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1 Compactness and consequences

The following theorem is a trivial consequence of the soundness and completeness

theorem, but it has many interesting and surprising applications. Recall that a set

of formulas is called satisfiable if there exists a structure and a valuation that

makes all formulas in the set true.

Theorem 1 (Compactness). Let Γ be a set of formulas. If every finite subset of Γ
is satisfiable, then Γ is satisfiable.

Proof. We prove the contrapositive. Suppose Γ is not satisfiable. Then Γ |= ⊥.

By completeness, Γ ⊢ ⊥. But natural deductions are finite, hence any deduction

can only use finitely many hypotheses. It follows that Γ′ ⊢ ⊥ for some finite

Γ′ ⊆ Γ. By soundness, Γ′ |= ⊥, and thus Γ′ is not satisfiable, as desired. �

Several applications of the compactness theorem are demonstrated in the exercises

of Problem Set 9. Here are some more examples of such applications:

Theorem 2. Suppose Σ is a set of sentences. If Σ has arbitrarily large finite

models, then it has an infinite model.

Proof. Suppose Σ has arbitrarily large finite models. For every n ∈ N, let λn

be the sentence that states “there are at least n distinct object”. Notice that λn is

first-order definable, for instance

λ3 = ∃x∃y∃z(x 6≈ y ∧ x 6≈ z ∧ y 6≈ z).

Consider the set of sentences Φ = Σ ∪ {λn | n ∈ N}. Since Σ has arbitrarily

large finite models, every finite subset of Φ has a model. By compactness, Φ has

a model. But any model of Φ is infinite, and it is also a model of Σ. Thus, Σ has

an infinite model. �

Recall that a class K of structures is called axiomatizable if K = Mod(Σ),
for some set of sentences Σ. Also, K is called finitely axiomatizable if K =
Mod(σ1, . . . , σn) for finitely many sentences σ1, . . . , σn.

1

Theorem 3. The class of all infinite structures is axiomatizable, but not finitely

axiomatizable.

Proof. Let K be the class of infinite structures. The set {λn | n ∈ N} axiomatizes

K . Suppose, on the other hand, that K was finitely axiomatizable. Then there

exist sentences σ1, . . . , σn such that K = Mod(σ1, . . . , σn). Let σ = σ1 ∧ . . .∧

σn, then K = Mod(σ). Thus, a structure A is infinite iff |=A σ. Equivalently, a

structure A is finite iff |=A ¬σ. But then the class of finite structures would be

axiomatizable, contradicting Theorem 2. �

The following theorem is often useful in proving that a certain class of structures

is not finitely axiomatizable:

Theorem 4. If K is a finitely axiomatizable class of structures, and if K =
Mod(Σ), then there exists a finite subset Σ′ ⊆ Σ such that K = Mod(Σ′).

Proof. By assumption, K is finitely axiomatizable. Let τ1, . . . , τn be sentences

such that K = Mod(τ1, . . . , τn). Then K = Mod(τ), where τ = τ1 ∧ . . . ∧ τn.

Now every model of Σ is in the class K , and hence satisfies τ . It follows that the

set Σ∪{¬ τ} is unsatisfiable. By compactness, there exists a finite subset Σ′ ⊆ Σ
such that Σ′ ∪ {¬ τ} is unsatisfiable. This means that every model of Σ′ is not a

model of ¬ τ , or in other words, every model of Σ′ is a model of τ . Also, every

model of Σ is certainly a model of Σ′. We thus have K = Mod(Σ) ⊆ Mod(Σ′) ⊆
Mod(τ) = K . It follows that K = Mod(Σ′) as desired. �

If K is a class of structures, let us write Kc for the complement of the class. That

is, a structure A is in Kc iff it is not in K .

Theorem 5. A class K of structures is finitely axiomatizable if and only if both

K and Kc are axiomatizable.

Proof. “⇒”: Suppose K is finitely axiomatizable. Then surely K is axioma-

tizable. To show that Kc is axiomatizable, let K = Mod(σ1, . . . , σn). Let

σ = σ1 ∧ . . .∧ σn. Then A ∈ K iff |=A σ. Consequently A ∈ Kc iff 6|=A σ, iff

|=A ¬σ. Thus, Kc = Mod(¬ σ).

“⇐”: Suppose both K and Kc are axiomatizable. Let K = Mod(Σ) and Kc =
Mod(Γ). Since no structure is in K and Kc, the set Σ ∪ Γ is unsatisfiable. By

compactness, there exists a finite subset Σ′ ∪ Γ′ which is unsatisfiable. Clearly
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every model of Σ is a model of Σ′. Conversely, let A be a model of Σ′. Then A

does not satisfy Γ′, and hence not Γ. Thus A 6∈ Kc, thus A ∈ K . We have:

K = Mod(Σ) ⊆ Mod(Σ′) ⊆ K,

and hence K = Mod(Σ′). Thus K is finitely axiomatizable, as desired. �

2 Size of models

The cardinality of a set is the number of elements in the set. Different infinite

sets can have different cardinalities; for instance, the set of natural numbers has

a smaller cardinality than the set of real numbers. We say the cardinality of a

structure A is the cardinality of its carrier |A|. The cardinality of a language L is

the cardinality of L, considered as a set of sentences.

Remark. If P and F are the sets of predicate symbols, respectively function sym-

bols, of the language L, then the cardinality of L is κ = max(cardP ∪ F ,ℵ0).
Here, ℵ0 is the cardinality of a countable set.

To see why this is true, first, notice that the alphabetA ofL consists of the symbols

from P and F , finitely many special symbols such as parentheses and logical

connectives, and countably many variables. Thus, the cardinality of A is κ. Let

A∗ be the set of finite strings in the alphabet A. One can regard these strings as

finite tuples, thus A∗ = {ǫ} ∪ A ∪ A ×A ∪ A3 ∪ A4 ∪ . . .. Here ǫ is the empty

string. But notice that the cardinality of each An is the same as the cardinality of

A, when n > 1. Thus the cardinality of A∗ is at most A × ℵ0, which is in turns

the cardinality of A. Since L ⊆ A∗, it follows that cardL 6 cardA∗ 6 cardA.

On the other hand, clearly cardA 6 cardL. Thus it follows that L has the same

cardinality as its alphabet A.

Theorem 6 (Löwenheim-Skolem-Tarski). Let Γ is a satisfiable set of formulas in

a language of cardinality κ. Then

1. Γ is satisfiable in some structure of cardinality 6 κ.

2. If Γ is satisfiable in some infinite structure, then for every cardinality λ > κ,

there exists a structure of cardinality λ in which Γ is satisfiable.

Proof. 1. This follows from the proof of the completeness theorem. In the proof

of the completeness theorem, we proceeded as follows: First, we replace all free
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variables in Γ by new constants, to obtain a set of sentences, which we close under

derivability to obtain a theory T . The language of T contains at most countably

many new constants, so it has the same cardinality as the language of Γ. Let L be

the language of T . Next, we constructed a Henkin theory Tω by adding a constant

symbol for each existential sentence of L, countably many times. The resulting

language Lω still has the same cardinality as L. We defined A to be the set of

closed terms of Lω. Clearly, the cardinality of A is at most that of Lω. Finally, we

constructed a structure A in which T , thus Γ, is satisfiable. We let the carrier |A|
be a certain quotient of A. Thus, card |A| 6 cardA 6 cardLω = cardL = κ.

2. Suppose now that Γ is satisfiable in some infinite structure. Let L be the

language of Γ. Let λ > κ be a cardinal. Consider the language L′ obtained from

L by adding λ many new constant symbols {cx | x ∈ λ}. Consider the set of

formulas

Φ = Γ ∪ {cx 6≈ cy | x 6= y ∈ λ}.

Notice that since Γ is satisfiable in some infinite structure A, every finite subset Φ′

of Φ is also satisfiable, namely by mapping the finitely many cx that are mentioned

in Φ′ to different elements of A. By compactness, it follows that Φ is satisfiable.

By part 1., Φ is satisfiable in some structure B of cardinality 6 λ (notice that λ

is the cardinality of the language L′). On the other hand, since B is a model of

cx 6≈ cy , for any distinct x, y ∈ λ, B has cardinality at least λ. It follows that the

cardinality of B is exactly λ. Further, Γ is satisfiable in B. �

Recall that two structures A and B are called elementarily equivalent if Th(A) =
Th(B). Concretely, this means that A and B make precisely the same sentences

true. If A and B are elementarily equivalent, we write A ≡ B.

Corollary 7. (a) Let Σ be a set of sentences in a countable language. If Σ has

an infinite model, then Σ has models of every infinite cardinality.

(b) Let A be an infinite structure for a language of cardinality κ. Then for any

infinite cardinal λ > κ, there is a structure B of cardinality λ such that

B ≡ A.

Proof. (a) Take Γ = Σ and κ = ℵ0 in Theorem 6(2). (b) Take Γ = Th(A) in

Theorem 6(2) to obtain a model B of Th(A) of cardinality λ. Then Th(A) ⊆
Th(B). On the other hand, if σ is some sentence that is true in B, then ¬σ is

not true in B, thus ¬ σ is not true in A, hence σ is true in A. If follows that

Th(B) ⊆ Th(A). Hence B ≡ A. �
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Note that the preceding theorem and corollary are surprising. They imply, for

instance, that there is an uncountable structure which satisfies precisely the same

first-order sentences as the natural numbers. On the other hand, there is some

countable structure which is elementarily equivalent to the reals.

3 Complete and κ-categorical theories

Recall that a set of sentences is called a theory if for all sentences σ, T ⊢ σ

implies σ ∈ T . Also recall that the theory Th(A) of a structure A is the set of

sentences that are satisfied in A. (It follows from soundness that this is indeed a

theory). Further, if K is a class of structures, then Th(K) is defined to be the set

of sentences that are satisfied in all structures in K .

Definition. A theory T is complete if for every sentence σ, either σ ∈ T or

¬σ ∈ T .

Lemma 8. 1. If T ⊆ T ′ and T is complete and T ′ is consistent, then T = T ′.

2. A theory is complete iff it is maximally consistent.

3. For any structure A, Th(A) is complete.

4. Suppose K is a non-empty class of structures. Then Th(K) is complete iff

for all A,B ∈ K , A ≡ B.

Proof. 1. Suppose T ⊆ T ′ and T is complete and T ′ is consistent. Suppose there

was some sentence σ ∈ T ′ such that σ 6∈ T . Then ¬σ ∈ T since T is complete.

Since T ⊆ T ′, it follows that ¬σ ∈ T ′. But then σ,¬ σ ∈ T ′, which implies that

T ′ is inconsistent, a contradiction. Hence T = T ′.

2. Left-to-right. Suppose T is complete. Then it is maximally consistent by 1.

Right-to-left: Suppose T is maximally consistent. Suppose σ 6∈ T . Then T ∪ {σ}
is inconsistent by maximality of T . Hence T, σ ⊢ ⊥, and thus T ⊢ ¬ σ by the

(¬ I) rule. Since T is a theory, it follows that ¬ σ ∈ T . Hence T is complete.

3. This is trivial. For any sentence σ, either |=A σ or |=A ¬ σ, by definition of |=.

Thus σ ∈ Th(A) or ¬σ ∈ Th(A).

4. Left-to-right: Suppose Th(K) is complete. Consider any A ∈ K . Then

Th(K) ⊆ Th(A). But Th(K) is complete and Th(A) is consistent, hence Th(K) =
Th(A) by 2. Similarly Th(K) = Th(B) for any B ∈ K , hence A ≡ B.
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Right-to-left: Suppose A ≡ B for all A,B ∈ K . Pick some A ∈ K . Then

Th(K) = Th(A). But Th(A) is complete by 3. �

One useful fact about complete theories is that they are often decidable.

Theorem 9. Suppose T is a theory with an axiom set Σ that can be effectively

listed by an algorithm. If T is complete, then T is decidable.

Proof. Essentially, the decicion procedure for T is the following: Suppose you

want to decide whether a given sentence σ is in T . systematically enumerate all

the valid natural deductions whose hypotheses are among Σ. Since T is complete,

eventually either σ or ¬σ appears as the conclusion of one of these deductions.

Depending on which is the case, the procedure will output “yes” or “no”. This is

always guaranteed to happen after a finite amount of time. �

The following test is sometimes useful for proving that certain theories are com-

plete. If κ is a cardinality, then we say that a theory T is κ-categorical if all

models of T of cardinality κ are isomorphic.

Theorem 10 (Łoś-Vaught Test). Suppose T only has infinite models, and T is

κ-categorical for some κ not less than the cardinality of L. Then T is complete.

Proof. Suppose T is not complete. Then there exists a sentence σ such that T 6⊢ σ

and T 6⊢ ¬σ. By completeness, there exist models A and B of T such that

6|=A σ and 6|=B ¬ σ. In other words, |=A ¬ σ and |=B σ. A and B are infinite

by assumption. By Corollary 7, there exist structures A′ and B′ of cardinality

κ which are elementarily equivalent to A, respectively B. Thus |=A′ ¬σ and

|=B′ σ. Since both A′ and B′ are models of T , this contradicts the fact that T is

κ-categorical.

Applications:

Example 11. We proved in class that any two countable dense linear orders with-

out endpoints are isomorphic. In other words, the theory T of countable dense

linear orders without endpoints is ℵ0-categorical. Also, T has no finite models. It

follows that T is complete.

Example 12. It is a theorem in algebra that two algebraically closed fields are iso-

morphic if they have the same characteristic and the same transcendence degree. It

follows that any two algebraically closed fields of characteristic 0 are isomorphic

if they have the same cardinality. In our terminology, the theory of algebraically
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closed fields of characteristic 0 is κ-categorical for any uncountable cardinal κ.

Also, this theory has no finite models. Hence it is complete by the Łoś-Vaught

Test. One consequence of this fact is that any two such fields are elementarily

equivalent. Thus, any sentence that is true for the complex numbers is true in

every algebraically closed field of characteristic 0. Another consequence of com-

pleteness is that the theory of the complex numbers is decidable. This means, for

any first-order statement about the complex numbers, there is a decision procedure

which decides whether the statement is true or false.

A decision procedure for the first-order theory of complex numbers is a very pow-

erful tool to have. However, this does not mean that we can decide any statement

about the complex numbers. Only first-order statements are affected. There are

many interesting statements about the complex numbers that are not expressible

in first-order, for instance, any statements that refer to arbitrary subsets of the

complex numbers.
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