppose the last rule useddnis (—7). Then? is of the form

Y, (o

a—f
Since the subderivation is of smaller size, by inductiondtgipsis X, o = . It
follows from Problem 1.3.3(a) that = o — S.
3.6 Casei(—¢)
Suppose the last rule useddnis (—&). ThenZ is of the form
> by
a—f
p

Since the subderivations are of smaller size, by inductigrothesisy. = a— 3
andX [= a. It follows that: = 3.

(—=8)

3.7 Case(-1)
Suppose the last rule useddnis (= 7). ThenZ is of the form

3, (o]

2 (—~7)
e’

Since the subderivation is of smaller size, by inductiondtyipsis,>, o &= L.
Thus, no truth assignment that satisfies all formulaX igatisfiesw. It follows
that® ): - Q.

11

3.8 Case(11)

Suppose the last rule useddnis (TZ). ThenZ is
— (T
T( 1)

Any truth assignment satisfi€s, and thus: = T, as desired.

3.9 Case:(Le)
Suppose the last rule useddnis (LE). ThenZ is of the form

by

1
— (L&)
o

Since the subderivation is of smaller size, by inductiondiipsisy. = L. Thus,
no truth assignment satisfies all the formulagofind it follows that: |= «.

3.10 Caseil(vn)
Suppose the last rule useddnis (VZ,). ThenZ is of the form

b

aV (V)

Since the subderivation is of smaller size, by inductiondigipsis,X E «. It
follows that> = a Vv 3.

3.11 Casei(vr)

Similar to the previous case.

12



3.12 Caseiveé)
Suppose the last rule useddnis (vE€). ThenZ is of the form

b Y, (o 2, 18]y

aV ol o
v

T,y (\/8)

Since the subderivations are of smaller size, by inductigothesisy. = a V 3,
¥, a | v,andX, 8 | v. Thus, ifv is any truth assignment satisfying thenv
satisfies eithetv or 3. In either casey satisfiesy. It follows thatY | .
3.13 Caseicontry
Suppose the last rule useddnis (contra) ThenZ is of the form
2, [_' a]oc

1

— = (contra)

o

Since the subderivation is of smaller size, by inductiondtgipsis >, —« = L.
Thus, no truth assignment that satisfies all formulas satisfies— «. It follows
thaty = a.

This finishes the proof of soundness. O

Corollary 2. Every theorem of natural deduction is a tautology.

Proof. By takingX = () in the Soundness Theorem. O

4 Completeness

Completeness is the converse of soundness. While sounstaéss that the rules
of natural deduction are correct, completeness stateshitbed are enough such

13

rules to prove every possible tautological implication.r B purpose of com-
pleteness, we assume that our language does not contaiortheative«, since
we have not included that connective in our natural dedaodtomalism. In light
of the remarks in Section 2.4, this is not a significant rettm.

Theorem 3(Completeness)Y = a = X + a.

The proof of the Completeness Theorem will require somerpiearies.
Definition. A set of formulasX is inconsistentif > - 1. Otherwise . is con-
sistent

We say that® is satisfiableif there exists a truth assignmemntsuch that for all
o € X,9(o) =T. If there is no such truth assignment, theis unsatisfiable

Note that consistency is a concept related to derivatiohgreas satisfiability is
a concept related to truth assignments.

Lemma 4. ¥ is unsatisfiable if and only i = L.

Proof. By definition of tautological implication, we have |= _L iff for all truth
assignments that satisfy all the formulas ix, (1) = 7. But no truth as-
signment satisfies(L) = 7', and thusE = _L iff there is no truth assignment
satisfying all the formulas itx, which is the case iff is unsatisfiable. O

Lemma 5. The following are equivalent:

(a) Forall 3, o, the implicationX = o = X I « holds (completeness),
(b) Forall X, the implication® = L = ¥ + L holds,

(c) Any consistent set of formulas is satisfiable.

Proof. (b) and (c) are clearly equivalent, since (b) just statesahg unsatisfiable
set of formulas is consistent, by Lemma 4. Also, clearly f@lies (b), by taking
a = L. Itremains to show that (b) implies (a).

Assume (b), and assuni = «. Then any truth assignment which satisfies all
formulas inX satisfiesa. Thus, no such truth assignment satisfies, and we
haveX, - a = L. By (b), this implies®, ma - L. Thus, there is a derivation of

14



1 from hypothesesix and— a. Apply the(contra)rule to construct the derivation

Y [mals

1
— z (contra)
«

This provest I «, as desired. O

We will prove the Completeness Theorem by proving condif@rin Lemma 5.
Thus, when given a consistent setof formulas, we must show that it is satis-
fiable. This means, we must produce a truth assignmevttich satisfies every
formula inX. In general, it would be difficult to guess such a truth assignt.
One would be tempted to define

v(An) =T ifSFA,,
v(Ap)=F fXF=A,.

The problem is that, in general, neith&r, nor — A,, needs to be entailed by,
so this approach fails. However, Xf is a maximallyconsistent set of formulas,
thenX entails every formula or its negation. Thus, the cruciahittethe proof
of the Completeness Theorem is to prove first that any camiset of formulas
is contained in a maximally consistent set, and then to usallove method for
definingv.

Definition. A setX of formulas is callednaximally consistentf
(i) X is consistent,
(i) if ¥ C ¥ andX’ is consistent, thel = X'

Lemma 6. If ¥ is a maximally consistent set, then it is closed under déilig,
i.e., X F aimpliesa € 3.

Proof. Suppose: is maximally consistent, and - «. We claim that> U {a} is
consistent. For otherwise, one would havex + L, and then thert would be

15

inconsistent by the following derivation:

Y, [

z (—71)
e’

n (=€)

But this contradicts the assumption thatvas consistent. It follows that U {a}
is consistent. But sincE is maximally consistent, we have = ¥ U {«}, and
thusa € 3. O

Lemma 7. Suppose is a maximally consistent set. Then the following hold:
1) "aeXiffagX.
2) anpeXiffae¥ands € X.
B)avpeXiffacXorpel.
4) a—>peliffagdorpe.
B) T ex.
6) Lgx.

Proof. (1) Clearly,a and— « cannot both be irt;, or elseX would be incon-
sistent. It remains to show that at least one of them 15.i€onsider the set
¥ =¥ U{a}. Either¥ is consistent, in which cage e ¥ by maximality
of X. Or Y’ is inconsistent, in which case, o - L. By applying thg— 1),
we gety - - «, and hence~a € ¥ by Lemma 6.

(2) “="If anpe X, thenE - aandX - 5 by the(A€) rules. Thusp € ¥
andg € ¥ by Lemma6. =" If « € ¥ andg € X, thenX - a A S8 by the
(AZ) rule. Thusa A 8 € ¥ by Lemma 6.

(3) “=" Supposea V g € 3. Suppose, for the sake of contradiction, that
neithera € X norg € . Then—«a € ¥ and— 3 € X by (1). Then the
following derivation shows that is inconsistent:

-6 1A

- [Oz]

y
=&
aV 1 (~8)

z,y (VE)

=&

1
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This contradicts the assumption thatwas consistent. Thugy € X or
8 € X,asdesired. &"If o € X or g € 3, thenX o Vv 8 by one of the
(vI) rules. Thuse V 8 € ¥ by Lemma 6.

(4) “=" Supposea — B € X. If a € %, thenX + 3 by the(—€) rule,
and thusG € ¥ by Lemma 6. So eithert ¢ ¥ or 5 € . “«<" Case 1:
Suppose: ¢ . Then—« € X by (1). The following derivation shows that

YFa— g
o [a],
(=8)
— (L&)
T (—)I)
o —

Thus,a — 5 € ¥ by Lemma 6. Case 2: SuppoSec ¥. By (—17), we
haveX + o — 3, and thusy — € ¥ by Lemma 6.

(5) Suppose, for the sake of contradiction, that) T is inconsistent, i.e.,
3, T + L. Then the following derivation shows thatis already inconsis-
tent:

(T

+ T
—.D =(TD

(=&)

1

This contradicts the assumption thdatwas consistent. Thus; U T is
consistent. By maximality of, we haveT < 3.

(6) L ¢ X because is consistent. O

Lemma 8. Every maximally consistent set is satisfiable.

Proof. Let X be a maximally consistent set. Define a truth assignméyt

v(A,) =T ifA,ex,
v(A,)=F ifA, g%,

We claim that for all formulasgy, one hasi(a) = T iff o € 3. In particular,v

satisfies all the formulas ik, and thusY is satisfiable. We prove the claim by

induction onc.
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Base Caseln casex is a sentence symbol, thefw) = T'iff « € X by definition
of v. In casen = T, thenv(a) = T anda € ¥ by Lemma 7(5). In case = L,
thens(«) = F anda ¢ 3 by Lemma 7(6).

Induction Stepin casen = — 3, thenv(«) = T iff v(8) = F, which is the case,
by induction hypothesis, if ¢ 3. By Lemma 7(1), this happens iff = = 3 €
Y. Incasex = § A, thent(a) = T iff 9(8) = T andv(y) = T, which is the
case, by induction hypothesis, ffe ¥ andy € . By Lemma 7(2), this happens
iff =5 A~y eX. Incasen = BV, thenv(a) =T iff 6(8) =T oro(y) =T,
which is the case, by induction hypothesis,AfE ¥ orv € ¥. By Lemma 7(3),
this happensiftt = 5V v € ¥. In casen = 8 —, thenv(a) = Tiff 5(58) = F
orv(y) = T, which is the case, by induction hypothesis/fz ¥ ory € . By
Lemma 7(4), this happens iff = 5 — v € X. O

The following lemma is crucial to the proof of completeneksnakes the con-
nection between consistent sets and maximally consiséént s

Lemma 9. Every consistent sef of formulas is contained in some maximally
consistent set..

Proof. Since our language is made up from finite strings of countaiapy sym-
bols, there are countably many well-formed formulas. Makstapg, ¢1, ¢2, - . .
of all formulas. We define a sequence of S8§s¥;, X, ... as follows: ¥y = X,
and for anyn,

> | EaU{en} if X, U{e,} consistent,
Ca R T Y otherwise.

By constructiony:,, C 3,1 for all n. Also, an easy induction shows thay, is
consistent for alh.

DefineX, = UnEN 3. We claim that:, is consistent. Suppose itis not. Then
Y.« B L. Thus, there exists some derivation bffrom hypotheses ift.. This
derivation has finitely many hypotheses, say,o1, . . ., 0. Eachs; is an element
of someX,,. Letn = max{ng,...,nt}, thenog,o1,...,01 € X,. It follows
that3l,, - L, contradicting the fact that,, is consistent. Thus, it follows that.

is consistent.

Clearly,X C X.. It remains to show that, is maximally consistent. Consider
any formulap which is not inX,. Theny is one of the formulas in our list, say
p = ;. Sincep ¢ 3, it follows thaty; ¢ >;.1, and thus, by definition of
Yit1, Ditr1U{¢;} must be inconsistent. It follows thak, U {y;} is inconsistent.

18



Thus, no consistent set properly contalfis which proves thak, is maximally
consistent. O

Proof of the Completeness Theorentt suffices to show, by Lemma 5, that any
consistent set is satisfiable. So ¥be an arbitrary consistent set. By Lemma 9,
3} is contained in a maximally consistent 3&t. By Lemma 8, there exists a truth
assignment satisfying all the formulas iX,. SinceX is a subset oE.,, v also
satisfies all the formulas iR, showing that is satisfiable, as desired. O
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