MATH/CSCI 4116: CRYPTOGRAPHY, FALL 2014

Handout 3: The Miller-Rabin Primality Test

Peter Selinger

1 Fermat Pseudoprimes

A primality test is an algorithm that, given an integer n, decides whether n is prime or not. The most naive algorithm, trial division, is hopelessly inefficient when n is very large. Fortunately, there exist much more efficient algorithms for determining whether n is prime. The most common such algorithms are probabilistic; they give the correct answer with very high probability. All efficient primality testing algorithms are based, in one way or another, on Fermat's Little Theorem.

Theorem 1.1 (Fermat). If p is prime, then for all $b \in\{1, \ldots, p-1\}$,

$$
b^{p-1} \equiv 1(\bmod p)
$$

Definition (Fermat pseudoprime). Let $n \geqslant 2$ and $b \in\{1, \ldots, n-1\}$. We say that the number n passes the Fermat pseudoprime test at base b if $b^{n-1} \equiv 1(\bmod n)$. A number n is called a Fermat pseudoprime if it passes the Fermat pseudoprime test for all $b \in \mathbb{Z}_{n}^{*}$.

By Fermat's Little Theorem, every prime number is a Fermat pseudoprime. Unfortunately, the converse does not hold. There are Fermat pseudoprimes that are not prime. Such numbers are called Carmichael numbers. The first few Carmichael numbers are

$$
561,1105,1729, \ldots
$$

Nevertheless, the notion of a Fermat pseudoprime is a useful notion, not least because there is a very efficient probabilistic algorithm for checking whether a given number n is a Fermat pseudoprime.

Proposition 1.2. If n is not a Fermat pseudoprime, then n fails the Fermat pseudoprime test at base b for at least half of the elements $b \in\{1, \ldots, n-1\}$.

Proof. Suppose n is not a Fermat pseudoprime, and let

$$
G=\left\{b \in \mathbb{Z}_{n} \mid b^{n-1} \equiv 1(\bmod n)\right\} \subseteq \mathbb{Z}_{n}^{*}
$$

Then G is a subgroup of \mathbb{Z}_{n}^{*}, thus $|G| \leqslant\left|\mathbb{Z}_{n}^{*}\right|$. Since n is not a Fermat pseudoprime, there exists some $b \in \mathbb{Z}_{n}^{*}$ with $b \notin G$, thus $|G|<\left|\mathbb{Z}_{n}^{*}\right|$. It follows that $|G| \leqslant \frac{1}{2}\left|\mathbb{Z}_{n}^{*}\right| \leqslant \frac{n-1}{2}$. Finally, whenever $b \in\{1, \ldots, n-1\}$ and $b \notin G$, then b fails the test; there are at least $\frac{n-1}{2}$ such elements.

Algorithm 1.3 (Fermat pseudoprime test).
Input: Integers $n \geqslant 2$ and $t \geqslant 1$.
Output: If n is prime, output "yes". If n is not a Fermat pseudoprime, output "no" with probability at least $1-1 / 2^{t}$, "yes" with probability at most $1 / 2^{t}$.
Algorithm: Pick t independent, uniformly distributed random numbers $b_{1}, \ldots, b_{t} \in$ $\{1, \ldots, n-1\}$. If $b_{i}^{n-1} \equiv 1(\bmod n)$ for all i, output "yes", else output "no".

Proof. We prove that the output of the algorithm is as specified. If n is prime, then the algorithm outputs "yes" by Fermat's Little Theorem. If n is not a Fermat pseudoprime, then by Proposition 1.2, n passes the test at base b_{i} with probability at most $\frac{1}{2}$. Hence the probability that n passes all t tests is at most $1 / 2^{t}$.

Algorithm 1.3 can distinguish prime numbers from non-Fermat-pseudoprimes. We did not specify its behavior if the input is a Carmichael number. As a matter of fact, if the input is a Carmichael number, the algorithm will usually output "yes", but will output "no" with a small probability (namely, when n has a common prime factor with one of the b_{i}).

2 Carmichael numbers

Before describing an improved version of the primality testing algorithm, we prove some useful properties of Carmichael numbers, i.e., non-prime Fermat pseudoprimes.
Lemma 2.1. Let p^{e} be a prime power with $e \geqslant 2$. Then the group $\mathbb{Z}_{p^{e}}^{*}$ has an element of order p.

Proof. Consider $G=\left\{1+p^{e-1} x \mid x \in \mathbb{Z}_{p_{e}}\right\}$. Clearly G is a subgroup of $\mathbb{Z}_{p^{e}}^{*}$ with p elements. Since p is prime, each element $g \in G$ has order 1 or p. The only element of G of order 1 is 1 , hence e.g. $g=1+p^{e-1}$ has order p.

Proposition 2.2. Let n be a Carmichael number. Then n is odd, and we can factor $n=m_{1} m_{2}$, where $m_{1}, m_{2} \geqslant 3$ and $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$.

Proof. To show that n is odd, assume on the contrary that it is even. Then $n \geqslant$ 4 , since 2 is not a Carmichael number. Moveover, $n-1$ is odd, so we have $(-1)^{n-1} \equiv-1(\bmod n)$. It follows that n fails the Fermat pseudoprime test at base $b=-1$.
To show that n has the desired factorization, it suffices to show that two distinct primes occur in the prime factorization of n. Since n is not itself prime, this is equivalent to proving that n is not of the form p^{e}, for some prime p and $e \geqslant 2$. Suppose, for contradiction, that $n=p^{e}$. Then, by Lemma 2.1, there is an element $x \in \mathbb{Z}_{n}^{*}$ of order p. Since n is a Fermat pseudoprime, we also have $x^{n-1} \equiv$ $1(\bmod n)$, hence $p \mid n-1$. But this is impossible since $p \mid n$.

3 Strong Pseudoprimes

Definition (Strong pseudoprime). Let n be odd and write $n-1=2^{s} l$, where l is odd. Given b, compute the following elements of \mathbb{Z}_{n} :

$$
b^{l}, \quad b^{2 l}, \quad b^{4 l}, \quad \ldots, \quad b^{2^{s-1} l}, \quad b^{2^{s} l}=b^{n-1} .
$$

We say that n passes the strong pseudoprime test at base b if either $b^{l} \equiv 1(\bmod n)$ or $b^{2^{r} l} \equiv-1(\bmod n)$ for some $0 \leqslant r<s$.

Note that in the sequence $b^{l}, b^{2 l}, b^{4 l}, \ldots, b^{2^{s-1} l}, b^{2^{s} l}$, each element is the square of the preceding element. Thus if one of these elements is 1 or -1 , then all the following elements are equal to 1 .
Remark 3.1. If n passes the strong pseudoprime test at base b, then it also passes the Fermat pseudoprime test at base b. In particular, any strong pseudoprime is a Fermat pseudoprime. Proof: If n passes the strong pseudoprime test at b, then either $b^{l} \equiv 1(\bmod n)$ or $b^{2^{r} l} \equiv-1(\bmod n)$ for some $r<s$. In either case, $b^{2^{s} l} \equiv 1(\bmod n)$, and hence $b^{n-1} \equiv 1(\bmod n)$.
Remark 3.2. Any prime is a strong pseudoprime. Proof: If n is prime, then \mathbb{Z}_{n} has no zero divisors. It follows that the polynomial $x^{2}-1$ has at most two roots in \mathbb{Z}_{n}. These roots are ± 1. By Fermat's Little Theorem, $b^{2^{s} l}=b^{n-1}=1(\bmod n)$. If $b^{l} \neq 1(\bmod n)$, then let r be maximal such that $b^{2^{r} l} \neq 1$. Then $\left(b^{2^{r} l}\right)^{2}=1$ implies $b^{2^{r} l}=-1$, so n passes the test at b.

Proposition 3.3. If n is not prime, then n fails the strong pseudoprime test at base b for at least half of the elements $b \in\{1, \ldots, n-1\}$.

Proof. Let $n-1=2^{s} l$ as before. If n is not a Fermat pseudoprime, then the result follows from Proposition 1.2 and Remark 3.1. So let us consider the case where n is a Carmichael number. By Proposition 2.2, we can write $n=m_{1} m_{2}$, where $m_{1}, m_{2} \geqslant 3$ and $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$. Since l is odd, we have $(-1)^{l} \not \equiv$ $1(\bmod n)$. Let r be the maximal integer such that there exists some $b \in \mathbb{Z}_{n}^{*}$ with $b^{2^{r} l} \not \equiv 1(\bmod n)$. Note that $0 \leqslant r<s$. Let

$$
G=\left\{b \in \mathbb{Z}_{n}^{*} \mid b^{2^{r} l} \equiv \pm 1(\bmod n)\right\}
$$

Clearly, G is a subgroup of \mathbb{Z}_{n}^{*}, hence $|G|$ divides $\left|Z_{n}^{*}\right|$. We now show that G is a strict subset of \mathbb{Z}_{n}^{*}. By definition of r, there exists some $b \in \mathbb{Z}_{n}^{*}$ with $b^{2^{2} l} \not \equiv$ $1(\bmod n)$. Then either $b \notin G$, or else $b^{2^{2} l} \equiv-1(\bmod n)$. In the latter case, use the Chinese Remainder Theorem to define $b^{\prime} \in \mathbb{Z}_{n}^{*}$ such that $b^{\prime} \equiv b\left(\bmod m_{1}\right)$ and $b^{\prime} \equiv 1\left(\bmod m_{2}\right)$. Then $b^{2^{r} l} \equiv-1\left(\bmod m_{1}\right)$ and $b^{2^{r} l} \equiv 1\left(\bmod m_{2}\right)$. This implies $b^{2^{r} l} \not \equiv \pm 1(\bmod n)$, hence $b^{\prime} \notin G$. In either case, $G \neq \mathbb{Z}_{n}^{*}$. Thus, $|G|<\left|\mathbb{Z}_{n}^{*}\right|$, hence $|G| \leqslant \frac{1}{2}\left|\mathbb{Z}_{n}^{*}\right| \leqslant \frac{n-1}{2}$.
Finally, we claim that for all $b \in\{1, \ldots, n-1\}$ with $b \notin G, n$ fails the strong pseudoprime test at base b. Indeed, either b is not a unit, in which case $b^{n-1} \not \equiv$ $1(\bmod n)$. Or else, $b^{2^{r+1} l} \equiv 1(\bmod n)$ but $b^{2^{r} l} \not \equiv \pm 1(\bmod n)$, causing the test to fail. As there are at least $\frac{n-1}{2}$ elements in $\{1, \ldots, n-1\} \backslash G$, we are done.

As a result of Remark 3.2 and Proposition 3.3, we obtain an efficient probabilistic algorithm for primality testing. This algorithm is known as the Miller-Rabin algorithm. Notice that the algorithm is correct for all numbers; there is no equivalent of Carmichael numbers with respect to strong pseudoprimes. A number is a strong pseudoprime if and only if it is prime, which is the case if and only if it passes (with probability as close to 1 as desired) the Miller-Rabin primality test. We finish by summarizing the algorithm:

Algorithm 3.4 (Miller-Rabin primality test).

Input: Integers $n \geqslant 2$ and $t \geqslant 1$.
Output: If n is prime, output "yes". If n is not prime, output "no" with probability at least $1-1 / 2^{t}$, and "yes" with probability at most $1 / 2^{t}$.
Algorithm: Let $n-1=2^{s} l$, where l is odd. Pick t independent, uniformly distributed random numbers $b_{1}, \ldots, b_{t} \in\{1, \ldots, n-1\}$. For each i, check that one of the following conditions hold: either $b_{i}^{l} \equiv 1(\bmod n)$ or $b_{i}^{2^{r} l} \equiv-1(\bmod n)$ for some $0 \leqslant r<s$. If this is the case for all b_{i}, output "yes", else "no".

