1 Fermat Pseudoprimes

A primality test is an algorithm that, given an integer \(n \), decides whether \(n \) is prime or not. The most naive algorithm, trial division, is hopelessly inefficient when \(n \) is very large. Fortunately, there exist much more efficient algorithms for determining whether \(n \) is prime. The most common such algorithms are probabilistic; they give the correct answer with very high probability. All efficient primality testing algorithms are based, in one way or another, on Fermat’s Little Theorem.

Theorem 1.1 (Fermat). If \(p \) is prime, then for all \(b \in \{1, \ldots, p - 1\} \),
\[
b^{p-1} \equiv 1 \pmod{p}.
\]

Definition (Fermat pseudoprime). Let \(n \geq 2 \) and \(b \in \{1, \ldots, n-1\} \). We say that the number \(n \) **passes the Fermat pseudoprime test at base** \(b \) if \(b^{n-1} \equiv 1 \pmod{n} \). A number \(n \) is called a **Fermat pseudoprime** if it passes the Fermat pseudoprime test for all \(b \in \mathbb{Z}_n^* \).

By Fermat’s Little Theorem, every prime number is a Fermat pseudoprime. Unfortunately, the converse does not hold. There are Fermat pseudoprimes that are not prime. Such numbers are called **Carmichael numbers**. The first few Carmichael numbers are
\[\text{561, 1105, 1729, \ldots}\]

Nevertheless, the notion of a Fermat pseudoprime is a useful notion, not least because there is a very efficient probabilistic algorithm for checking whether a given number \(n \) is a Fermat pseudoprime.

Proposition 1.2. If \(n \) is not a Fermat pseudoprime, then \(n \) fails the Fermat pseudoprime test at base \(b \) for at least half of the elements \(b \in \{1, \ldots, n-1\} \).

Proof. Suppose \(n \) is not a Fermat pseudoprime, and let
\[
G = \{ b \in \mathbb{Z}_n \mid b^{n-1} \equiv 1 \pmod{n} \} \subseteq \mathbb{Z}_n^*.
\]
Then \(G \) is a subgroup of \(\mathbb{Z}_n^* \), thus \(|G| \leq |\mathbb{Z}_n^*| \). Since \(n \) is not a Fermat pseudoprime, there exists some \(b \in \mathbb{Z}_n^* \) with \(b \not\in G \), thus \(|G| < |\mathbb{Z}_n^*| \). It follows that \(|G| \leq \frac{1}{2} |\mathbb{Z}_n^*| \leq \frac{n-1}{2} \). Finally, whenever \(b \in \{1, \ldots, n-1\} \) and \(b \not\in G \), then \(b \) fails the test; there are at least \(\frac{n-1}{2} \) such elements.

Algorithm 1.3 (Fermat pseudoprime test).

Input: Integers \(n \geq 2 \) and \(t \geq 1 \).

Output: If \(n \) is prime, output “yes”. If \(n \) is not a Fermat pseudoprime, output “no” with probability at least \(1 - 1/2^t \), “yes” with probability at most \(1/2^t \).

Algorithm: Pick \(t \) independent, uniformly distributed random numbers \(b_1, \ldots, b_t \in \{1, \ldots, n-1\} \). If \(b_i^{n-1} \equiv 1 \pmod{n} \) for all \(i \), output “yes”, else output “no”.

Proof. We prove that the output of the algorithm is as specified. If \(n \) is prime, then the algorithm outputs “yes” by Fermat’s Little Theorem. If \(n \) is not a Fermat pseudoprime, then by Proposition 1.2, \(n \) passes the test at base \(b_i \) with probability at most \(1/2^t \). Hence the probability that \(n \) passes all \(t \) tests is at most \(1/2^t \).

Algorithm 1.3 can distinguish prime numbers from non-Fermat pseudoprimes. We did not specify its behavior if the input is a Carmichael number. As a matter of fact, if the input is a Carmichael number, the algorithm will usually output “yes”, but will output “no” with a small probability (namely, when \(n \) has a common prime factor with one of the \(b_i \)).

2 Carmichael numbers

Before describing an improved version of the primality testing algorithm, we prove some useful properties of Carmichael numbers, i.e., non-prime Fermat pseudoprimes.

Lemma 2.1. Let \(p^e \) be a prime power with \(e \geq 2 \). Then the group \(\mathbb{Z}_{p^e}^* \) has an element of order \(p \).

Proof. Consider \(G = \{ 1 + p^{e-1} x \mid x \in \mathbb{Z}_{p^e} \} \). Clearly \(G \) is a subgroup of \(\mathbb{Z}_{p^e}^* \) with \(p \) elements. Since \(p \) is prime, each element \(g \in G \) has order 1 or \(p \). The only element of \(G \) of order 1 is 1, hence e.g. \(g = 1 + p^{e-1} \) has order \(p \).

Proposition 2.2. Let \(n \) be a Carmichael number. Then \(n \) is odd, and we can factor \(n = m_1 m_2 \), where \(m_1, m_2 \geq 3 \) and \(\gcd(m_1, m_2) = 1 \).
Proof. To show that \(n \) is odd, assume on the contrary that it is even. Then \(n \geq 4 \), since \(2 \) is not a Carmichael number. Moreover, \(n - 1 \) is odd, so we have \((-1)^{n-1} \equiv -1 \pmod{n} \). It follows that \(n \) fails the Fermat pseudoprime test at base \(b = -1 \).

To show that \(n \) has the desired factorization, it suffices to show that two distinct primes occur in the prime factorization of \(n \). Since \(n \) is not itself prime, this is equivalent to proving that \(n \) is not of the form \(p^e \), for some prime \(p \) and \(e \geq 2 \). Suppose, for contradiction, that \(n = p^e \). Then, by Lemma 2.1, there is an element \(x \in \mathbb{Z}^*_n \) of order \(p \). Since \(n \) is a Fermat pseudoprime, we also have \(x^{n-1} \equiv 1 \pmod{n} \), hence \(p | n - 1 \). But this is impossible since \(p | n \). \(\square \)

3 Strong Pseudoprimes

Definition (Strong pseudoprime). Let \(n \) be odd and write \(n - 1 = 2^s t \), where \(t \) is odd. Given \(b \), compute the following elements of \(\mathbb{Z}_n \):

\[
b^1, \quad b^2, \quad b^4, \quad \ldots, \quad b^{2^{s-1}}, \quad b^{2^s t} = b^{n-1}.
\]

We say that \(n \) passes the strong pseudoprime test at base \(b \) if either \(b^1 \equiv 1 \pmod{n} \) or \(b^{2^s t} \equiv -1 \pmod{n} \) for some \(0 \leq r < s \).

Note that in the sequence \(b^1, b^2, b^4, \ldots, b^{2^{s-1}}, b^{2^s t} \), each element is the square of the preceding element. Thus if one of these elements is \(1 \) or \(-1 \), then all the following elements are equal to \(1 \).

Remark 3.1. If \(n \) passes the strong pseudoprime test at base \(b \), then it also passes the Fermat pseudoprime test at base \(b \). In particular, any strong pseudoprime is a Fermat pseudoprime. Proof: If \(n \) passes the strong pseudoprime test at \(b \), then either \(b^1 \equiv 1 \pmod{n} \) or \(b^{2^s t} \equiv -1 \pmod{n} \) for some \(r < s \). In either case, \(b^{2^s t} \equiv 1 \pmod{n} \), and hence \(b^{n-1} \equiv 1 \pmod{n} \).

Remark 3.2. Any prime is a strong pseudoprime. Proof: If \(n \) is prime, then \(\mathbb{Z}_n \) has no zero divisors. It follows that the polynomial \(x^2 - 1 \) has at most two roots in \(\mathbb{Z}_n \). These roots are \(\pm 1 \). By Fermat’s Little Theorem, \(b^{2^s t} \equiv b^{n-1} \equiv 1 \pmod{n} \). If \(b^1 \not\equiv 1 \pmod{n} \), then let \(r \) be maximal such that \(b^{2^r} \not\equiv 1 \). Then \((b^{2^r})^2 = 1 \) implies \(b^{2^r} = -1 \), so \(n \) passes the test at \(b \).

Proposition 3.3. If \(n \) is not prime, then \(n \) fails the strong pseudoprime test at base \(b \) for at least half of the elements \(b \in \{1, \ldots, n-1\} \).

Proof. Let \(n - 1 = 2^s t \) as before. If \(n \) is not a Fermat pseudoprime, then the result follows from Proposition 1.2 and Remark 3.1. So let us consider the case where \(n \) is a Carmichael number. By Proposition 2.2, we can write \(n = m_1 m_2 \), where \(m_1, m_2 \geq 3 \) and \(\gcd(m_1, m_2) = 1 \). Since \(t \) is odd, we have \((-1)^t \not\equiv 1 \pmod{n} \). Let \(r \) be the maximal integer such that there exists some \(b \in \mathbb{Z}_n^* \) with \(b^{2^r t} \not\equiv 1 \pmod{n} \). Note that \(0 \leq r < s \). Let

\[
G = \{ b \in \mathbb{Z}_n^* | b^{2^r t} \equiv \pm 1 \pmod{n} \}.
\]

Clearly, \(G \) is a subgroup of \(\mathbb{Z}_n^* \), hence \(|G| \) divides \(|\mathbb{Z}_n^*| \). We now show that \(G \) is a strict subset of \(\mathbb{Z}_n^* \). By definition of \(r \), there exists some \(b \in \mathbb{Z}_n^* \) with \(b^{2^r t} \not\equiv 1 \pmod{n} \). Then either \(b \not\in G \), or else \(b^{2^r t} \equiv -1 \pmod{n} \). In the latter case, use the Chinese Remainder Theorem to define \(b' \in \mathbb{Z}_n^* \) such that \(b' \equiv b \pmod{m_1} \) and \(b' \equiv 1 \pmod{m_2} \). Then \(b'^{2^r t} \equiv -1 \pmod{m_1} \) and \(b'^{2^r t} \equiv 1 \pmod{m_2} \). This implies \(b'^{2^r t} \not\equiv 1 \pmod{n} \), hence \(b' \not\in G \). In either case, \(G \neq \mathbb{Z}_n^* \). Thus, \(|G| < |\mathbb{Z}_n^*| \), hence \(|G| \leq \frac{1}{2} |\mathbb{Z}_n^*| \leq \frac{n-1}{2} \).

Finally, we claim that for all \(b \in \{1, \ldots, n-1\} \) with \(b \not\in G \), \(n \) fails the strong pseudoprime test at base \(b \). Indeed, either \(b \) is not a unit, in which case \(b^{n-1} \not\equiv 1 \pmod{n} \). Or else, \(b^{2^r+1} \equiv 1 \pmod{n} \) but \(b^{2^r t} \not\equiv \pm 1 \pmod{n} \), causing the test to fail. As there are at least \(n-1 \) elements in \(\{1, \ldots, n-1\} \setminus G \), we are done. \(\square \)

As a result of Remark 3.2 and Proposition 3.3, we obtain an efficient probabilistic algorithm for primality testing. This algorithm is known as the Miller-Rabin algorithm. Notice that the algorithm is correct for all numbers; there is no equivalent of Carmichael numbers with respect to strong pseudoprimes. A number is a strong pseudoprime if and only if it is prime, which is the case if and only if it passes (with probability as close to 1 as desired) the Miller-Rabin primality test.

We finish by summarizing the algorithm:

Algorithm 3.4 (Miller-Rabin primality test).

Input: Integers \(n \geq 2 \) and \(t \geq 1 \).

Output: If \(n \) is prime, output “yes”. If \(n \) is not prime, output “no” with probability at least \(1 - 1/2^t \), and “yes” with probability at most \(1/2^t \).

Algorithm: Let \(n - 1 = 2^s t \), where \(t \) is odd. Pick \(t \) independent, uniformly distributed random numbers \(b_1, \ldots, b_t \in \{1, \ldots, n-1\} \). For each \(i \), check that one of the following conditions hold: either \(b_i^1 \equiv 1 \pmod{n} \) or \(b_i^{2^s t} \equiv -1 \pmod{n} \) for some \(0 \leq r < s \). If this is the case for all \(b_i \), output “yes”, else “no”. \(\square \)