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1 Substitution

We write ¢, [t/z] for the result of substituting the tertrfor the variabler in the
termt,, andplt/x] for the result of substituting for « in the formulap. Here,
only freeoccurrences of: are substituted. More precisely, substitution is defined
recursively as follows. On terms:

x[t/x] =t
ylt/x] =y if x,y are different variables
[, tp)lt/a] = f(talt/a],... talt/2])
On formulas:
1. P(ty,...,tn)[t/z] = P(ta[t/z],..., tau[t/z])
(t1 = t2)[t/z] = t1[t/x] = tao[t/x]
2. (my)lt/a] = (elt/=])
(p0)[t/] = (elt/a)) D (¥t/))
3. (Vx.@)[t/z] = Vz.p
(Vy.o)[t/x] = Vy.(p[t/x]) if 2,y are different variables
(Fz.p)[t/x] = 3z
(Fy.o)[t/z] = Fy.(p[t/x]) if 2,y are different variables

Substitution is a more subtle notion than meets the eye. iiticpkar, one has to
be careful that does not contain any free variables which get captured wiigen
substituted into some formula. Consider the formtilax % y. In a structure

with two or more elements, this statement is true for an®n the other hand, if
we substitute, for x, we obtaindy.y % y, which is false! We want to rule out
situations like this.

We say that is substitutable forz in ¢ if we can substitute for = in ¢ without
worrying about free variables afintruding the scope of quantifiers in More
precisely, this concept is defined by recursionon

1. If pis atomic, thert is always substitutable farin ¢.

2. tis substitutable for: in — ¢ iff ¢ is substitutable fot: in .
t is substitutable for: in ¢ O ¢ iff ¢ is substitutable forr in ¢ andt is
substitutable for: in 1.

3. tis substitutable fog: in Vy.¢ iff either

(a) x is not free invy.p or
(b) v is not free int andt¢ is substitutable fox in ¢.

t is substitutable fog in Jy.y iff either

(a) xis not free inTy.p or
(b) v is not free int andt is substitutable fox in ¢.

Convention. From now on, whenever we writg[t/x], it is always implicitly
assumed thatis substitutable for: in . If ¢ is not substitutable for in o, then
we implicitly rename the bound variablesignso thatt becomes substitutable for
xin .

In the proofs of soundness and completeness, we often neeldte substitutions
to the interpretation of the involved terms in a structurdie Tollowing lemma
provides the necessary facts.

Lemma 1 (Substitution Lemma) Supposeél is a structure ands is a valuation.
Suppose a term,x a variable, ands(t) = a. Lets’ = s(a|z). Then

1. 5(t1[t/x]) = s'(t;) for all termst;.

2. Ea plt/x] [s] iff =o ¢ [s'], for all formulasy such thatt is substitutable
for z in .

Proof. By induction on terms and formulas. O

2 Natural Deduction

The natural deduction rules for first-order logic are thageséntential logic, plus
the rules given below. Note that since we are already usingri@ase roman
letters for variables, we are now using numbers to identfiyoeled hypotheses.
Also, in the rules for quantifiers, whenever we wrjtg /], it is always implicitly



assumed that is substitutable for: in . Note the side conditions in thévz)
and (3¢) rules. These conditions ensure that we have not made anyramied
assumptions about the variakle

Rules for quantifiers:

T
% (VI) if a is a variable not free il or ¢
T
% (VE€) if ¢is aterm
r
% 37 if ¢is aterm
r I [pla/alhy
Elxl'(p 7 1/) 1(3¢) if ais avariable not free i, ¢, ory
Rules for equality:
ey () Fl(symp RSS2l (ang
ey o) 2 on)

As before, we writd” - ¢ if there is a natural deduction derivation, all of whose
uncanceled hypotheses ardinand whose conclusion is.

3 Soundness and Completeness

Theorem 2 (Soundness and Completenes$)I is a set of formulas, and is a
formula, then

L'k iff I'Ee.
The left-to-right implication is calledoundnessand the right-to-left implication
is calledcompleteness

Proof. Soundness is proved by induction on the size of derivatamd by a case
distinction on what the last rule in the derivation is. Théditution lemma is
needed in the cases of the quantifier rules.

For the proof of completeness, see e.g. van Dalen’s b#jok [ O

4 Compactness and consequences

The following theorem is a trivial consequence of the sowsdrand completeness
theorem, but it has many interesting and surprising apiibics. Recall that a set
of formulas is calledsatisfiableif there exists a structure and a valuation that
makes all formulas in the set true.

Theorem 3(Compactness)LetI” be a set of formulas. If every finite subset of
is satisfiable, thefr is satisfiable.

Proof. We prove the contrapositive. Suppdsés not satisfiable. Theh = L.
By completenesd; - _L. But natural deductions are finite, hence any deduction
can only use finitely many hypotheses. It follows tliat- L for some finite
I CT. By soundnesd,” = L, and thud" is not satisfiable, as desired. [

Several applications of the compactness theorem are dératatsin the exercises
of Problem Set 9. Here are some more examples of such apgptisat

Theorem 4. Supposet is a set of sentences. ¥ has arbitrarily large finite
models, then it has an infinite model.

Proof. Suppose: has arbitrarily large finite models. For evetye N, let A,
be the sentence that states “there are at leakstinct object”. Notice thad,, is
first-order definable, for instance

Ag =JeTyFz(x ByAzEzAy & z).



Consider the set of sentencés= X U {\,, | n € N}. SinceX has arbitrarily
large finite models, every finite subset®has a model. By compactnedshas
a model. But any model ¢b is infinite, and it is also a model ai. Thus,X has
an infinite model. O

Recall that a clas$< of structures is calleédixiomatizableif K = Mod(X),
for some set of sentencés Also, K is calledfinitely axiomatizableif K =
Mod(o1, ..., o0,) for finitely many sentences, ..., o,.

Theorem 5. The class of all infinite structures is axiomatizable, but firitely
axiomatizable.

Proof. Let K be the class of infinite structures. The &1, | n € N} axiomatizes
K. Suppose, on the other hand, thi&twas finitely axiomatizable. Then there
exist sentences,, . .., o, such that = Mod(o1,...,0,). Leto =a1 A ... A
on, thenK = Mod(o). Thus, a structur@l is infinite iff =9 0. Equivalently, a
structure( is finite iff =9 — 0. But then the class of finite structures would be
axiomatizable, contradicting Theorem 4. O

The following theorem is often useful in proving that a certelass of structures
is notfinitely axiomatizable:

Theorem 6. If K is a finitely axiomatizable class of structures, andkif =
Mod(Y), then there exists a finite subs&tC ¥ such thatk' = Mod(Y).

Proof. By assumption /X is finitely axiomatizable. Lety,...,r, be sentences
such that = Mod(7y,...,7,). ThenK = Mod(7), wherer = 71 A ... A Ty,.
Now every model of is in the clasds, and hence satisfies It follows that the
setXU{— 7} is unsatisfiable. By compactness, there exists a finite sdlise ¥
such that’ U {— 7} is unsatisfiable. This means that every modeLbfs not a
model of— 7, or in other words, every model &f is a model ofr. Also, every
model ofX is certainly a model oE’. We thus havéd = Mod(X) € Mod(X') C
Mod(7) = K. It follows that K’ = Mod(X') as desired. O

If K is a class of structures, let us writ€’ for the complement of the class. That
is, a structuré@l is in K€ iffitis notin K.

Theorem 7. A classK of structures is finitely axiomatizable if and only if both
K and K¢ are axiomatizable.

Proof. “=": SupposeK is finitely axiomatizable. Then sureli{ is axioma-
tizable. To show thaf(¢ is axiomatizable, letX = Mod(oq,...,0,). Let
oc=01N...No,. Then2l € K iff =9 0. Consequentl@l € K¢ iff £y o, iff
':gl —o0. Thus,K¢ = MOd(—| 0’).

“«<": Suppose bothK and K¢ are axiomatizable. Lek’ = Mod(X) and K¢ =
Mod(T'). Since no structure is ik and K¢, the set: U I is unsatisfiable. By
compactness, there exists a finite sulset) TV which is unsatisfiable. Clearly
every model of is a model ofY)’. Conversely, le®l be a model of2’. Then2|
does not satisfy”, and hence ndf. Thus2l ¢ K¢, thus?l € K. We have:

K = Mod(X) € Mod(Y) C K,

and hencd({ = Mod(X’). ThusK is finitely axiomatizable, as desired. O

5 Size of models

The cardinality of a set is the number of elements in the set. Different irinit
sets can have different cardinalities; for instance, theftaatural numbers has
a smaller cardinality than the set of real numbers. We saycéndinality of a
structure2l is the cardinality of its carrief(|. The cardinality of a language is
the cardinality ofL, considered as a set of sentences.

Remark.If P and.F are the sets of predicate symbols, respectively functiom sy
bols, of the languagé, then the cardinality of. is x = max(card P U F, Ng).
Here, N, is the cardinality of a countable set.

To see why this is true, first, notice that the alphabef L consists of the symbols
from P and F, finitely many special symbols such as parentheses andalogic
connectives, and countably many variables. Thus, the malityi of A is . Let

A* be the set of finite strings in the alphabét One can regard these strings as
finite tuples, thusd* = {eJU AU A x AU A% U A* U.... Heree is the empty
string. But notice that the cardinality of eagt? is the same as the cardinality of
A, whenn > 1. Thus the cardinality ofA* is at most4 x Xg, which is in turns
the cardinality of4. SinceL C A*, it follows thatcard L < card A* < card A.

On the other hand, clearbard A < card L. Thus it follows thatl has the same
cardinality as its alphabet.

Theorem 8(Lowenheim-Skolem-Tarski)LetI" is a satisfiable set of formulas in
a language of cardinality.. Then



1. I' is satisfiable in some structure of cardinalityx.

2. IfI"is satisfiable in some infinite structure, then for every azatity \ > &,
there exists a structure of cardinalityin whichT is satisfiable.

Proof. 1. This follows from the proof of the completeness theoremthk proof
of the completeness theorem, we proceeded as follows; wiesteplace all free
variables in" by new constants, to obtain a set of sentences, which we et
derivability to obtain a theor{. The language df’ contains at most countably
many new constants, so it has the same cardinality as thadgegfl". Let L be
the language df'. Next, we constructed a Henkin thedfy by adding a constant
symbol for each existential sentencelgfcountably many times. The resulting
languagel,, still has the same cardinality ds We definedA to be the set of
closed terms oL,,. Clearly, the cardinality ofd is at most that of,,. Finally, we
constructed a structu in which T', thusT', is satisfiable. We let the carri¢l|
be a certain quotient of. Thus,card |2| < card A < card L, = card L = k.

2. Suppose now thdf is satisfiable in some infinite structure. LBtbe the

language of". Let A > « be a cardinal. Consider the languageobtained from

L by adding\ many new constant symbo{g,, | = € A\}. Consider the set of
formulas

®=TU{c, Zc,|x#yecA}

Notice that sincé’ is satisfiable in some infinite structue every finite subsed’
of @ is also satisfiable, namely by mapping the finitely mepyhat are mentioned
in @’ to different elements dil. By compactness, it follows thdi is satisfiable.
By part 1.,® is satisfiable in some structu® of cardinality< A (notice that\
is the cardinality of the languag€). On the other hand, sinc¢B is a model of
¢, % ¢y, for any distinctz, y € A, B has cardinality at least. It follows that the
cardinality ofB is exactly\. FurtherI' is satisfiable ir3. O

Recall that two structured andB are callecelementarily equivalenif Th(2) =

Th(8). Concretely, this means thatand3 make precisely the same sentences

true. If2( and*B are elementarily equivalent, we write= 5.

Corollary 9. (a) LetX be a set of sentences in a countable language.hfs
an infinite model, the& has models of every infinite cardinality.

(b) Let2l be an infinite structure for a language of cardinality Then for any
infinite cardinal A > «, there is a structures of cardinality A such that
B =2

Proof. (a) TakeI' = ¥ andx = Xg in Theorem 8(2). (b) Tak& = Th() in
Theorem 8(2) to obtain a mod& of Th(2) of cardinality A. Then TH) C
Th(28). On the other hand, if is some sentence that is true‘h then—o is
not true in‘B, thus— o is not true in2l, henceos is true in%A. If follows that
Th(8) C Th(). HenceB = 2L. O

Note that the preceding theorem and corollary are surgyisifhey imply, for
instance, that there is an uncountable structure whichkfstiprecisely the same
first-order sentences as the natural numbers. On the othel Hzere is some
countable structure which is elementarily equivalent toréals.

6 Complete andx-categorical theories

Recall that a set of sentences is calletheory if for all sentencesr, T + o
implieso € T. Also recall that the theory TR() of a structurel is the set of
sentences that are satisfied?in (It follows from soundness that this is indeed a
theory). Further, ifK is a class of structures, then (i) is defined to be the set
of sentences that are satisfiedalhstructures ink.

Definition. A theory T is completeif for every sentence, eithero € T or
—oeT.

Lemma10. 1. IfT C T"andT iscomplete and” is consistent, thel = T".

2. Atheory is complete iff it is maximally consistent.
3. For any structure(, Th(2() is complete.

4. Suppose is a non-empty class of structures. ThEm K) is complete iff
forall 2,8 € K, = 8.

Proof. 1. Supposd C T’ andT is complete and” is consistent. Suppose there
was some senteneec T’ such thatr ¢ T. Then—o € T sinceT is complete.
SinceT C 77, it follows that— o € T". But thenos, — o € T’, which implies that
T’ is inconsistent, a contradiction. Hernfe=T".

2. Left-to-right. Supposé’ is complete. Then it is maximally consistent by 1.
Right-to-left: Suppos#&" is maximally consistent. SupposeZ T'. ThenT U {o}

is inconsistent by maximality df'. HenceT',o + L, and thusl" -+ — o by the
(=2) rule. Sincel is a theory, it follows thatr o € T'. HenceT' is complete.



3. This is trivial. For any sentenee eitherf=y o or =9 — o, by definition of=.
Thuso € Th(2() or—o € Th(2).

4. Left-to-right: Suppose THK) is complete. Consider amf € K. Then
Th(K) C Th(2). But Th(K) is complete and T{) is consistent, hence TR ) =
Th(2() by 2. Similarly THK) = Th(®B) for any®8 € K, hence = ‘B.
Right-to-left: Suppos@ = B for all 2,8 € K. Pick some € K. Then
Th(K) = Th(). But Th(2) is complete by 3. O

One useful fact about complete theories is that they ara di¢eidable.
Theorem 11. Supposd’ is a theory with an axiom sef that can be effectively

listed by an algorithm. I1f" is complete, theff’ is decidable.

Proof. Essentially, the decicion procedure foris the following: Suppose you
want to decide whether a given sentencis in T'. systematically enumerate all
the valid natural deductions whose hypotheses are ammofgnceT is complete,

eventually either or — ¢ appears as the conclusion of one of these deductions.

Depending on which is the case, the procedure will outpus™pe “no”. This is
always guaranteed to happen after a finite amount of time. O

The following test is sometimes useful for proving that aertheories are com-
plete. If x is a cardinality, then we say that a thedfyis x-categoricalif all
models ofT" of cardinalityx are isomorphic.

Theorem 12 (Los-Vaught Test) Supposel’ only has infinite models, anfl is
r-categorical for some not less than the cardinality df. ThenT is complete.

Proof. Supposéd’ is not complete. Then there exists a sentensach thafl’ I/ o

andT I/ - 0. By completeness, there exist mod&lland®s of T" such that£y o

andf~y —o. In other words,=9 —o andf=g o. 2 and®®B are infinite by
assumption. By Corollarycor-LST, there exist structiiéand®’ of cardinality
% which are elementarily equivalent @i, respectivelyB. Thusky —o and
Ea 0. Since bothRl’ and®B’ are models of’, this contradicts the fact thdt is

k-categorical.

Applications:

Examplel3. We proved in class that any two countable dense linear owdérs
out endpoints are isomorphic. In other words, the thébryf countable dense
linear orders without endpoints i -categorical. Also7" has no finite models. It
follows thatT" is complete.

Examplel4. Itis atheoremin algebra that two algebraically closed &gk iso-
morphic if they have the same characteristic and the samsdeadence degree. It
follows that any two algebraically closed fields of charastee 0 are isomorphic
if they have the same cardinality. In our terminology, theatty of algebraically
closed fields of characteristic 0 iscategorical for any uncountable cardinal
Also, this theory has no finite models. Hence it is completahsytos-Vaught
Test. One consequence of this fact is that any two such fieklglamentarily
equivalent. Thus, any sentence that is true for the complenbers is true in
every algebraically closed field of characteristic 0. Amotbonsequence of com-
pleteness is that the theory of the complex numbers is dgleid@his means, for
any first-order statement about the complex numbers, te@rdécision procedure
which decides whether the statement is true or false.

A decision procedure for the first-order theory of compleribers is a very pow-
erful tool to have. However, this does not mean that we caiddeny statement
about the complex numbers. Orflyst-order statements are affected. There are
many interesting statements about the complex numbersithatot expressible
in first-order, for instance, any statements that refer bitrary subsets of the
complex numbers.
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