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Lecture Notes 2:
Truth, Proofs, Soundness, and Completeness for SententialLogic

Peter Selinger

1 Truth tables

Fix some two-element setB = {T, F}, whose members we calltruth values. The
truth valuesT andF are called “truth” and “falsity”, respectively.

On the setB, consider the functionsf¬ : B → B andf∧, f¬, f→, f↔ : B× B →
B whose values are defined in the following table:

x y f¬(x) f∧(x, y) f¬(x, y) f→(x, y) f↔(x, y)
T T F T T T T

T F F F T F F

F T T F T T F

F F T F F T T

We will now define the interpretation of the language of sentential logic. Recall
thatW is the set of well-formed formulas. LetS be the set of sentence symbols.

Definition. A truth assignmentis a functionv : S → B. It assigns a truth value
to each sentence symbol.

Given a truth assignmentv, we can calculate the truth value of any formula. For-
mally, we define aninterpretation functionv̄ : W → B which maps well-formed
formulas to truth values, by the following recursive definition:

v̄(α) = v(α) if α a sentence symbol,
v̄(⊤) = T,

v̄(⊥) = F,

v̄(¬α) = f¬(v̄(α)),
v̄(α∧ β) = f∧(v̄(α), v̄(β)),
v̄(α∨ β) = f¬(v̄(α), v̄(β)),
v̄(α→ β) = f→(v̄(α), v̄(β)),
v̄(α↔ β) = f↔(v̄(α), v̄(β)).

The functionv̄ can be conveniently calculated, for the different possiblev, in a
truth table. For example, the following truth table shows the values of the formula

1

v̄(¬(¬A1∧A2)) for various different truth assignmentsv. Each row in the table
corresponds to a different truth assignment.

v(A1) v(A2) v̄(¬A1) v̄(¬A1 ∧A2) v̄(¬(¬A1 ∧A2))
T T F F T

T F F F T

F T T T F

F F T F T

The headers in this table are usually written more succinctly as

A1 A2 ¬A1 ¬A1 ∧A2 ¬(¬A1 ∧A2)
T T F F T

T F F F T

F T T T F

F F T F T

Definition. If v is a truth assignment andα is a formula, we call̄vα theinterpre-
tation of α with respect tov. We sayv satisfiesα if v̄(α) = T . We say thatα is
valid or a tautologyif every truth assignment satisfiesα. If Σ is a set of formulas
andα is a formula, then we sayΣ tautologically impliesα, in symbolsΣ |= α, if
for all truth assignmentsv,

(∀σ ∈ Σ.v̄(σ) = T ) ⇒ v̄(α) = T.

In words, we say thatΣ |= α if every truth assignment that satisfies all the formu-
las inΣ also satisfiesα. We often abbreviate{σ1, . . . , σn} |= α to σ1, . . . , σn |=
α, andΣ ∪ {σ} |= α toΣ, σ |= α. Also, instead of∅ |= α, we simply write|= α.
Notice that|= α if and only ifα is a tautology.

If α |= β andβ |= α, then we sayα andβ aretautologically equivalent, and we
writeα |==| β.

It is easy to check whether two formulas are tautologically equivalent with truth
tables: α andβ are tautologically equivalent if their corresponding truth table
columns are identical. Also,α tautologically impliesβ if in each row whereα
has a truth table entry ofT , β also has a truth table entry ofT . For instance, the
following truth table shows that¬A1 cotA2 |==| A1 →A2:

A1 A2 ¬A1 ¬A1 ∨A2 A1 →A2

T T F T T

T F F F F

F T T T T

F F T T T
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Remark.We never use the symbol “=” to denote tautological equivalence. The
equality symbol is reserved to denotesyntacticequality of formulas, i.e., equality
of formulas as strings. For tautological equivalence, we always use “|==|”.

Remark.The statements “¬α is a tautology” and “α is not a tautology” are not
equivalent. For instance, ifα is a sentence symbol, then neitherα nor¬α is a
tautology.

For a list of tautologies, see Enderton [?, p.37].

2 Natural deduction

There are many possible ways of formalizing proofs. For thiscourse, we choose
the formalism ofnatural deduction, which was first introduced by Gentzen in
1935 [?, ?], and further developed by Prawitz in the 1960’s [?].

2.1 An intuitive explanation of natural deduction

The representation of a proof in the natural deduction system is called aderiva-
tion. Loosely speaking, a derivation is a tree-like structure whose leaves are la-
beled by well-formed formulas. The formulas that occur at the leaves are called
thehypothesesor assumptionsof the derivation, and the unique formula that oc-
curs at the root of the derivation is called itsconclusion.

Here is a simple example of a derivation:

α β

α∧ β
(∧I)

The hypotheses areα andβ, and the conclusion isα ∧ β. Thus, this particular
derivation formalizes a proof that the formulaα and the formulaβ imply the
formulaα ∧ β. The horizontal line corresponds to an instance of aninference
rule, in this case the rule whose name is(∧I) or “and introduction”. The formulas
that occur immediately above the horizontal line are calledthe premisesof the
inference rule (as opposed tohypothesesof a derivation). Here is another inference
rule, which is known as “modus ponens”, or “arrow elimination”:

β → α β

α
(→E )
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From hypothesesα → β andα, we may concludeβ. We can put more than one
rule together to form a derivation:

β → α β

α
(→E )

γ

α∧ γ
(∧I)

This derivation has three hypotheses,α, γ, andα→ β, and the conclusionγ ∧ β.
It is important to remember that each derivation may have multiple hypotheses,
but only a single conclusion.

The following two inference rules are collectively known bythe name “and elim-
ination”. They are very similar, but not quite the same.

α∧ β

α
(∧E1)

α∧ β

β
(∧E2)

As you see, an inference rule can have two premises or one premise. We will later
see other inference rules that have zero or three premises.

The inference rules that we have seen so far employ onlydefinite reasoning: from
the hypotheses, we derive the conclusion directly without making any additional
assumptions. Another mode of logical reasoning that you arefamiliar with is hy-
pothetical reasoning. In hypothetical reasoning, one makes atemporary(or hypo-
thetical) assumption in order to explore its consequences. Once the consequences
have been satisfactorily explored, the temporary assumption may bediscardedor
canceled. An example of hypothetical reasoning is shown in the following proof
in the English language:

We want to show thatα∧ (α→ β)→ β. Soassumeα ∧ (α→ β)
(we make a temporary assumption). Thenα holds, as well asα→β.
By modus ponens, we getβ. Since we have assumedα∧(α→β), it
follows thatα∧(α→β)→β (at this point,α∧(α→β) is no longer
a current assumption, and we may go on to proving other things).

In natural deduction, we can introduce a temporary hypothesis at any time. Certain
rules allow us to cancel such a temporary hypothesis. It is then put into square
brackets to indicate that it is no longer active. An example of this is the following
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rule for “arrow introduction”:

[α]x
...
β

α→ β
x (→I)

Here, the vertical dots denote an arbitrary derivation ofβ from hypothesisα (and
possibly other hypotheses as well). Notice thatα is a temporary hypothesis, which
gets canceled when the arrow introduction rule is applied. In order to keep track of
when a particular hypothesis was canceled, we decorate it with a lower case letter,
such asx, y, z, and we put the same letter next to the rule that canceled the hy-
pothesis. A temporary hypothesis that has been canceled is considered taken care
of and is no longer considered a hypothesis of the current overall derivation. The
above proof from the English language would be translated asa natural deduction
derivation as follows.

[α∧ (α→ β)]x

α→ β
(∧E2)

[α∧ (α→ β)]x

α
(∧E1)

β

α∧ (α→ β)→ β
x (→I)

(→E )

As you can see, we may use a temporary hypothesis more than once. In fact, we
may use a temporary hypothesis any number of times. We even may use it zero
times, as the following derivation demonstrates:

α

β → α
y (→I)

This is a legal derivation ofβ→α fromα, which makes a hypothetical assumption
β and uses it zero times!

2.2 The issue of when to introduce a hypothesis

One issue that is often confusing to beginners when they are first introduced to
natural deduction, or indeed to mathematical hypotheticalreasoning in general,
is the question of when one is “allowed” to make a hypothetical assumption. At
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first, it seems that if one were allowed to make just any assumption, then one could
prove just any statement simply by assuming it.

In fact, the real issue with hypothetical assumptions is nothow to make them, but
how to get rid of them! You may introduce an assumption at any time, but there
are very strict limitations on when you may cancel one. Thus,if you think that
you have finished a proof, but you still have unwanted assumptions lying around
that you couldn’t cancel, then you simply have not proved what you wanted to
prove, at least not from the assumptions that you wanted to prove it from. So as a
rule, you should only introduce a hypothetical assumption if you intend to cancel
it sometime later.

For instance, suppose you want to prove the formula(α→ β ∧ γ)→α∧ β. You
produce the following derivation:

α

[α→ β ∧ γ]x α

β ∧ γ

β
(∧E1)

(→E )

α∧ β

(α→ β ∧ γ)→ α∧ β
x (→I)

(∧I)

Notice that you have made an assumptionα which you did not cancel. So you
have a proof of(α→β∧γ)→α∧β from hypothesisα. Is this what you wanted,
or did you intend to prove(α → β ∧ γ)→ α ∧ β from no assumptions? In the
latter case, you have not succeeded.

As this example demonstrates, extra assumptions do not leadto proofs that are
invalid. They simply lead to proofs that are not quite what you wanted.

2.3 The natural deduction system

Definition. The rules of natural deduction are shown in Table 1. We omit the
formal definition here; for details, see e.g. van Dalen’s book [?].

2.4 Remarks

Most rules of natural deduction, with the exception of the axiom and the(contra)
rule, are either introduction(I) or elimination(E ) rules. The introduction rules

6



Table 1: The rules of natural deduction

Axiom
α

And
α β

α∧ β
(∧I)

α∧ β

α
(∧E1)

α∧ β

β
(∧E2)

Arrow
[α]x
...
β

α→ β
x (→I)

β → α β

α
(→E )

Not
[α]x
...
⊥

¬α
x (¬ I)

¬α α

⊥
(¬ E )

Top andBot

⊤
(⊤I)

...
⊥

α
(⊥E )

Or
α

α∨ β
(∨I1)

β

α∨ β
(∨I2)

α∨ β

[α]x
...
γ

[β]y
...
γ

γ
x,y (∨E )

Contra
[¬α]x

...
⊥

α
x (contra)
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introduce a connective, and the elimination rules eliminate one. Note, however,
that there is no rule for⊥ introduction and no rule for⊤ elimination.

Some of the rules have traditional names. We have already mentioned that the
(→E ) rule is known asmodus ponens. The(⊥E ) rule is known asabsurdityor ex
falsum quodlibet(from a falsity, what you want). An application of the(∨E ) rule
is called acase distinction, and an application of the(contra)rule is called aproof
by contradiction.

If one omits the(contra)rule from the system of natural deduction, one obtains
a logic that is calledintuitionistic logic. It has many applications in computer
science, but we do not consider it further in this course. If we allow the(contra)
rule, the resulting logic is calledclassical logic. As we will see soon, classical
logic corresponds precisely to our boolean truth table semantics, in the sense that
a formula is derivable in classical logic if and only if it is valid in the truth table
semantics.

Notice the difference between the(¬ I) rule and the(contra)rule. Since¬¬α is
a different formula fromα, these rules are not derivable from each other.

Also notice that in the presence of the(contra)rule, the(⊥E ) rule is actually redun-
dant: it corresponds to an application of the(contra)rule in which zero hypotheses
are canceled.

The axiom seems strange at first. Why would one need a proof ofα from hypoth-
esisα? One example where this is useful is illustrated in the following derivation.
Notice that in the first case of the case distinction, we already have the formulaα
as a hypothesis, and we needα as a conclusion in order to apply the(∨E ) rule.

α∨ (α∧ β) [α]x

[α∧ β]y

α
(∧E1)

α
x,y (∨E )

We have not introduced any rules for “if and only if”, or the connective↔. One
could easily add such rules to the system:

Arrow

[α]x
...
β

[β]y
...
α

α↔ β
(↔I)

α↔ β α

β
(↔E1)

α↔ β β

α
(↔E2)
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However, we do not afford ourselves this luxury, since it is easily seen that these
rules are derivable if we regardα↔β as an abbreviation for(α→β)∧ (β→α).

2.5 Examples

For examples of derivations, see the solutions to Problem Set 3, first part.

3 Soundness

Definition. If Σ is a set of formulas, andα a formula, we writeΣ ⊢ α if there
is a derivation with conclusionα whose active hypotheses are contained inΣ. In
this case, we say thatα is derivablefromΣ or thatΣ entailsα. We say thatα is
a theoremof natural deduction if⊢ α, i.e., if there is a derivation ofα from no
hypotheses.

Notice that entailmentΣ ⊢ α is defined in terms of derivations, whereas tautolog-
ical implicationΣ |= α, from Section 1, is defined in terms of truth tables. The
following soundness theorem shows that the inference rulesof natural deduction
are correct with respect to truth table semantics, i.e., they do not derive any false
conclusions.

Theorem 1(Soundness). Σ ⊢ α ⇒ Σ |= α.

Proof. We need to prove the following statement: ifD is a derivation ofα from
hypothesesΣ, thenΣ |= α. We prove this by complete induction on the size of
the derivationD , and by case distinction on the last rule used inD .

Here, the size of a derivation is, per definition, the number of rule applications
(i.e., horizontal lines) that occur in it. Notice that any derivation D of size> 1
has a unique last rule, whose conclusion is the conclusion ofD . In the following,
we write

Σ
...
α

to denote a derivation ofα whose hypotheses are contained in the setΣ. When
using this notation, it is understood that not all formulas in Σ may actually be
used.
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3.1 Case: Axiom

Suppose the derivationD consists of an axiom only, i.e., of a single formulaα.
Since the hypotheses ofD are contained inΣ, we haveα ∈ Σ. It follows that
Σ |= α, as desired.

3.2 Case:(∧I)

Suppose the last rule used inD is (∧I). ThenD is of the form

Σ
...
α

Σ
...
β

α∧ β
(∧I)

Since the subderivations are of smaller size, by induction hypothesis,Σ |= α and
Σ |= β. It follows thatΣ |= α∧ β.

3.3 Case:(∧E1)

Suppose the last rule used inD is (∧E1). ThenD is of the form

Σ
...

α∧ β

α
(∧E1)

Since the subderivation is of smaller size, by induction hypothesis,Σ |= α∧ β. It
follows thatΣ |= α.

3.4 Case:(∧E2)

Similar to the previous case.
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3.5 Case:(→I)

Suppose the last rule used inD is (→I). ThenD is of the form

Σ, [α]x
...
β

α→ β
x (→I)

Since the subderivation is of smaller size, by induction hypothesis,Σ, α |= β. It
follows from Problem 1.3.3(a) thatΣ |= α→ β.

3.6 Case:(→E )

Suppose the last rule used inD is (→E ). ThenD is of the form

Σ
...

α→ β

Σ
...
α

β
(→E )

Since the subderivations are of smaller size, by induction hypothesis,Σ |= α→β

andΣ |= α. It follows thatΣ |= β.

3.7 Case:(¬ I)

Suppose the last rule used inD is (¬ I). ThenD is of the form

Σ, [α]x
...
⊥

¬α
x (¬ I)

Since the subderivation is of smaller size, by induction hypothesis,Σ, α |= ⊥.
Thus, no truth assignment that satisfies all formulas inΣ satisfiesα. It follows
thatΣ |= ¬α.

11

3.8 Case:(⊤I)

Suppose the last rule used inD is (⊤I). ThenD is

⊤
(⊤I)

Any truth assignment satisfies⊤, and thusΣ |= ⊤, as desired.

3.9 Case:(⊥E )

Suppose the last rule used inD is (⊥E ). ThenD is of the form

Σ
...
⊥

α
(⊥E )

Since the subderivation is of smaller size, by induction hypothesis,Σ |= ⊥. Thus,
no truth assignment satisfies all the formulas ofΣ, and it follows thatΣ |= α.

3.10 Case:(∨I1)

Suppose the last rule used inD is (∨I1). ThenD is of the form

Σ
...
α

α∨ β
(∨I1)

Since the subderivation is of smaller size, by induction hypothesis,Σ |= α. It
follows thatΣ |= α∨ β.

3.11 Case:(∨I2)

Similar to the previous case.
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3.12 Case:(∨E )

Suppose the last rule used inD is (∨E ). ThenD is of the form

Σ
...

α∨ β

Σ, [α]x
...
γ

Σ, [β]y
...
γ

γ
x,y (∨E )

Since the subderivations are of smaller size, by induction hypothesis,Σ |= α∨ β,
Σ, α |= γ, andΣ, β |= γ. Thus, ifv is any truth assignment satisfyingΣ, thenv
satisfies eitherα or β. In either case,v satisfiesγ. It follows thatΣ |= γ.

3.13 Case:(contra)

Suppose the last rule used inD is (contra). ThenD is of the form

Σ, [¬α]x
...
⊥

α
x (contra)

Since the subderivation is of smaller size, by induction hypothesis,Σ,¬α |= ⊥.
Thus, no truth assignment that satisfies all formulas inΣ satisfies¬α. It follows
thatΣ |= α.

This finishes the proof of soundness. �

Corollary 2. Every theorem of natural deduction is a tautology.

Proof. By takingΣ = ∅ in the Soundness Theorem. �

4 Completeness

Completeness is the converse of soundness. While soundnessstates that the rules
of natural deduction are correct, completeness states thatthere are enough such

13

rules to prove every possible tautological implication. For the purpose of com-
pleteness, we assume that our language does not contain the connective↔, since
we have not included that connective in our natural deduction formalism. In light
of the remarks in Section 2.4, this is not a significant restriction.

Theorem 3(Completeness). Σ |= α ⇒ Σ ⊢ α.

The proof of the Completeness Theorem will require some preliminaries.

Definition. A set of formulasΣ is inconsistentif Σ ⊢ ⊥. Otherwise,Σ is con-
sistent.

We say thatΣ is satisfiableif there exists a truth assignmentv such that for all
σ ∈ Σ, v̄(σ) = T . If there is no such truth assignment, thenΣ is unsatisfiable.

Note that consistency is a concept related to derivations, whereas satisfiability is
a concept related to truth assignments.

Lemma 4. Σ is unsatisfiable if and only ifΣ |= ⊥.

Proof. By definition of tautological implication, we haveΣ |= ⊥ iff for all truth
assignmentsv that satisfy all the formulas inΣ, v̄(⊥) = T . But no truth as-
signment satisfies̄v(⊥) = T , and thusΣ |= ⊥ iff there is no truth assignment
satisfying all the formulas inΣ, which is the case iffΣ is unsatisfiable. �

Lemma 5. The following are equivalent:

(a) For all Σ, α, the implicationΣ |= α ⇒ Σ ⊢ α holds (completeness),

(b) For all Σ, the implicationΣ |= ⊥ ⇒ Σ ⊢ ⊥ holds,

(c) Any consistent set of formulas is satisfiable.

Proof. (b) and (c) are clearly equivalent, since (b) just states that any unsatisfiable
set of formulas is consistent, by Lemma 4. Also, clearly (a) implies (b), by taking
α = ⊥. It remains to show that (b) implies (a).

Assume (b), and assumeΣ |= α. Then any truth assignment which satisfies all
formulas inΣ satisfiesα. Thus, no such truth assignment satisfies¬α, and we
haveΣ,¬α |= ⊥. By (b), this impliesΣ,¬α ⊢ ⊥. Thus, there is a derivation of
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⊥ from hypotheses inΣ and¬α. Apply the(contra)rule to construct the derivation

Σ, [¬α]x
...
⊥

α
x (contra)

This provesΣ ⊢ α, as desired. �

We will prove the Completeness Theorem by proving condition(c) in Lemma 5.
Thus, when given a consistent setΣ of formulas, we must show that it is satis-
fiable. This means, we must produce a truth assignmentv which satisfies every
formula inΣ. In general, it would be difficult to guess such a truth assignment.
One would be tempted to define

v(An) = T if Σ ⊢ An,
v(An) = F if Σ ⊢ ¬An.

The problem is that, in general, neitherAn nor¬An needs to be entailed byΣ,
so this approach fails. However, ifΣ is a maximallyconsistent set of formulas,
thenΣ entails every formula or its negation. Thus, the crucial idea in the proof
of the Completeness Theorem is to prove first that any consistent set of formulas
is contained in a maximally consistent set, and then to use the above method for
definingv.

Definition. A setΣ of formulas is calledmaximally consistentif

(i) Σ is consistent,

(ii) if Σ ⊆ Σ′ andΣ′ is consistent, thenΣ = Σ′.

Lemma 6. If Σ is a maximally consistent set, then it is closed under derivability,
i.e.,Σ ⊢ α impliesα ∈ Σ.

Proof. SupposeΣ is maximally consistent, andΣ ⊢ α. We claim thatΣ ∪ {α} is
consistent. For otherwise, one would haveΣ, α ⊢ ⊥, and then thenΣ would be
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inconsistent by the following derivation:

Σ, [α]x
...
⊥

¬α
x (¬I)

Σ
...
α

⊥
(¬E )

But this contradicts the assumption thatΣ was consistent. It follows thatΣ∪ {α}
is consistent. But sinceΣ is maximally consistent, we haveΣ = Σ ∪ {α}, and
thusα ∈ Σ. �

Lemma 7. SupposeΣ is a maximally consistent set. Then the following hold:

(1) ¬α ∈ Σ iff α 6∈ Σ.

(2) α∧ β ∈ Σ iff α ∈ Σ andβ ∈ Σ.

(3) α∨ β ∈ Σ iff α ∈ Σ or β ∈ Σ.

(4) α→ β ∈ Σ iff α 6∈ Σ or β ∈ Σ.

(5) ⊤ ∈ Σ.

(6) ⊥ 6∈ Σ.

Proof. (1) Clearly,α and¬α cannot both be inΣ, or elseΣ would be incon-
sistent. It remains to show that at least one of them is inΣ. Consider the set
Σ′ = Σ ∪ {α}. EitherΣ′ is consistent, in which caseα ∈ Σ by maximality
of Σ. OrΣ′ is inconsistent, in which caseΣ, α ⊢ ⊥. By applying the(¬ I),
we getΣ ⊢ ¬α, and hence¬α ∈ Σ by Lemma 6.

(2) “⇒” If α ∧ β ∈ Σ, thenΣ ⊢ α andΣ ⊢ β by the(∧E ) rules. Thus,α ∈ Σ
andβ ∈ Σ by Lemma 6. “⇐” If α ∈ Σ andβ ∈ Σ, thenΣ ⊢ α∧ β by the
(∧I) rule. Thus,α∧ β ∈ Σ by Lemma 6.

(3) “⇒” Supposeα ∨ β ∈ Σ. Suppose, for the sake of contradiction, that
neitherα ∈ Σ nor β ∈ Σ. Then¬α ∈ Σ and¬ β ∈ Σ by (1). Then the
following derivation shows thatΣ is inconsistent:

α∨ β

¬α [α]x

⊥
(¬ E )

¬β [β]y

⊥
(¬E )

⊥
x,y (∨E )
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This contradicts the assumption thatΣ was consistent. Thus,α ∈ Σ or
β ∈ Σ, as desired. “⇐” If α ∈ Σ or β ∈ Σ, thenΣ ⊢ α ∨ β by one of the
(∨I) rules. Thus,α∨ β ∈ Σ by Lemma 6.

(4) “⇒” Supposeα → β ∈ Σ. If α ∈ Σ, thenΣ ⊢ β by the (→E ) rule,
and thusβ ∈ Σ by Lemma 6. So eitherα 6∈ Σ or β ∈ Σ. “⇐” Case 1:
Supposeα 6∈ Σ. Then¬α ∈ Σ by (1). The following derivation shows that
Σ ⊢ α→ β:

¬α [α]x

⊥

β
(⊥E )

α→ β
x (→I)

(¬ E )

Thus,α → β ∈ Σ by Lemma 6. Case 2: Supposeβ ∈ Σ. By (→I), we
haveΣ ⊢ α→ β, and thusα→ β ∈ Σ by Lemma 6.

(5) Suppose, for the sake of contradiction, thatΣ ∪ ⊤ is inconsistent, i.e.,
Σ,⊤ ⊢ ⊥. Then the following derivation shows thatΣ is already inconsis-
tent:

Σ, [⊤]x
...
⊥

¬⊤
x (¬ I)

⊤
(⊤I)

⊥
(¬E )

This contradicts the assumption thatΣ was consistent. Thus,Σ ∪ ⊤ is
consistent. By maximality ofΣ, we have⊤ ∈ Σ.

(6) ⊥ 6∈ Σ becauseΣ is consistent. �

Lemma 8. Every maximally consistent set is satisfiable.

Proof. LetΣ be a maximally consistent set. Define a truth assignmentv by

v(An) = T if An ∈ Σ,
v(An) = F if An 6∈ Σ.

We claim that for all formulasα, one has̄v(α) = T iff α ∈ Σ. In particular,v
satisfies all the formulas inΣ, and thusΣ is satisfiable. We prove the claim by
induction onα.
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Base Case:In caseα is a sentence symbol, thenv̄(α) = T iff α ∈ Σ by definition
of v. In caseα = ⊤, thenv̄(α) = T andα ∈ Σ by Lemma 7(5). In caseα = ⊥,
thenv̄(α) = F andα 6∈ Σ by Lemma 7(6).

Induction Step:In caseα = ¬ β, thenv̄(α) = T iff v̄(β) = F , which is the case,
by induction hypothesis, iffβ 6∈ Σ. By Lemma 7(1), this happens iffα = ¬β ∈
Σ. In caseα = β ∧ γ, thenv̄(α) = T iff v̄(β) = T andv̄(γ) = T , which is the
case, by induction hypothesis, iffβ ∈ Σ andγ ∈ Σ. By Lemma 7(2), this happens
iff α = β∧ γ ∈ Σ. In caseα = β∨ γ, thenv̄(α) = T iff v̄(β) = T or v̄(γ) = T ,
which is the case, by induction hypothesis, iffβ ∈ Σ or γ ∈ Σ. By Lemma 7(3),
this happens iffα = β∨γ ∈ Σ. In caseα = β→γ, thenv̄(α) = T iff v̄(β) = F

or v̄(γ) = T , which is the case, by induction hypothesis, iffβ 6∈ Σ or γ ∈ Σ. By
Lemma 7(4), this happens iffα = β → γ ∈ Σ. �

The following lemma is crucial to the proof of completeness.It makes the con-
nection between consistent sets and maximally consistent sets.

Lemma 9. Every consistent setΣ of formulas is contained in some maximally
consistent setΣ∗.

Proof. Since our language is made up from finite strings of countablymany sym-
bols, there are countably many well-formed formulas. Make alist ϕ0, ϕ1, ϕ2, . . .

of all formulas. We define a sequence of setsΣ0,Σ1,Σ2, . . . as follows:Σ0 = Σ,
and for anyn,

Σn+1 =

{

Σn ∪ {ϕn} if Σn ∪ {ϕn} consistent,
Σn otherwise.

By construction,Σn ⊆ Σn+1 for all n. Also, an easy induction shows thatΣn is
consistent for alln.

DefineΣ∗ =
⋃

n∈N
Σn. We claim thatΣ∗ is consistent. Suppose it is not. Then

Σ∗ ⊢ ⊥. Thus, there exists some derivation of⊥ from hypotheses inΣ∗. This
derivation has finitely many hypotheses, say,σ0, σ1, . . . , σk. Eachσi is an element
of someΣni

. Let n = max{n0, . . . , nk}, thenσ0, σ1, . . . , σk ∈ Σn. It follows
thatΣn ⊢ ⊥, contradicting the fact thatΣn is consistent. Thus, it follows thatΣ∗

is consistent.

Clearly,Σ ⊆ Σ∗. It remains to show thatΣ∗ is maximally consistent. Consider
any formulaϕ which is not inΣ∗. Thenϕ is one of the formulas in our list, say
ϕ = ϕi. Sinceϕ 6∈ Σ∗, it follows thatϕi 6∈ Σi+1, and thus, by definition of
Σi+1, Σi+1∪{ϕi} must be inconsistent. It follows thatΣ∗∪{ϕi} is inconsistent.
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Thus, no consistent set properly containsΣ∗, which proves thatΣ∗ is maximally
consistent. �

Proof of the Completeness Theorem:It suffices to show, by Lemma 5, that any
consistent set is satisfiable. So letΣ be an arbitrary consistent set. By Lemma 9,
Σ is contained in a maximally consistent setΣ∗. By Lemma 8, there exists a truth
assignmentv satisfying all the formulas inΣ∗. SinceΣ is a subset ofΣ∗, v also
satisfies all the formulas inΣ, showing thatΣ is satisfiable, as desired. �
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