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Problem 1. Find an orthonormal basis of R? containing the vector (1,2,2) as the first
basis vector.

Problem 2. Consider the subspace of R* spanned by (1, 1,0, 0), (1,0, 1,0), and (1,0,0,1).

Use the Gram-Schmidt method to find an orthogonal basis of this subspace.

Problem 3. On R3, consider the inner product defined by (v, w) = v Aw, where

21 2
A=(111
213
Use the Gram-Schmidt method to find a basis of R? that is orthonormal with respect to

this inner product.

Problem 4. Consider the vector space V = C'[0, 1] of continuous, real-valued functions
defined on the unit interval [0,1] = {z € R | 0 < < 1}. Consider the inner product on
V that is defined by

1
(f.9) = /0 F@)g(x) de

Let W C V be the subspace spanned by the following three functions: fo(x) = 1,
fi(z) = 2, and fo(z) = 22.

(a) Calculate the inner products (f;, f;) forall ¢, j € {0,1,2}.

(b) Using the Gram-Schmidt method starting from {fo, f1, fo}, find an orthonormal
basis for W.

(c) Approximation. Consider the function g on [0, 1] defined by g(z) = z. Find the
best quadratic approximation of g, i.e., find the quadratic function h € W such that

1
/ (hx) — g(2))* du
0

is as small as possible. Hint: this is equivalent to requiring that || — g|| is as small
as possible, i.e., h is the orthogonal projection of g onto the subspace W.

The following problems are additional proof drills.

Problem 5. Let f : V — W be a linear function, and assume f is one-to-one. Let

v1,...,0, € V be linearly independent. Prove that f(v1),..., f(v,) are linearly inde-
pendent.

Problem 6. Let f : V' — W be a linear function, and assume vy, ...,v, € V are points
such that f(v1),..., f(vy,) are linearly independent. Prove that vy, ..., v, are linearly
independent.

Problem 7. Let f : V' — W be a linear function. Prove that ker f is a subspace of V.
Also prove that Im f is a subspace of W.

Problem 8. Let f : V' — W be a linear function, and let U C V be a subspace of V.
Recall the definition of direct image:

fU) ={w € W | there exists u € U with f(u) = w}.

Prove that f(U) is a subspace of V.

Problem 9. Let f : V — W be a linear function, let v1,...,v,, € V be a basis of the
kernel of f, and let wy, ..., w, € W be a basis of the image of f. Letuy,...,u, € V be
vectors such that f(ui) = wi, ..., f(up) = wp. Prove that {v1,...,vm,u1,...,up}isa
basis of V.
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