Math 4680/5680, Topics in Logic and Computation, Winter 2017

Handout 1: Problems for propositional logic

A
$$\vee$$
 (B \wedge C) a (A \vee B) \wedge (A \vee C). 36. (A \rightarrow C) \vee (B \rightarrow D) \vdash (A \wedge B) \rightarrow (C \vee D). A \wedge (A \wedge B) \rightarrow (A \wedge C) \wedge (A \wedge C) (A \wedge C)

A ^ (B ^ C) = (A ^ B) ^ (A ^ C).

A v (A A B) = A.

H-1(A A (1A)). $A + (1A) \vdash 1A$.

7. 3.

15. 16. " <u>8</u>

11. A A (A V B) = A.

$$(A+B) \land (A+C) * A \rightarrow (B \land C)$$
. (NOTE: The 1 rule is required for nos. 41-53.)

A + B, B + C F A + C.

(((8r) + (18) + 8 + (18) + (8r) + (8r))

22. 23.

A ^ (18) [14 8].

21.

A + B + (18) + (1A). A + B 1 - 1 (A A (18)).

19.

8

(A + B) + C 1 B + C.

FA + (8 + A).

A v B F (18) + (C + A).

A v B 1 (B + A) + A.

24.

F 1(A ← (1A)).

 $(B \rightarrow A) \land (A \lor B) \vdash A$.

. 53 . 53

A v B F (1A) + B. (1A) VB⊢A→B.

27.

28.

$$52^*$$
 A + (B v C) \vdash (A + B) v (A + C).

Т 'n

ゅん8十と then φ ∧ ψ

Prove that if φ ∧ ₩ 1 → 8 and

(111)

 $(A \lor B) + C = (A + C) \land (B + C)$.

. (8 ∧ Å) ⊢ ⊣ (8 r) ∨ (A l) $A(A \lor B) = (A \lor A) \lor (B).$

(11) ø∨θ F ቁ∨θ,

$$H(A+C)+((B+C)+((A+B)+C)).$$
 56. Prove that $\Gamma \cup \{\phi\} \vdash \psi$ iff $\Gamma \vdash \phi + \psi$ (1)