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1 Algebra vs. abstract algebra

Operations such as addition and multiplication can be dened at several dif-
ferent levels:

¢ Arithmeticdeals with specific calculation rules, such8as 3 = 11. Itis
usually taught in elementary school.

e Algebradeals with the idea that operations satisfiys such asi(b+c) =
ab + ac. Such laws can be used, among other things, to solve egsatiol
such a3z + 5 = 14.

o Abstract algebras the idea that we can use the laws of algebra, such a
a(b + ¢) = ab + ac, while abandoning the rules of arithmetic, such as
8 + 3 = 11. Thus, in abstract algebra, we are able to speak of entirel
different “number” systems, for example, systems in which 1 = 0.

The entities of abstract algebra need not be “numbers” ingoal sense. They
can be made-up things, such{a$, B, C, D, E}, together with made-up calcu-
lation rules, such a6’ + E = BandD - C = A. We could say that abstract
algebra is the study of “alternative arithmetics”. Whatngbrtant, however, is
that the made-up rules must satisfy the correct laws of adgeb

Example 1.1. Consider the set diits (binary digits){0,1}. We can multiply
them as usual, and add them as usual, subject to the altermate1 + 1 =

0 (instead ofl + 1 = 2). Here is a summary of the rules for addition and
multiplication:

+l0o 1 |01
0jo 1 000
1|10 1]01

This particular alternative arithmetic is called “arithticenodulo 2”. In com-
puter science, the addition is also called the “logical @sigle or” operation,

and multiplication is also called the “logical and” opeoati For example, we
can calculate like this:

1-(1+0)+1)+1 = 1-(1+1)+1
1-041
0+1

= 1

2 Abstract number systems in linear algebra

As you already know, Linear Algebra deals with subjects sagmatrix multi-
plication, linear combinations, solutions of systems péér equations, and so
on. It makes heavy use of addition, subtraction, multiplica and division of
scalars (think, for example, of the rule for multiplying megs).

It turns out that most of what we do in linear algebra does elyton the spe-
cific laws of arithmetic. Linear algebra works equally weleo “alternative”
arithmetics.

Example 2.1. Consider multiplying two matrices, using arithmetic man@
instead of the usual arithmetic.

011 1 00 110
110011 }|=1111
0 01 1 01 1 01

For example, to calculate the entry in the first row and coliwancompute
0-1+1-04+1-1=1
There are important applications of linear algebra ovehslzstract number

systems, particularly in the area of cryptography. Thikésreason we introduce
the concept of &ield.

3 The field axioms

Definition. A fieldis a setF, together with two binary operations: F' x F' —
Fand-: F x FF — F, calledaddition and multiplication respectively, and
satisfying the following nine axioms:



(A1) forall a,b,c € F,wehave(a +b) +c=a+ (b+ c);

(A2) there exists an element ifi, usually denoted by, such that
foralla € F:
0+4+a=a;

(A3) for eacha € F, there exists an elemebite F such that
a+b=0;

(A4) foralla,b € F, we havea +b =b+ a;
(FM1) foralla,b,c € F, (ab)c = a(be);

(FM2) there exists an element I, usually denoted by, such that
1= 0and for alla € F"

la = a;

(FM3) for eacha € F with a # 0, there exists an elemebte F'
such that
ab=1;

(FM4) for all a,b € F, we haveadb = ba;
(D) forall a,b,c € F, we havea(b + ¢) = ab + ac.

Notes. Axioms (Al)-(A4) are about addition, and axioms (FM1)—(P\éte
about multiplication. The final axiom (D) is called tlokstributive lawand it
relates addition and multiplication to each other. The eletfiin axiom (A2) is
called theadditive unitor thezero elementhe elemenb in axiom (A3) is called
the negativeof a and is usually denote@-a); the element in (FM2) is called
the multiplicative unit and the element in (FM3) is called themultiplicative
inverseof a, and is usually denotea!.

4 Examples
Example 4.1. (a) The setR of real numbers, with the usual addition and
multiplication, is a field.

(b) The sefC of complex numbers, with the usual addition and multiplamat
is a field.

(c) The setQ of rational numbers, with the usual addition and multigica,
is a field.

(d) The sefZ of integers, with the usual addition and multiplicationtis#zes
all field axioms except (FM3). It is therefore not a field.

(e) The setN = {0,1,2,...} of natural numbers, with the usual addition
and multiplication, satisfies all field axioms except (A3Y4RM3). Itis
therefore not a field.

This means we can do linear algebra taking the real numibersomplex num-
bers, or the rational numbers as the scalars.

Example 4.2. Consider the séf, = {0, 1} from Example 1.1, with the addition
and multiplication given by the rules of arithmetic “mod@t

+/0 1 -]o1
0fo1 0f0 0
1|10 1]0 1

With these operationg, is a field.

This means we can do linear algebra o¥er
Problem 1. What is subtraction iZ.,?

Problem 2. Multiply the following matrices, taking scalars #.

011 010
1 10 1 00
0 01 1 11

Compare your answer to what you get when doing the calculatith rational
scalars.

Problem 3. Find the inverse of the matrix

011
M=1]11120
0 01

usingZs as the set of scalars. Hint: follow the usual steps of Gansdieina-
tion, but use the modulo 2 operations. Compare this to thersevofd/ when
interpreted over the rational numbers.
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Problem 4. Consider the sef0, 1} with the following different addition and
multiplication rules:

+]l01 -]o1
0fo 1 o000
1|11 1]0 1

Note that we have sét+ 1 = 1. Which of the nine axioms are satisfied? Which
of the nine axioms fail, if any? Is this a field?

Example 4.3. Theintegers modulo %re the se¥s; = {0, 1,2, 3,4}, with the
following addition and multiplication rules:

+10 1 2 3 4 +10 1 2 3 4
0101 2 3 4 010 0 0 0 O
111 2 3 40 1101 2 3 4
212 3 4 01 210 2 41 3
313 401 2 310 3 1 4 2
41401 2 3 410 4 3 21

This is called “arithmetic modulo 5", because the numbeesnamapped after 4:
5 is treated the same as 0, 6 is treated the same as 1, 7 igltiieatsame as 2,
and so on. With these operatioi®; is a field.

Example 4.4. Theintegers modulo @re the se¥s = {0, 1,2, 3,4, 5}, with the
addition and multiplication modulo 6:

+10 1 2 3 4 5 +10 1 2 3 4 5
0101 2 3 4 5 010 0 0 0 0O
1112 3 4 5 0 1101 2 3 45
212 3 45 01 210 2 40 2 4
313 45 01 2 310 3 0 3 0 3
414 5 01 2 3 410 4 2 0 4 2
515 01 2 3 4 5105 4 3 21

ThenZg satisfies all of the field axioms except (FM3). To see why (FFa8%,
leta = 2, and note that there is o€ Zg such thatub = 1. ThereforeZg is
not a field.

Example 4.5. More generally, for any natural number> 2, theintegers mod-
ulo n are given byZ,, = {0,1,...,n — 1}, with addition and multiplication
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“modulo n”. For all n, Z, satisfies the axioms (Al)-(A4), (FM1), (FM2),
(FM4), and (D). However, the axiom (FM3) is only satisfied wheis a prime
number. Itis a fact thak,, is a field if and only ifn is prime.

Problem 5. Solve the following system of linear equations with scalargs:

2z + 2z =1
z + 4y + =z =
r + 2y + 3z

I
ROV

5 Elementary properties of fields

Our goal is to make arithmetic in a field look “as much as pdesds arithmetic
in the real numbers. For this reason, it will be useful toesiime additional
algebraic laws, which are consequences of the field axioms.

Proposition 5.1(Cancellation of addition) For all elementse, y, a of a field, if
z+a=1y+a,thenr =y.

Proof. Assumer + a = y + a. By axiom (A3), there exists an eleménsuch
thata + b = 0. But then we have:

z = 0+uz by (A2)

z+0 by (A4)

x+ (a+0b) byassumption oh
(z+a)+b by (Al)
(y+a)+b byassumption
y+ (a+b) by (AL)

= y+0 by assumption oh
= 0+y by (A1)
=y by (A2)
Note how all four axioms of addition have been used. O

Proposition 5.2 (Cancellation of multiplication) For all elementsz, y, a of a
field, if za = ya anda # 0, thenz = y.

Problem 6. Prove Prop. 5.2.



Proposition 5.3. For all elements: of field,0a = 0.

Proof. Using distributivity and (A2), we have + 0a = 0a = (0 + 0)a =
Oa + Oa, therefore the claim follows by cancellation. O

Proposition 5.4. In any field, ifab = 0, thena = 0 or b = 0.

Proof. Suppose: andb are elements in a field such thdt= 0. We must show
thata = 0 orb = 0. We consider two cases:

Case 1a = 0. Then the conclusion holds and we are done.

Case 2:a # 0. In this case, by (FM3), there exists an elemersuch that
ac = 1. We have:

b = 1b by (FM2)

(ac)b by definition ofc
(ca)b by (FM4)

c(ab) by (FM1)

c0 by assumptiorb = 0
=0 by Prop. 5.3

In each of the two cases, we have proweg 0 or b = 0. 0

The following four propositions show that certain elementiose existence is
guaranteed by the field axioms, are in fact unique.

Proposition 5.5. In a field, the elemerttis uniquely determined by axiom (A2).

Proof. Suppose that is another element also satisfyingt a = « for all a.
Thenz + 0 = 0, by definition ofz, but alsa0 + z = z, by definition of0. Using
commutativity, it follows that = 0+ z = z + 0 = 0, so there cannot be more
than one zero element. O

Proposition 5.6. For any element; of a field, the elemerit in axiom (A3) is
uniquely determined.

Proof. Leta be arbitrary, and suppose that there are two elentesutsly’ such
that botha + b = 0 anda + ¥ = 0. By commutativity,b + a = 0 = b’ + a,
and by cancellatiorp = ¥'. It follows that there is no more than one elemént
satisfying the condition of axiom (A3).

Remark. If a,b are elements such that+ b = 0, we usually writeh = (—a).
This notation is justified by Prop. 5.6.

Proposition 5.7. In a field, the element is uniquely determined by axiom
(FM2).

Problem 7. Prove Prop. 5.7.

Proposition 5.8. For any element # 0 of a field, the elemetitin axiom (FM3)
is uniquely determined.

Problem 8. Prove Prop. 5.8.

The next two propositions are also useful.

Proposition 5.9. Distributivity also holds on the right(b + ¢)a = ba + ca.

Proof. This is a direct consequence of (D) and (FM4). O

Proposition 5.10. The following hold in any field, for alt, b:

@ —(-a)=a,
(b) —(ab) = (=a)b = a(-b),
() —a=(-1)a.

Proof. (a) By definition of(—a), we haven + (—a) = 0. Also, by definition of
—(—a) (and commutativity), we have-(—a)) + (—a) = 0. By cancellation, it
follows thata = —(—a).

(b) To show that-(ab) = (—a)b, we need to show thdt-a)b is the negative
of ab, in other words, thatb + (—a)b = 0. This follows from the axioms as

follows:
ab+ (—a)b = (a+ (—a))b by distributivity

= 0b by (A3)
=0 by Prop. 5.3
The proof of—(ab) = a(—b) is similar.
(c) By (FM2) and (b), we have-a = —(1a) = (—1)a. O
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