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Two Model Structures on S
If i : A→ B and f : X → Y , i t f means every commutative

A

i
��

a // X

f
��

B
b

// Y

has a diagonal filler d : B → X.

1)(Quillen) hk
n : Λk[n]→ ∆[n], f : X → Y is a Kan fibration if

hk
n t f , 0 ≤ k ≤ n, n ≥ 1. F0 = Kan fibrations.

Sπ0(X, Y ) = π0(Y X). u : A→ B is a weak homotopy
equivalence if

Sπ0(u, X) : Sπ0(B,X)→ Sπ0(A,X)

is a bijection for each Kan complex X. W0 = weak homotopy
equivalences. C0 = monomorphisms.
(F0, C0,W0) is the classical model structure on S.



2)(Joyal) τ1(X) is the fundamental category of X. τ0(X) =
isomorphism classes of objects in τ1(X). X ∈ S is a
quasi-category if hk

n t X, 0 < k < n.

Sτ0(X, Y ) = τ0(Y X). u : A→ B is a weak categorical
equivalence if

Sτ0(u, X) : Sτ0(B,X)→ Sτ0(A,X)

is a bijection for each quasi-category X. W1 = weak categorical
equivalences. C1 = monomorphisms. F1 = (C1

⋂
W1)t the

quasi-fibrations.

(F1, C1,W1) is the quasi-category model structure on S. The
fibrant objects are the quasi-categories.

Note: C0 = C1 and W1 ⊆ W0 so C1
⋂
W1 ⊆ C0

⋂
W0 and

F0 ⊆ F1



Bisimplicial Sets

A,B ∈ S, A�B ∈ S(2) (A�B)mn = Am ×Bn.
The left divsion functor: ∆[n]→ A\X =A�∆[n]→ X.
The right divsion functor: ∆[m]→ X/B = ∆[m]�B → X.
Example: ∆[m]\X = Xm∗, X/∆[n] = X∗n.

Extension to arrows: u : A→ B, v : C → D in S

A�C

��

// B�C

��
A�D // B�D

gives u�′v : A�D +A�C B�C → B�D.
For f : X → Y in S(2)

B\X

��

// A\X

��
B\Y // A\Y



gives < u\f >: B\X → B\Y ×A\Y A\X.

X/D

��

// X/C

��
Y/D // Y/C

gives < f/v >: X/D → Y/D ×Y/C X/C.

(u�′v) t f iff v t< u\f > iff u t< f/v >.

i2 : ∆→ ∆×∆ is i2([n])) = ([0], [n])
i∗2(X) = X0 = ∆[0]\X, and

Hom2(X, Y ) = i∗2(Y
X)

is an enrichment of S(2) over S. There are tensor and cotensor
products.



The vertical model structure on S(2)

f : X → Y in S(2) is a vertical weak homotopy equivalence if
fm : Xm → Ym is a weak homotopy equivalence m ≥ 0. W ′

0 =
class of all such. sm : ∂∆[m]→ ∆[m] is the inclusion.
f : X → Y is a vertical fibration or v-fibration if < sm\f > is a
Kan fibration m ≥ 0. X is v-fibrant if X → 1 is a v-fibration.
F ′

0 = class of v-fibrations. C′0 = monomorphisms.

Theorem
(F ′

0, C′0,W ′
0) is a simplicial model structure on S(2) which is

proper and cartesian closed.
This is the Reedy model structure associated to the classical
model structure (F0, C0,W0) on S. We call it the vertical model
structure on S(2). There is also a horizontal model structure on
S(2) associated to the quasi-category model structure
(F1, C1,W1) on S.
Note: f : X → Y in S(2) is a vertical weak homotopy
equivalence iff Hom2(f, Z) : Hom2(Y, Z)→ Hom2(X, Z) is a
weak homotopy equivalence for each v-fibrant Z in S(2).



Complete Segal Spaces

The n− chain In =
⋃n−1

i=0 (i, i + 1). in : In → ∆[n] is the
inclusion. I0 = 0. X ∈ S(2) satisfies the Segal condition if

in\X : ∆[n]\X → In\X

is a weak homotopy equivalence for n ≥ 2.
In\X = X1 ×X0 X1 × . . .×X0 X1. So X satisfies the Segal
condition iff the map

Xn → X1 ×X0 X1 × . . .×X0 X1

is a weak homotopy equivalence for n ≥ 2. Example: the nerve
of a simplicial category - exactly. The name is from Graham
Segal’s ∆-spaces - the above with X0 = pt. A Segal space is a
v-fibrant simplicial space that satisfies the Segal condition.
Introduced by Charles Rezk in his paper “A model for the
homotopy theory of homotopy theory”.



J is the nerve of the groupoid with one isomorphism 0→ 1. A
Segal space X is complete if the map

1\X → J\X

is a weak homotopy equivalence. f : X → Y in S(2) is a Rezk
weak equivalence if

Hom2(f, Z) : Hom2(Y, Z)→ Hom2(X, Z)

is a weak homotopy equivalence for each complete Segal space
Z. WR = Rezk weak equivalences. CR = monomorphisms.
FR = (CR

⋂
WR)t. Then Rezk proved

Theorem
(FR, CR,WR) is a simplicial model structure on S(2) which is
left proper and cartesian closed. The fibrant objects are the
complete Segal spaces.
(FR, CR,WR) is the Rezk model structure or the model structure
for complete Segal spaces.



Note: C′0 = CR and W ′
0 ⊆ WR, so FR ⊆ F ′

0.

i1 : ∆→ ∆×∆ is i1([n])) = ([n], [0]). p1 : ∆×∆→ ∆ is the
first projection. p1 a i1, so p∗1 : S←→ S(2) : i∗1. i∗1(X) = X∗0 the
first row of X, so p∗1(A) = A�1. Our main theorem is then

Theorem
p∗1 : S←→ S(2) : i∗1 is a Quillen equivalence between the model
category for quasi-categories and the model category for
complete Segal spaces.
Thus, all the homotopy theoretic information in a complete
Segal space is contained in its first row.

∆′[n] is the nerve of the groupoid freely generated by [n].
t : ∆×∆→ S is t([m], [n]) = ∆[m]×∆′[n]. t! : S(2) → S is the
left Kan extension of t along Y oneda : ∆×∆→ S(2). t! is the
total space functor. It has a right adjoint t! : S→ S(2)

t!(X)mn = S(∆[m]×∆′[n], X)



Theorem
t! : S(2) ←→ S : t! is a Quillen equivalence between the model
category for complete Segal spaces and the model category for
quasi-categories.

Note: t!p
∗
1 : S→ S = idS so i∗1t

! = idS

Segal Categories

X : ∆op → S is a precategory if X0 is discrete. PCat ⊆ S(2) is
the full subcategory of precategories. X : (∆×∆)op → Set is in
PCat iff it takes every map in [0]×∆ to a bijection, so put
∆|2 = ([0]×∆)−1(∆×∆) and let π : ∆2 → ∆|2 be the
canonical map.

π∗ : [(∆|2)op,Set] ' PCat ⊆ S(2)

X ∈ PCat is a Segal category if it satisfies the Segal condition.
Segal categories were introduced by Hirshowitz and Simpson for
applications to algebraic geometry. They showed



Theorem
There is a model structure on PCat in which the cofibrations
are the monomorphisms and the weak equivalences are “weak
categorical equivalences”. The model structure is left proper and
cartesian closed.
This is the Hirshowitz-Simpson model structure, or the model
structure for Segal categories.

Julia Bergner showed

Theorem
The adjoint pair π∗ : PCat←→ S(2) : π∗ is a Quillen
equivalence between the model category for Segal categories and
the model category for complete Segal spaces. A map f : X → Y
of precategories is a weak categorical equivalence iff π∗(f) is a
Rezk weak equivalence.



p1 : ∆×∆←→ ∆ : i1 and p1 inverts the arrows of [0]×∆, so
there is a unique q : ∆|2 → ∆ such that qπ = p1.
j = πi1 : ∆→ ∆|2 satisfies q a j. If X ∈ PCat, j∗(X) = X∗0 -
the first row of X. If A ∈ S, q∗(A) = A�1.

Theorem
The adjoint pair q∗ : S←→ PCat : j∗ is a Quillen equivalence
between the model category for quasi-categories and the model
category for for Segal categories.
Put d = πδ : ∆→ ∆|2, where δ : ∆→ ∆×∆ is the diagonal. If
X ∈ PCat, d∗(X) = the diagonal complex of X. d∗ has a left
adjoint d! and a right adjoint d∗.

Theorem
The adjoint pair d∗ : PCat←→ S : d∗ is a Quillen equivalence
between the model category for Segal categories and the model
category for quasi-categories.
d∗q∗ : S→ S = idS since qd = id. Hence j∗d∗ : S→ S = idS.


