FUNCTIONALITY, POLYMORPHISM, AND CONCURRENCY:

A MATHEMATICAL INVESTIGATION OF PROGRAMMING PARADIGMS

Peter Selinger

A Dissertation in Mathematics

Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

1997

Supervisor of Dissertation

Graduate Group Chairperson

ii

COPYRIGHT

PETER SELINGER

1997

iv

In Memory of Moez Alimohamed
1967-1994

Acknowledgments

This research was supported by graduate fellowships from the Institute for Research in Cognitive Science and
from the School of Arts and Sciences at the University of Pennsylvania, and by an Alfred P. Sloan Doctoral
Dissertation Fellowship.

Some of the results in Chapters [3|and f] were announced in a paper that appeared in the Proceedings of the
Eleventh Annual IEEE Symposium on Logic in Computer Science [57]]. Parts of Chapter[6]are scheduled to
appear in the Proceedings of CONCUR 97 [58]].

Part of this research was done while I was visiting the Isaac Newton Institute at the University of Cambridge
as an affiliated participant of the Semantics of Computation Program in the Fall of 1995.

I am grateful to Gordon Plotkin for introducing me to the problem of partial orders on term models, and for
many stimulating and enjoyable discussions on the lambda calculus. He has kindly consented to the inclusion
of his previously unpublished proof of Theorem [3.16] as well as the material in Section [3.4] some of which
resulted from his discussions with Alex Simpson.

I would also like to thank Peter Freyd, Furio Honsell, Martin Hyland, Catuscia Palamidessi, Benjamin Pierce,
Simona Ronchi, Davide Sangiorgi, Dana Scott, Phil Scott, and Glynn Winskel. They all have contributed
valuable comments on parts of this work at various stages of its completion.

Thanks to Peter Freyd, David Harbater, Andre Scedrov, and Scott Weinstein for serving on my Ph.D. com-
mittee.

Thanks to the staff at the Math Department at the University of Pennsylvania for helping me time and again
with the administrative aspects of being a graduate student.

Thanks to Jeny Carden, for her love and support.

Finally, I would like to express my special gratitude to my advisor Andre Scedrov for his guidance, support,
candid criticism, and for his faith in my ability to complete this task.

Philadelphia, June 1997

vi

ABSTRACT
FUNCTIONALITY, POLYMORPHISM, AND CONCURRENCY:

A MATHEMATICAL INVESTIGATION OF PROGRAMMING PARADIGMS

Peter Selinger

Andre Scedrov

The search for mathematical models of computational phenomena often leads to problems that are of inde-
pendent mathematical interest. Selected problems of this kind are investigated in this thesis. First, we study
models of the untyped lambda calculus. Although many familiar models are constructed by order-theoretic
methods, it is also known that there are some models of the lambda calculus that cannot be non-trivially
ordered. We show that the standard open and closed term algebras are unorderable. We characterize the ab-
solutely unorderable T-algebras in any algebraic variety T. Here an algebra is called absolutely unorderable
if it cannot be embedded in an orderable algebra. We then introduce a notion of finite models for the lambda
calculus, contrasting the known fact that models of the lambda calculus, in the traditional sense, are always
non-recursive. Our finite models are based on Plotkin’s syntactical models of reduction. We give a method
for constructing such models, and some examples that show how finite models can yield useful information
about terms. Next, we study models of typed lambda calculi. Models of the polymorphic lambda calculus
can be divided into environment-style models, such as Bruce and Meyer’s non-strict set-theoretic models,
and categorical models, such as Seely’s interpretation in PL-categories. Reynolds has shown that there are no
set-theoretic strict models. Following a different approach, we investigate a notion of non-strict categorical
models. These provide a uniform framework in which one can describe various classes of non-strict models,
including set-theoretic models with or without empty types, and Kripke-style models. We show that com-
pleteness theorems correspond to categorical representation theorems, and we reprove a completeness result
by Meyer et al. on set-theoretic models of the simply-typed lambda calculus with possibly empty types. Fi-
nally, we study properties of asynchronous communication in networks of communicating processes. We
formalize several notions of asynchrony independently of any particular concurrent process paradigm. A
process is asynchronous if its input and/or output is filtered through a communication medium, such as a
buffer or a queue, possibly with feedback. We prove that the behavior of asynchronous processes can be
equivalently characterized by first-order axioms.

vii

viii

Contents

[Introduction]

T Preliminacies

M1

Basic category theory|

[1.I.1 _ Categories

[LI4 Adjunctions|.

|1.1.6 Cartesian-closed categories|. Lo

|L.2 Basic domain theory|

2. Preorders and posets

2. omplete partial orders|.

1.2.5 Domain equations|
[.2.6_The D.-construction]

[L.3__Basic umversal algebral

3. -algebras

Ii 32 Term algeEras|

[1.3.3 Algebraic varieties|

[1.3.5 Ordered algebras|
[T.3:6 Dcpo-algebras|

2 The Lambda Calculus is Algebraic]

2.1.2 Lambda reduction and consistency|

[2.2 Combinatory models of the lambda calculus|

23 Lambda algebras and indeterminates|
[2.3.1 A characterization of A[x] for lambda algebras]

“ombinatory algebras and combinator

2.2.2 The derived lambda abstractor

[2.2.3 The local interpretation of lambda terms|

|224 Lambda algebras|

|Z§Z l l_le absolute mnterpretation|
|Z§§ Soungness an§ comﬁ!eteness for !am§§a a!geﬁras'
|Z.4T Lambda theories and lambda algebras form equivalent categories|

X

—

[c BRI e IV IR, Y |

2.6 Models of the lambda-fSn-calculus| L oL 28

2.6.1 Curryalgebras| 28

28

28

28

29

33

34

3.1.1 Plotkin’s unorderable algebra: Separability| 34
...................... 34

B2 The Topological Completeness PIOBIem] . - . » - .« o o o oo 35
37

37

3. An application to ordered algebras and dcpo-algebras|. 38
......................... 39
B5_ Relating different notions of Unorderability]o a1
B3I _Tocalnofonsl - o v v vttt e e 41
B32 AbsOIUfe NOGONS .« - « « « v v v e e e e e 42

4 __FKinite Lambda Models| 45
4.1 __Modelsof reduction|. L 45

4.1.1 Syntactical models of reduction| 45
412 Categorlcal modelsof reduction] 46

4.1.3 Models of Sn-reduction: Order-extensionality|. 47

B2 Treemodels o ot 47
4.2.1 Recapturing convertibility|o oo 47
[4.2.2 A method for constructing models| L o Lo 48

B3 Partialmodels] 49
BA EXGIDIG . -« - o o o oo e e 50
4.4.1 A class of finite models to distinguish theterms €2, 50
4.4.2 A non-trivial 3-element modell 51

4.5 Completeness| 52
.6 Relating models of reduction t0 Doo-models| oo v it 52
|5 Henkin Representations, Polymorphism, and Empty Types| 55
5.1 Henkin representations of cartesian-closed categories| 56
BTl Henkin representalions] - . - - .+ - - o o oo 56

-1 enkin representations and well-pomnted ccc’s|.ol 57

BI reely adjoining arrows t0accc] 57
[5.1T.4 Henkin representation tREOTEMS] v o v v v v v e e e e 60

[5.2 The mterpretation of the simply-typed lambda calculus| 62
2. The simply-typed lambda calculus| 62
527 Sirict interpretation i a cartestan-closed Category| . . - . . - 63
5.2.3 The cartesian-closed category associated to a theory] 65
5.24 Henkin representations of afreeccd 65
525 The non-strict interprotation of the simply-typed Tambda calcalas] 65

[5.3 From Henkin representation theorems to completeness theorems| 66
B3.1 The problem With Gy OyPES] - - - . + . -« + o o oo e 66
537 A categorical analyshs of the le (RO empry) - - - - - - - - ... 67
533 Settheorctic models with NON-empLy yPes| . . - . « .« -« o oo 67

B34 Set-thoorotic MOdels With 6MDLY TyDES| . - « « « « « o o o oo e 67

[5.3.5 Knpke lambdamodels| o oo oo 70
§§§ 5 remarE on tEe Erlnmﬁa! moge! Eroﬁertﬂ 70

Henkin representations of PE-categonesl 70

[0.4.1 PL-categories|. 70
BA2 Wenkin PLTepresentalions]. oo 72
B43 Standard STuCturesl ottt 73
[>.4.4 Freely adjoining arrows to the base of a PL-category| 74
3.4 enkin-PL -representation theorems| L 75

The interpretation of the polymorphic lambda calculus] 76

56

5.5.1 The polymorphic lambda calculus| 76

[553.2 Strict interpretation in a PL-category| 77
[5.5.3 The PL-category associated to a theory| 79
[5.5.4The non-strict interpretation of the polymorphic JTambda calculus]. 79

From Henkin-PL -representation theorems to polymorplhc comp[eteness tHCOI’CIIlSl 80

5.6.1 Set-theoretic models with non-empty types| 80

5.6.2 Polymorphic Kripke models| 80

{6 First-Order Axioms for Asynchrony| 81
6.1 An elementary definition of asynchrony| oL 81
6.1.1 Labeled transition systems and bisimulation| 82

§ 1 Z !nﬁut, outﬁut an§ seguentla! comﬁosmoﬁ] 83
[6I3 Buffersandqueues| 85
[6.T 4 Notionsof asynchrony| 85

[6.1.5 Examples| 86

|§Z Elrst—orger ax10ms for aszncﬁronzl 86

§Z| Qut—Euﬂereg agents| 87
522 !n-Euﬁereg agents| 90

2. ut-queued and in-queued agents|o Lo oL Lo 90

6.3 More agent constructors and asynchrony with feedback| 91
6.3.1 Some operations On agents|o e e e e e e e e 91

3. synchrony with feedback| oo oo o oo 92

6.4 xample: Asynchronous CCS| e 94
6. xample: The core join calcu us: 97
[6.6 Other characterizations of asynchrony| 98
6.6.1 Out-buffered agents|. e 98

[6:62 Tn-bufferedagents] 99

.6. ut-queued and in-queued agents| oL Lo Lo oL 101

Xi

Xii

List of Tables

(LI Someposets|

quational rules for X.-algebras|.o L oL Lol

I] 3 Inequatlonal rules for Z-algeBrasl

4.1 Multiplication table for a partial model| 0oL,
4.2 Values for ¢(c,b,a)andk-c-b-al. L

.1 Typing rules for the simply-typed lambda calculus|.

. quational rules for the simply-typed lambaa calculus|.
|3.3 Rules for the mmply-typeﬂ [ambda calculus with emptiness assert10ns|

[5.4 'Typing rules for the polymorphic lambda calculus|

[5.5 Equational rules for the polymorphic lambda calculus|

6.1 First-order axioms for out-buffered agents| oL L.
[6.2 First-order axioms for in-buffered agents|. L0
[6:3 First-order axioms for out-queued agents|.

j@]
[6:5First-order axioms for out-buffered agents with feedback]
[6.6 Transitions rules for asynchronous CCS| i it
6.7 Transitions rules for the core join calculus| 0L
6.3 Second-order axioms for OULBUMTEred AEENTS] . . « .+« o o v oo e e e
60 Second-order axioms Tor M-bUITred AZentS] « . - « .« « « o« v o oo
‘@]
[6.17T Second-order axioms for in-queued agents| o v v v it

Xiii

Introduction

The central aim in giving mathematical meaning to computer programs is to represent computational objects,
such as procedures, data types, or communication channels, by mathematical objects, such as functions, sets,
or more generally, points in suitable mathematical spaces. Often, one begins with an idealized programming
language, such as the lambda calculus or Milner’s calculus of communicating systems, and then seeks to
find a mathematical model that reflects the relevant computational properties. The search for such models
is guided by computational as well as mathematical intuitions, and it often leads to problems that are of
independent mathematical interest. Some selected problems of this kind are investigated in this dissertation.

The first part of this thesis is devoted to the model theory of the untyped lambda calculus. D. Scott dis-
covered in the late 1960’s that models of the untyped lambda calculus can be constructed by a combination of
order-theoretic and topological methods. Scott’s methods have been widely studied and adapted to numerous
situations, and today one can choose from a wide array of model constructions that are based on Scott’s prin-
ciples. On the other hand, there are results that indicate that Scott’s methods may not in general be complete:
Honsell and Ronchi Della Rocca [27] have shown that there exists a lambda theory that does not arise as the
theory of a reflexive model in the cartesian-closed category of complete partial orders and Scott-continuous
functions. Moreover, there are properties that one may desire in a model, but that are incompatible with
the presence of a partial order: for instance, Plotkin [S0] has recently shown that there exists an extensional
lambda algebra which is finitely separable. By definition, a lambda algebra X is finitely separable if for every
finite subset A C X and for every function f : A — X, there exists an element f € X such that f x = f(x)
for all z € X. Itis not hard to see that a finitely separable algebra cannot be non-trivially partially ordered in
a way such that the order is compatible with the algebra structure.

In general, we define a lambda algebra X to be unorderable if there does not exist a non-trivial partial
order on X for which the application operation is monotone. Our first main result is the following: The
standard open and closed term algebras of the \3- and A\/3n-calculi are unorderable. Recall that the standard
term algebras are just made up from lambda terms, taken up to 5- or Sn-equivalence. The unorderability
of the standard term algebras is a surprising fact, because the algebras that were previously known to be
unorderable, such as Plotkin’s finitely separable algebra, require a much more delicate syntactic construction.
As a consequence of this result, it follows that if a partially ordered model of the untyped lambda calculus is
complete for one of the theories A3 or A\37, then the denotations of closed terms in that model are pairwise
incomparable, i.e. the term denotations form an anti-chain.

Closely related to the question of unorderability is the question of order-incompleteness: does there exist
a lambda theory that does not arise as the theory of a non-trivially partially ordered model? Or, expressed
in terms of algebras: does there exist a lambda algebra which cannot be embedded in an orderable one?
We call such an algebra absolutely unorderable. The concept of absolute unorderability can be formulated
in any algebraic variety T, and our second main result is a theorem in universal algebra: In any algebraic
variety T, an algebra A is absolutely unorderable if and only if, for some n > 1, there exist polynomials
My,..., M, € Alxy,xo,x3] such that the equations t = M (t,u,u), M;(t,t,u) = M;41(t, u,u) for
1 < i < n,and M,(t,t,u) = w hold in Afu,t]. Operators My,..., M, satisfying this condition are
called generalized Malcev operators. Such operators were first used by Hagemann and Mitschke [25] to
characterize varieties with n-permutable congruences. The connection to unorderability was first noticed by
Taylor [63} [11], who proved that algebras in a variety with n-permutable congruences are unorderable; the
converse is a new result.

As a consequence, the question of order-incompleteness for the untyped lambda calculus has been reduced
to the question whether it is consistent, for some n > 1, to add generalized Mal’cev operators My, ..., M,
to the lambda calculus. It was proved by Plotkin and Simpson that a Mal'cev operator is inconsistent with the
lambda calculus for n = 1. Later, Plotkin and myself showed that it is also inconsistent for n = 2. In the
remaining cases, the answer is not known.

We continue our investigation of models of the untyped lambda calculus by introducing a notion of finite
lambda models. These models provide a tool for predicting the evaluation behavior of a lambda term by
finitary means. This yields a novel proof method for proving inequalities of untyped lambda terms. Finite
models differ from traditional models of the untyped lambda calculus, which are always infinite and in fact
never even recursive, in that they are models of reduction, rather than models of conversion. This means that
they are equipped with a partial order and a soundness property of the form M — N = [M] < [N], where
— denotes either 5- or Sn-reduction. Models of reduction were considered by several authors [23} 30, 49],
and we use a formulation which was given by Plotkin [49] in the spirit of the familiar syntactical lambda
models [5]]. We focus on practical methods of constructing such models, and we show in two examples that,
despite their simplicity, finite models can yield useful information about lambda terms.

The second part of this thesis is devoted to models of the simply-typed and the polymorphic lambda cal-
culus. The models in the literature follow one of two basic designs: set-theoretic environment-style models,
such as Henkin models for the simply-typed lambda calculus [21]] or Bruce-Meyer models for polymorphism
[LO], and categorical models, such as the interpretation of the simply-typed calculus in a cartesian closed
category [33] or of the polymorphic calculus in a PL-category [56]. Environment-style models are typically
non-strict, in the sense that a function type o — 7 is interpreted as a subset of the set of functions from o to
7. On the other hand, categorical models are always strict.

Reynolds has shown that there are no strict set-theoretic models of the polymorphic lambda calculus
[52]. Here, we take the opposite approach and consider non-strict categorical models. This generalizes
both environment-style models and strict categorical models. The central concept is that of a Henkin rep-
resentation: a functor H between cartesian-closed categories that preserves finite products, such that for all
objects A, B, the canonical morphism H(B*) — H(B)"(4) is monic. Henkin representations provide a
uniform framework in which one can describe various classes of non-strict models, including set-theoretic
models with possibly empty types [39]], set-theoretic models with non-empty types [21], and Kripke-style
models [42]. We show that completeness theorems for each of these classes of models correspond naturally
to categorical Henkin representation theorems. One such Henkin representation theorem characterizes those
cartesian-closed categories that can be Henkin-embedded in the category of sets: we show that this is the case
if and only if every object A is either partially initial, or the canonical morphism A — 1 is epic. This allows
a new proof of a result by Meyer et al. [39] on the semantic consequences that hold in set-theoretic models
of the simply-typed lambda calculus with possibly empty types.

The last part of this dissertation is concerned with the study of properties of asynchronous communica-
tion in networks of communicating processes. Informally, communication in such a network is said to be
synchronous if message transmission is instantaneous, such that sender and receiver must be available at the
same time in order to communicate. It is asynchronous if messages are assumed to travel through a communi-
cation medium with possible delay, such that the sender cannot be certain when a message has been received.
Asynchronous communication is often studied in the framework of a concurrent process calculus such as the
asynchronous 7-calculus [26} 9] or the join calculus [[17, [18]]. Here, we study asynchronous communication
in general, independently of any particular process paradigm. We model processes by labeled transition sys-
tems with input and output. These transition systems are similar to the input/output automata by Lynch and
Stark [35]], but our presentation is more category-theoretic in a style that resembles Abramsky’s interaction
categories [} 2]]. In particular, we adopt Abramsky’s notation S; T for the sequential composition of two
processes, by which we mean the process obtained by connecting the output of S to the input of T.

First, we formalize the intuitive notion of asynchrony in elementary terms: we define a process to be
asynchronous if its input and/or output is filtered through an explicitly modeled communication medium,
such as a buffer or a queue, possibly with feedback. For instance, we call a process out-buffered if it is,
up to weak bisimulation, of the form S; 3, where B is a special buffer process. Our main result about
asynchronous processes is a characterization of various different such notions of asynchrony in terms of

first- and second-order axioms. These axioms refer directly to the behavior of a process, without mentioning
buffers or queues explicitly. For instance, a process is out-buffered if and only if it is weakly bisimilar to
a process satisfying three properties which we call output-commutativity, output-confluence, and output-
determinacy. We illustrate these concepts by applying them to an asynchronous version of Milner’s CCS and
to the core join calculus.

This thesis is organized as follows: Chapter 1 is a summary of standard concepts of category theory,
domain theory, and universal algebra, which are needed throughout the thesis. Chapter 2 is an introduction
to the untyped lambda calculus and its combinatory models. In Chapter 3, we investigate unorderable and
absolutely unorderable models of the untyped lambda calculus. Chapter 4 is devoted to finite lambda models.
In Chapter 5, we study Henkin representation theorems and their applications to non-strict models of the
simply-typed and polymorphic lambda calculi. In Chapter 6, we investigate properties of asynchronous
communication.

Chapter 1

Preliminaries

We begin by gathering some basic concepts from category theory, domain theory, and universal algebra. This
is mostly for the purpose of fixing terminology and notation for the later chapters of this thesis, and to provide
a brief reference. We do not give any proofs in this chapter. For a more complete and detailed introduction
to category theory, see e.g. [20] or [36]. For an introduction to domain theory, see e.g. [3] or [47]. For an
introduction to universal algebra, see e.g. [24] or [13].

1.1 Basic category theory

1.1.1 Categories

A category C = (|C|,(—, —),id, o) consists of a class |C| of objects, together with a set (A, B) of mor-
phisms for each pair of objects A, B € |C]|, and together with operations

idy € (A,A)
oapc:(B,C)x(A,B)— (4,0C)

forall A, B,C € |C|, satisfying

idpof=f=foida, forfe (A B)
(hog)of=ho(gof) forfe (A B),ge(B,C),he(C,D).

We will often omit the subscripts on id and o. A morphism id 4 is called an identity morphism, and g o f is
called the composition of f and g. The set (A, B) is called the hom-set of A and B. If we want to make
the category unambiguous, we also write hom-sets as C(A, B). A morphism f € (A, B) is also written

f:A— BorA EN B, and we call A the source or the domain and B the target or the codomain of f.
Iff: A— Bandg: B — C, then we sometimes write the composition g o f in diagrammatic order as

ALB&Corasf;g.
Example 1.1. The category .7 of sets has sets as its objects, and functions as its morphisms. Notice that the

collection of all sets is not itself a set; this is why, in the definition of a category, one allows the collection of
objects to be a proper class. A category is said to be small if the collection of its objects is a set.

A category is discrete if its only morphisms are identity morphisms. If C is any category, then its dual
category C is defined by |C?| = |C| and C?(A, B) = C(B, A), i.e. by reversing the direction of all
morphisms. If C and D are categories, then their product C x D is defined by |C x D| = |C| x |D| and
(A, A", (B,B’)) = (A, B) x (A, B"), with the pointwise identities and composition.

A diagram

A—f>B
hl l

is used as a notation for the statement
fe(A,B)andg € (B,D)andh € (A,C)and k € (C,D)andgo f =koh,

and similarly for other diagrams. Note that this notation is not meant to imply that A, B,C, D or f,g, h, k
are different. In the diagrammatic notation, we may also omit the names of the objects. Of course, it is then
still understood that the appropriate morphisms are composable. The symbol -- in a diagram removes exactly
one equation, such that

g

— > f

. N —_—

.
h

means f o g = f o h. This diagram does not say whether g = h. Diagrams are just a notation for ordinary

mathematical statements, and we may use them together with logical symbols, quantifiers etc.

Example 1.2. A morphism f is said to be monic or a monomorphism if

g9
Vo (- Tso—le = g=h).
h

Dually, f is said to be epic or an epimorphism if

g
Vg, h (*f>4> . = g=nh)
h

Also, f is said to be iso or an isomorphism if

o d
0 \/\

If f is an isomorphism, then g is uniquely determined. g is called the inverse of f and it is denoted by f~'.
If there is an isomorphism f : A — B, then A and B are said to be isomorphic objects. We sometimes write
f : A — B for a monomorphism, f : A — B for an epimorphism, and f : A =» B for an isomorphism.
Notice that if f : A — B has a left inverse g o f = id4, then f is a monic, called a split monic, and g is an
epic, called a split epic. A collection of morphisms (A ELN B;)ic with the same source is called collectively
monic or a monic cone if for all g, h : C' — A, whenever f; 0 g = f; o hforalli € I, then g = h.

1.1.2 Functors

If C and D are categories, then a (covariant) functor F : C — D is amap F : |C| — |D| of objects,
together with a map F' : C(A, B) — D(F A, F B) for each hom-set, such that

Fidy =idpgy

Flgof)=FgoFf

The category of small categories, together with functors between them, is denoted Cat. A functor F' : C? —
D is also called a contravariant functor from C to D.

Example 1.3. For any category C, there is a functor Hom : C?? x C — ., which is defined by Hom(A, B) =
C(A, B) and Hom(f, g)(z) = goxo f. For any object A € |C], the functor (4, —) : C — .7 is called the A-
th (covariant) representable functor. Dually, the functor (—, A) : C%? — . is called the A-th contravariant
representable functor.

A functor F' : C — D is full if each F' : (A, B) — (F'A,FB) is onto. F is an embedding if each F :
(A, B) — (F'A, FB) is one-to-one. We say F' is faithful if it is an embedding and it reflects isomorphisms,
i.e., whenever F'f is an isomorphism, then so is f.

A category C is a subcategory of D if |C| C |D|, and for all A, B € |C|, C(A4,B) C D(A, B). The
corresponding irclusion functor I : C — D, with A = A and I f = f, is always an embedding. C is said
to be a full subcategory if I is full, and a faithful subcategory if I is faithful.

1.1.3 Natural transformations

A natural transformation 1) : F — G between functors F,G : C — D is a family (1) ac|c| of morphisms
Nna: FA— GAsuchthatforall f: A — B,

FA-". GA

| |o

FB——GB
nB

There is a category whose objects are functors F' : C — D, for fixed C and D (say, C is small). The
morphisms are natural transformations. For any functor F', the identity natural transformation idg : F' — F'
is defined by (idp) 4 = idp4. Composition of natural transformations) : ' — G and 7’ : G — H is defined
by (7' on)a = 'y o na. The resulting category is written D€, and it is called a functor category.

Two functors F, G : C — D are said to be naturally isomorphic, in symbols F' = G, if there are natural
transformations 7 : F' — G andp~! : G — F suchthatnon’ =idg andn’ on = idp.

We sometimes write 7 : F(A) —4 G(A), n : F(A,B) —ap G(A, B) etc. to express that 7, as a
transformation of functors, is natural in the indicated arguments. Similarly, we write F'(A) 24 G(A) etc. to
express that /" and G are naturally isomorphic. Notice that this is different from writing (VA)F'(A) = G(A);
the latter statement expresses only a condition on objects, and not on morphisms.

An equivalence of categories C and D is a pair of functors ' : C — D and G : D — C such that Go F'
and F o (G are naturally isomorphic to the identity functors on C and D, respectively.

1.1.4 Adjunctions

An adjunction between functors £’ : C — D and G : D — C is a natural isomorphism
P (FA7B) l>A,B (Aa GB)

In this case, the pair of functors F" and G is called an adjoint pair, and we write ¢ : F' - G, or simply F' 4 G.
F is a left adjoint of G and G is a right adjoint of F. The unit v : idc — G o F of an adjunction ¢ is the
natural transformation given by u4 = ¢(idpa) € (4, GFA), and the co-unit ¢ : F o G — idp is defined
dually. Each of the entities ¢, u and ¢ determines the two others uniquely. Moreover, F' and G determine
each other up to natural isomorphism.

1.1.5 Limits and colimits

Let [be a small category, C a category. A diagram in C modeled on [is a functor A : I — C. A cone over
a diagram A is a pair (D, (d;);e|r|), consisting of an object D and a family of morphisms d; : D — A(i) for

each i € |I|, such that for each f : i — jin I,

A) —— > AG).
RN
D

A morphism between cones (E, (e;);e|7|) and (D, (d;);e|7) over a diagram A is an arrow f : £ — D such
that e; = d; o f for all i € [I|. A cone (D, (d;);cz)) is called limiting or a limit if it is terminal among
cones over A, i.e. from any other cone (F, (e;);¢|z|) there is a unique morphism of cones f : £ — D.
Sometimes, we also call the object D a limit. The morphisms e; of a limiting cone are called limiting
morphisms. Limiting cones, if they exist at all, are uniquely determined up to isomorphism. Limiting cones
are collectively monic. Cocones, colimits and colimiting morphisms are defined dually.

Some special limits are of interest: A limit of a diagram that is modeled on a discrete category is called a
product. The limiting morphisms of a product are called projections. A limit of the empty diagram is called
a terminator or a terminal object. A limit of a diagram that is modeled on the category

—
_

is called an equalizer. A limit of a diagram that is modeled on the category

is called a pullback. The dual concepts are coproduct, coterminator or initial object, co-equalizer, and
pushout.

Definition. A category is complete if every small diagram has a limit, and cocomplete if every small diagram
has a colimit.

Proposition 1.4. A category is complete iff it has products and equalizers. It is cocomplete iff it has coprod-

ucts and co-equalizers.

1.1.6 Cartesian-closed categories

Recall that an object B is a terminator if for all A, (A, B) is a singleton. A terminator is unique up to
isomorphism. If we have chosen a terminator in a category, we denote it by 1. The unique morphism in

(A, 1) is then denoted O 4.
P
7N
B C

A diagram
is called a (binary) product diagram if for every pair of morphisms g : A — B and r : A — C, there exists
aunique s : A — P suchthat f o s = g and g o s = r. This is the case if and only if

(A,P)=,4 (A,B) x (4,0)

via a natural isomorphism that relates idp to the pair (f, g). Product diagrams are determined (for fixed B
and C) uniquely up to isomorphism. If we have chosen, for any B and C, a product diagram, then we denote

it by

The unique morphism s : A — B x C'suchthat ros =¢q: A — Band 7’ os =r: A — C is then denoted
(g,). The operation that takes ¢ and 7 to (g, r) is called pairing. If b : B — B’ and ¢ : C — (', then we
denote by b x ¢ the morphism (bo w,con’) : B x B" — C x C’. This makes F'(B,C) = B x C into a
functor.

In a category with chosen products, a diagram

DxB—1-C

is called an exponential diagram if for every morphism g : A x B — C there is a unique » : A — D such
that

DxB—1-cC.

] 7

AxB
This is the case if and only if
(A,D) =4 (Ax B,C)
via a natural isomorphism that relates idp to f. For given B and C, exponential diagrams are determined
uniquely up to isomorphism. If we have chosen, for any B and C, an exponential diagram, then we denote it
by
CBxB—==C.
The unique morphism h : A — CP such that e o (h x idg) = g : A x B — C' is then denoted g*. The

operation that takes g into g* is called currying. The inverse operation, which takes i to h, = € o (h x idg),
is called uncurrying. If b : B’ — B and ¢ : C — (', then ¢’ denotes the morphism (co € o (idgs x b))* :

CB — C'P . This makes F (B,C) = CP into a functor, contravariant in the first argument and covariant in
the second.

Remark. The following identities are often useful, where a : A’ — A,h: A = CP,g: Ax B — C:

(go(axidp))” = g oa : A= CFB
e* = id : CB =B

(hoa), = hyo(axidg) : A xB—=C

id, = ¢ . CBPxB—=C

Definition. A cartesian-closed category (ccc) is a category with chosen terminator, chosen binary product
diagrams and chosen exponential diagrams. A ccc-representation is a functor that preserves the chosen
terminator, product and exponential diagrams. A functor that preserves ccc structure up to isomorphism is
called a ccc-representation up to isomorphism.

Example 1.5. For any small category C, the functor category .”<” is cartesian-closed. The Yoneda embed-
ding Y : C — .#©” maps an object A to the functor (—, A) : C” — .. The Yoneda embedding is full and
faithful, and if C is cartesian-closed, then Y is a ccc-representation up to isomorphism. The functor category
#C" is called the category of presheaves over C.

1.2 Basic domain theory

We gather some basic domain-theoretic concepts. For a more detailed introduction, consult e.g. the texts by
Abramsky and Jung [3]] or Plotkin [47].

Table 1.1: Some posets

n
|
o1 2 - n :
\ | / ‘
2
\
1
\
0

(1) The flat natural numbers (2) The ordinal w

1.2.1 Preorders and posets
A binary relation < on a set D is called a preorder if

1. Vz € D. x < x (Reflexivity).

2. Vx,y,z € D.x <yand y < z = x < z (Transitivity).
A preorder < is a partial order if, in addition,

3. Vr,y e D.x <yand y < x = x = y (Antisymmetry).

A partially ordered set (D, <) is also called a poset. A function f : D — E between posets is monotone
if < yimplies fx < fy, for all x,y € D. We denote the category of posets and monotone functions by
POSET. It is cartesian-closed. The exponential £ is given by the set of all monotone functions from D to
E, with the pointwise order, f < gifforallx € D, fx < gx.

For A C D, let J[Abetheset {y € D |3z € Ay < x}. A set A is called downward closed or a
downdeal if A = | A. If A = {x} is a singleton, we also write |2 = |{x}. The sets 1A and 1z are defined
dually. An element 2 € A is said to be minimal in A if Jx N A = {x}. Also, x € A is said to be a minimum
or a least element of A if A C Tz. Maximal elements and greatest elements are defined dually. An element
b € D is said to be an upper bound of A if a < b for all a € A. If among the upper bounds of A there is
a least one, it is called the least upper bound, the join or the supremum of A, and it is denoted by \/ A or
V zea . We also write 2 \V y for the supremum of {x,y}, if it exists. Lower bounds are defined dually, and
a greatest lower bound, denoted A A, is also called a meet or an infimum. A poset D is called a lattice if it
has finite suprema and infima, and a complete lattice if it has arbitrary suprema and infima.

A poset (D, <) is pointed if it has a least element L. D is flat if it is pointed and if all elements a # L
are maximal. An example of a flat poset are the “flat natural numbers”, shown in Table[T.T(1). Two elements
x,y € D are called compatible, in symbols x T y, if there exists z € D with z < z and y < 2. Notice that
two elements in a flat poset are compatible iff and of them is L.

Remark. Any poset (D, <) can itself be regarded as a category with hom-sets

D) ={ §F G

Under this interpretation, a least element _L is just an initial object, suprema are colimits, functors are mono-
tone maps, and an adjunction is a pair of monotone maps f : D — F and g : £ — D such that

fr<y < x<gy.

10

1.2.2 Complete partial orders

A poset [is directed if it is non-empty and if for all z,y € I, there exists z € I with z,y < z. A poset
(D, <) is directed complete if every directed subset has a supremum. A directed complete poset is also called
adcpo. Directed suprema are also denoted by \/ I or \/‘Ie 7 z. Afunction f : D — E between dcpo’s is called
Scott-continuous if it is monotone and it preserves directed suprema. We denote the category of dcpo’s and
Scott-continuous functions by DCPO. The full subcategory of pointed dcpo’s is denoted by DCPO ;. Both
these categories are cartesian-closed. The exponential E” is given by the set of all Scott-continuous functions
from D to E with the pointwise order. Directed suprema in E” can be computed pointwise, i.e.

(V' fi) () = \H(fiz)

A poset [is linearly ordered or a chain if for all x,y € I, either x < y or z > y. An example of a
linearly ordered set is the ordinal w, which is the set of natural numbers with their natural order, as shown in
Table 2). A set I which is isomorphic to w is called an w-chain. A poset (D, <) is w-complete if every
w-chain I C D has a supremum in D. An w-complete poset is also called a complete partial order or a cpo.
A function f : D — FE between cpo’s is called w-continuous if it is monotone and it preserves suprema of
w-chains. We denote the category of cpo’s and w-continuous functions by CPQO, and its full subcategory of
pointed cpo’s by CPO | . These categories are cartesian-closed, with the exponential £ given by the set of
all w-continuous functions from D to E with the pointwise order, and pointwise suprema of w-chains.

Remark. The categories CPO and DCPO have similar properties. DCPO is a subcategory of CPQO, but is
neither full, nor is it a sub-ccc.

1.2.3 Bounded complete partial orders

A subset A of a partially ordered set D is called bounded if there is d € D with A C |d. A cpo D
is bounded complete if every bounded subset A C D has a supremum. Bounded complete cpo’s and w-
continuous functions form a full sub-ccc CPO* of CPO. Notice that we do not require the morphisms to
preserve all bounded suprema. The categories CPO’’, DCPO%, and DCPObf are defined analogously.

1.2.4 Stability

A cpo D is a meet cpo if it has bounded binary meets which act continuously. This means, that for every
x € D, the set [z has binary meets, and the function (a,b) — a A b is continuous on Jz x Jz. A function
f + D — FE between meet cpo’s is stable if it preserves bounded binary meets. We denote the category
of meet cpo’s and stable maps by CPO", and its full subcategory of pointed meet cpo’s by CPO’}. These
categories are cartesian-closed too, and the exponential £ is given by the set of all stable functions from D
to F, not with the pointwise order, but with the Berry order or stable order:

f<sg = (VwyeD ax<y= fz)=f(y) Ng())

Directed suprema, as well as bounded infima, with respect to the Berry order are taken pointwise. The
cartesian-closed categories DCPO” and DCPO’) are defined analogously.

The theory of meet cpo’s and stable functions is due to Berry [7], who used them to study the semantics
of sequential computations.

1.2.5 Domain equations

Let D be any one of the pointed categories DCPO_, CPO |, DCPO’, CPO", DCPOb", or CPOij. The
objects of D are called domains. One of the main features of these categories of domains is that they can be
used to solve domain equations, such as

D=~ DP.

11

A solution to such an equation in a category D consists of an object D, together with an isomorphism ¢ :
D — DP. The ability to solve domain equations is an essential tool in mathematical programming semantics
to give meaning to a variety of programming language constructs, such as recursive data types. We are
particularly interested in solutions to the “classic” domain equation D =2 D, whose solutions yield models
of the untyped lambda-37-calculus (see Section[2.7).

General methods for solving domain equations were pioneered by D. Scott 53], and further developed
by Smyth and Plotkin [61]]. In general, a domain equation takes the form D = F'(D). Notice that, since the
right-hand-side may contain positive (covariant) as well as negative (contravariant) occurrences of D, F' will
not in general be a functor. The problem of mixed variance can be solved by passing from the category D to
a category D¢ of embeddings. The objects of D¢ are the same as the objects of D. The morphisms of D¢ are
embeddings, where e : D — E in D is called an embedding if there exists a projection p : E — D in D
such that

poe=idp eop <idg,

where the inequality is understood to be with respect to the relevant order on functions, i.e. the pointwise order
in the case of DCPO |, CPO |, etc., and the stable order in the case of DCPOi\ or CPOJA_. An embedding e
is uniquely determined by its associated projection p and vice versa. We write p = e¢* and e = p,.. One also
speaks of D¢ as a category of embedding-projection pairs.

An expanding sequence in D¢ is a diagram modeled on the ordinal w, i.e. a functor A : w — D¢, In
more concrete terms, an expanding sequence is a sequence (D,),en of objects, together with embeddings
enm : Dp — Dy, for all n < m, such that e,,,, = idp,, and ey, © €pm = €py, forall p < m < n.

m

Proposition 1.6. Limit-colimit coincidence. Every expanding sequence ((Dy,)n, (€nm)n<m) in D¢ has a
colimit D in D¢, with colimiting morphisms e,, : D,, — D. Moreover, (D, (ey,)) is also a colimit in D, and
(D, (€f)n) is a limit of ((Dp)n, (€})n<m) in D. This is called the limit-colimit coincidence, and D is also
called a bilimit. O

Proposition 1.7. Characterization of bilimits. Let (D, (e,),) be a cocone over the expanding sequence

((Dn)ns (enm)ngm) in D. Then (D, (ey,)n) is a bilimit if and only if
idp =\epoe,.

»=V O

Definition. A functor F' : D¢ — D¢ is continuous if for every expanding sequence ((Dy,)n, (€nm)n<m,)
with colimit (D, (ey,)y), the sequence ((F'Dy,)y, (F'€nm)n<m) has colimit (F D, (Fey,),).

Proposition 1.8. Solution of domain equations. Consider a domain equation D = F (D), where F :
D¢ — D¢ is a continuous functor. Starting with a domain Dy and an embedding eq, : Dy — F(Dy), let
D11 = F(D,,) and ep41n+2 = F(ep nt1) foralln € N. Let D be the colimit of the expanding sequence
<(Dn)n; (enm)ng’m>’ where €nm = Em—1,m © " O Enntl, for n < m. Then D = F(D)

Proof. Since F' is continuous, the sequence ((F'Dy)n, (Fenm)ngm) = ((Dn+1)n, (€nt1.m+1)n<m) has
colimit F'(D). On the other hand, D is a colimit of the same sequence, hence one gets D = F (D). d

The question remains how to identify a given functor as continuous. A useful criterion was given by Smyth
and Plotkin [61]], who observed that a continuous functor I’ on D¢ can be obtained from a locally continuous
functor F' on D. This works even if F' is of mixed variance.

Definition. A functor F': D x D — D is locally continuous if for all objects D, D', E, E' € D,
F:D(D,D')x D(E,E") — D(F(D',E), F(D,E"))

if continuous as a map between hom-sets (with the pointwise order in the case of DCPO and CPO_, and
the stable order in the case of DCPO’} and CPO").

Proposition 1.9. Every locally continuous functor F:D?xD D gives rise to a continuous functor
F D¢ — D¢, defined by

F(D)=F(D,D) F(e) = F(e* e) O

12

1.2.6 The D_,-construction

The method of Proposition applied to the locally continuous functor F(D, E) = EP, serves to solve
the “classic” domain equation D = DP. This construction is due to D. Scott, and it is called the D.-
construction.

Remark. Notice that the construction of a D,-model is dependent on some parameters, namely a category
D, an object Dy and an embedding eg; : Dy — Dé) °. Hence, there is a whole class of such models. Among
these, we distinguish the standard D ..-model to be the one model constructed in CPO from the cpo D
with two elements | < T, and the embedding ey : Dy — D(j)D ° which maps L to the constant L function
and T to the constant T function.

1.3 Basic universal algebra

1.3.1 3l-algebras

An algebraic signature X is a pair ({2,) consisting of a set) of function symbols and a map o : Q@ — N,
assigning an arity k > Otoeach f € Q. Welet Q, = {f € Q| a(f) = k} be the set of k-ary function
symbols. A X-algebra A = (A, I) is a set A together with an interpretation I(f) of every function symbol
as a map from A*(/) — A. We often write |A|, or even A for the underlying set A of an algebra, and fa or
even f for the interpretation I(f). A homomorphism of X-algebras ¢ : A — B is a function ¢ : |A| — |B|
such that for all f € Qg and all aq,...,ax € A

o(falar,. .. ar)) = fB(pai, ..., pa)

We denote the category of -algebras and homomorphisms by 3-Alg. The category 3-Alg has all limits,
and the forgetful functor U : X-Alg — .% preserves and reflects them. For instance, binary products are
given by |A x B| = |A| x |B|and faxs({a1,b1),...,{ak,bk)) = {fala1,...,ax), fB(b1,...,bx)). A
Y-algebra A is a subalgebra of another X-algebra B if |A| C |B| and for all f € Qj and ay,...,a; € A,
falai,...,ax) = f(ai,...,ax). The inclusion map A — B of a subalgebra is a homomorphism.

Definition 1.10. A binary relation R on a Y-algebra A is compatible if it is a subalgebra of A x A. This
is the case if and only if whenever (a;,b;) € Rfori = 1...k, then (fay...ag, fb1...by) € R, for each
k-ary function symbol f € Q. A congruence on a ¥-algebra A is a compatible equivalence relation. If ~
is a congruence, then the quotient algebra A /~ is a well-defined X-algebra via fa /- ([z1]~, ..., [zk]~) =
[fa(z1,...,2%)]~. The natural map A — A/~ is a homomorphism of X-algebras. The kernel ker p of a
homomorphism ¢ : A — B is the congruence relation ~ on A defined by a ~ o iff p(a) = p(a’).

1.3.2 Term algebras

Let X be a set. For each 2z € X, pick a distinct symbol ¢,, which is not in 2. Let W (X, Q) be the set of
words (i.e.finite sequences) from the alphabet {c, | z € X} U .

Definition. The set of X-terms over X is defined to be the smallest subset 7' C W (X, 2) such that

reX feQy ti1 €T tp,eT
ce €T fti...tr €T ’
Let X x be the set of X-terms thus defined. It has a natural Y-algebra structure via fs, (t1,...,tx) =

ft1...t,. The algebra X x is called the X-term algebra over X .

Remark. We have represented terms as words from some alphabet. There are other possible choices; for
instance, one could represent a term ft; ...t as a labeled rooted tree with label f at the root and with imme-
diate subtrees t1,...,%;. In general, we will not be too concerned here with the details of how to represent
syntax; rather, we will treat syntax as a primitive notion. Independently of which concrete representation for

13

terms one chooses, X x, together with its natural map 53 : X — Y x : z — ¢, is completely determined by
the following universal property:

Proposition 1.11. For any Y-algebra B and any map p : X — B, there is a unique homomorphism p :
Yx — B such that

X Joyy

N

B.
Equivalently, the forgetful functor U : X-Alg — . has a left adjoint F : ¥ — 3-Alg with F(X) = X,
and with X — X x as the unit of the adjunction. d

A map p : X — B is also called a valuation in B. If p is the unique extension of p to terms, then we often
write [t], instead of p(t) for the interpretation of a term ¢ € ¥ x. The defining equations for [| are

[z], = plx), for a variable,
[[ftl A tk]]p = fA(IItl]]p; ceey [[tkﬂp), for f S Qk
If X = {x1,...,z,} is a finite set of variables, then a term ¢ € X x is also called a n-ary operation in 3. We
write t = t(21,...,2y,). If by,..., b, are elements of a X-algebra B, then we sometimes write ¢(b1, ..., by,)

for [t], where p : X — B : x; — b;.

1.3.3 Algebraic varieties

Fix a countable set V of variables. A 3-equation is a pair of terms (¢, s) € 3y x 3. Equations are often
written in the form ¢ = s. A Y-algebra A safisfies an equation ¢t = s, in symbols A = t = s, if for all
homomorphisms ¢ : 3y — A, ¢©(t) = ¢(s). Equivalently, A =t = s if for all valuations p : V — A,
[t], = [s],-

Definition. Let X be a signature, and let £ be a set of X-equations. A Y-algebra A that satisfies all equations
in £ is called a (X, £)-algebra. The (X, £)-algebras form a full subcategory of X-Alg, which we denote
by (X%, E)-Alg. Any full subcategory T of X-Alg that arises in this way is called an algebraic variety. The
algebras of an algebraic variety T are also called T-algebras.

Let T be an algebraic variety, defined by a signature 3 and equations £. We construct Ty, the free T-algebra
over a set X, as follows: On the term algebra X x, consider the smallest congruence relation ~ such that
(s,t)y € € p:Yy = Yx
p(s) ~ p(t)
Let Ty be the algebra ¥ x /~. Then Ty is a T-algebra. Together with the natural map 7 : X — Ty, it has
the universal property:

Proposition 1.12. For any T-algebra B and any map p : X — B, there is a unique homomorphism

p: Tx — B such that

X T oTy

Nk D

We say that a set of equations £ entails an equation s = ¢, in symbols & ., s = t, if s = t can be derived
from the hypotheses £ by the rules in Table We write € |=x.a1g s = t if for all X-algebras A, if A =&,
then A = s =t.

Proposition 1.13. Soundness and Completeness for 3:-algebras.

Ebys=t ifandonlyif & l=sags=t

14

Table 1.2: Equational rules for ¥-algebras

re

S = cong fSl...Sk:ftl...tk
(symm)

t=s s=1 p: Yy = Yy

(subst) —
=t t=u o(s) = p(t)

(trans)

sS=u

1.3.4 Indeterminates

Let T be a variety with signature 3. and equations £. Let A be a T-algebra, and let X be a set. Assume
without loss of generality that X and |A| are disjoint. Relative to the variety T, the polynomial algebra
A[X] is defined as follows: On the term algebra o |4 x, consider the smallest congruence relation ~ such
that

a= faai...ay (s, t) €& p:Yy = Yial+x

Ca Nfclll - Cay, p(S) Np(t)

Let A[X] be the algebra ¥ 5|4 x /~. Together with A[X], consider the natural maps ¢ : A — A[X] defined
by t(a) = [ca]~, and 7 : X — A[X] defined by j(z) = [cz]~-

Proposition 1.14. A[X] is a T-algebra with the following universal property: For any T-algebra B, any
homomorphism f : A — B of T-algebras, and any map g : X — B, there is a unique homomorphism
h: A[X] — B such that

B. O

Remark. The map ¢ : A — A[X] is always an injection; we will often regard it as an inclusion. Notice that
A[X][Y] = A[X +Y]. Inthe case where X = {z1,...,x,} is finite, we write A[X]| = A[z1,...,2,]. The
elements of A[X] are called polynomials, and X is called a set of indeterminates.

1.3.5 Ordered algebras

Let A be a Y-algebra, and let < be a partial order on the carrier set | A|. The pair (A, <) is called an ordered
3-algebra if the order < is a compatible relation on A in the sense of Definition[I.10} Concretely, this is the
case iff for each f € Q, fa : A¥ — A is a monotone map with respect to <. A homomorphism of ordered
3-algebras is a homomorphism of Y-algebras that is monotone. We denote the resulting category of ordered
Y-algebras by 3-Ord.

Just as we considered sets of equations for X-algebras, we may consider sets of inequations for ordered
Y-algebras. Recall that V is a countable set of variables, and that Xy, is the X-term algebra. A Y-inequation
is a pair of terms (¢, s) € 3y x 3y, often written ¢ < s. An ordered X-algebra (A, <) satisfies an inequation
t < s, in symbols A = t < s, if for all homomorphisms ¢ : ¥y — A of ¥-algebras, p(t) < ©(s).
Equivalently, A |= ¢ < s if for all valuations p : V — A, [t], < [s],.

Definition. An ordered X-algebra that satisfies a given set Z of inequations is called an ordered (X,T)-
algebra. The ordered (X, T)-algebras form a full subcategory of X-Ord, which we denote by (2, 7)-Ord. A
full subcategory O of ¥-Ord that arises in this way is called an ordered variety.

15

Table 1.3: Inequational rules for 3-algebras

fEQk S Lty (Zzlk')

(refl) s<s (cong) fs1...8 < fty.. . tg
t t<u s<t p: Yy = Dy
trans subst
(trans) s < (subst) o(s) < p(t)

Let O be an ordered variety, defined by a pair (3, Z) of a signature and a set of inequations. The free ordered
(X, I)-algebra over a poset P, denoted Op, is constructed as follows: On the term algebra 3 p, consider the
smallest compatible preorder < satisfying

(s,ty €T p:Xy—>3p r<yeprP
p(s) < p(t) Ce S Cy

Let ~ be the congruence < N = on X p, and let Op be the algebra X p/~, together with the partial order
< induced by < via [z]. < [y]~ iff < y. Then Op is an ordered (X, Z)-algebra, and the natural map
7: P — Op is monotone. The following universal property holds:

Proposition 1.15. For any ordered (3, T)-algebra B and any monotone map p : P — B, there is a unique
homomorphism of ordered (X, T)-algebras p : Op — B such that

P—1s0p

N

B. 0

Rules for deriving inequations are given in Table[I.3] We say that a set of inequations Z entails an inequation
s < t, in symbols Z ke s < t, if s < ¢ can be derived from the hypotheses Z by these rules. We write
€ Es.ora s < tif for all ordered Y-algebras A, if A = &, then A |= s < t.

Proposition 1.16. Soundness and Completeness for ordered 3-algebras.

Eleys<t ifandonlyif & FEsxoras<t

We also sometimes write Z b, s =t as an abbreviation for Z Fjney s <t and Z e t < 5.

1.3.6 Dcpo-algebras

Let ¥ be a signature. An ordered X-algebra (A, <) is called a 3-dcpo-algebra if the partial order < is di-
rected complete, and if each interpreted operation fa : A¥ — A is Scott-continuous. A homomorphism of
3-dcpo-algebras is a Scott-continuous homomorphism of ordered ¥-algebras. We denote the resulting cate-
gory of X-dcpo-algebras by 3-DCPO. Each set Z of inequations determines a full subcategory of 3-DCPO,
which we denote by (2, Z)-DCPO. We call such a subcategory a dcpo-variety.

Let D be a dcpo-variety, defined by (X,Z). For every dcpo D, there exists a free (3, Z)-dcpo-algebra
Dp over D, with an associated continuous map 37 : D — Dp, satisfying the usual universal property. The
construction of the free dcpo-algebra is less trivial than in the case of ordered algebras, and it relies an Freyd’s
Adjoint Functor Theorem. A proof of the existence of Dp can be found in Abramsky and Jung [3]].

16

Chapter 2

The Lambda Calculus is Algebraic

The correspondence between Church’s untyped lambda calculus and Curry’s and Schonfinkel’s combina-
tory algebras is among the oldest known, and most esthetically pleasing, facts about the lambda calculus.
However, the combinatory interpretation is also known to be somewhat imperfect, as Curry’s combinatory
abstraction operator does not in general satisfy the rule

M=N
©) .M = Az.N ~

One usually resolves this problem by moving from the class of lambda algebras to the smaller class of
lambda models, which are, by definition, those lambda algebras in which (¢) holds. However, unlike the class
of lambda algebras, the class of lambda models is not equationally definable. Therefore, it fails to enjoy some
useful closure properties such as being closed under subalgebras.

In this chapter, we point out that the failure of the £-rule, and the subsequent need for a non-equational
class of models, is not due to the lambda calculus itself, but to the way free variables are usually interpreted in
these models. The usual interpretation of a lambda term is defined relative to a valuation of its free variables.
Essentially, this amounts to interpreting a term M with n free variables as a function A™ — A. We argue
that it is more natural to model free variables as algebraic indeterminates and to interpret M as an element of
a polynomial algebra A[xy,...,x,]. Based on this interpretation, we show that the class of lambda algebras
is sound and complete for arbitrary lambda theories. In particular, the notorious rule (£) is sound with respect
to this interpretation.

This chapter is intended to serve as a self-contained, brief introduction to the lambda calculus and its
combinatory models. We do not claim originality for the results in this chapter, which follow from known
results in Barendregt’s book [S] and in the work of Koymans [31]. We do however hope to present these
issues from a fresh point of view, particularly where the interpretation of free variables is concerned. Maybe
this exposition will help to clarify the precise relationship between the lambda calculus, lambda algebras, and
lambda models, which are sometimes confused in the literature.

Lambda conversion and reduction are introduced in Section [2.T] Combinatory algebras and lambda al-
gebras are defined in Section[2.2] Section [2.3|contains a detailed analysis of the behavior of indeterminates
in the theory of lambda algebras, which leads to a streamlined interpretation of the lambda calculus. In Sec-
tion[2.4] we show that the categories of lambda theories and of lambda algebras are equivalent. This, to some
extent, justifies the slogan “the lambda calculus is algebraic”. Lambda models are the subject of Section[2.3]
and Section[2.6]is devoted to models of the lambda-37)-calculus. Finally, in Section[2.7] we relate the different
kinds of algebraic models to reflexive ccc models.

17

Table 2.1: The axioms and rules of the lambda calculus

M=M N=N'

(refl) M=M (cong) MN = M'N’
M=N M =N
(symm) N =i © e M = N
M=N N=P
(trans) M=P D AN = MV

2.1 The lambda calculus

The lambda calculus is a theory of functions as rules. Its two basic constructions are functional application,
where (fx) denotes the application of a function f to an argument x, and functional abstraction, where \x.t
denotes the function that maps z to t.

Definition. Let V be a countable set of variables, fixed throughout the rest of this chapter. Let C' be a set of
constants. The set of raw lambda terms A" is defined to be the least set of terms such that

zey ceC M,N € A@" eV M e ABY
x € AEY c e AR (MN) e AZ” (Az.M) € AR
Notation: We often use upper case letters M, N, . . ., as well as lower case letters s, t, u, . . . to denote lambda

terms. We use x,y, ... to denote variables. To save parentheses, we write M N P instead of ((MN)P),
Az.M N instead of (Az.(MN)), and Az ... x,.M instead of (Az1.(... (Az,.M)...)). Theset FV(M) C V
of free variables of a raw lambda term M is defined recursively:

FV(z) = {z} FV(c) =10 FV(MN)=FV(M)UFV(N) FV(Az.M) =FV(M) \ {z}.

Variables that are not free are bound. We write M =, N if M and N are equal up to renaming of bound
variables. The set A of lambda terms is then defined to be the set AR" /=, of a-equivalence classes of
raw terms. From now on, we will consider terms up to a-equivalence without further mentioning it. A term
with no free variables is closed. The set of closed terms is denoted A%. We write M[N/z] for the result of
substituting IV for = in M, taking appropriate care to ensure that neither nor any of the free variables of N
are bound in M. For a rigorous treatment of a-equivalence and substitution, see e.g. [3].

2.1.1 Lambda conversion

The axioms and rules for deriving equations between lambda terms are shown in Table If £ is a set of

equations, we write £ =g M = N if M = N is derivable from £ by using these rules. A lambda theory is a

set 7 of closed equations that is closed under derivability, i.e. 7 g M = N implies M = N € T, for closed

M and N. For a given set of constants, there is a unique smallest theory AS3, called the pure theory or the

theory of 3-conversion. We also write =g M = N as M =g N and we say that M and N are 3-convertible.
The lambda-[31-calculus is the lambda calculus with the additional axiom

x ¢ FV(M)
) . Mx =M "~

We write £ g, M = N if M = N is derivable from a set of equations £ and the axiom (7). A lambda
theory 7 which is closed under g, is called a lambda-(37n-theory. The unique smallest such theory is called
the theory of 3n-conversion, and it is denoted A\3n. If -5, M = N, then we write M =g, N and we say
that M and N are Bn-convertible.

18

Table 2.2: Reduction rules of the lambda calculus

M — M’ N — N’

(cong) MN — M'N’
(refl) S M N
(trans) M — N N —P © o.M — \x.N

M — P

B N — MV

Remark. The notion of theory given here is a slightly more liberal than the one given in [5]], where the
equations of a theory are not allowed to contain any constants.

Notice that the lambda calculus is not given by a signature and equations in the sense of universal algebra.
However, we will show in Section @] that the lambda calculus is equivalent, in a suitable sense, to an
algebraic theory.

2.1.2 Lambda reduction and consistency

When considering functions as rules, it is natural to think of the evaluation of a function applied to an argu-
ment as a dynamic process. This process is made explicit in the notions of S-reduction and Sn-reduction.

A term of the form (Az.M)N is called a B-redex, and it 3-reduces to M [N /x]. The relation B is the
reflexive, transitive and contextual closure of this one-step S-reduction. More precisely, B4 is the smallest
relation on lambda terms satisfying the axioms and rules in Table A term of the form Axz.Mx, where
x &€ FV(M), is called an n-redex, and it n-reduces to M. The relation 51, i the reflexive, transitive and
contextual closure of the one-step 8- and n-reductions, i.e., it is the smallest relation satisfying the axioms
and rules in Table 2.2]and also the axiom

() e My — M -~

A term M is said to be in 3-normal form no subterm is a $-redex, i.e. if M LM = M= M. Similarly,
M is in Bn-normal form if it contains no - or n-redex, ie. if M LM = M o= M. Examples of
terms in S-normal form include the booleans T' = Axy.x and F = A\zxy.y, as well as the Church numerals
0 = \zy.z, 1 = A\zvy.zy, 2 = Avy.z(zy) etc.; all of these except for 1 are also in 37-normal form.

Definition. A binary relation — is said to have the diamond property if whenever a — b and a — ¢,
then there exists d such that b — d and ¢ — d. In diagrams:

a
¥\ V2R
b c

Also, a relation — is said to be Church-Rosser if the transitive closure —* has the diamond property.
Theorem 2.1 (Church, Rosser [[12]]). The relations Ly and L are Church-Rosser: |

This theorem was first proved by Church and Rosser in 1936 [12]. Since then, the proof has been adapted
and streamlined in various ways by Tait, Martin-Lo6f, Girard and others. One can find a proof in Barendregt’s
book [15].

The Church-Rosser Theorem has several important consequences. As a first consequence, one proves that
for each pair of 3-convertible lambda terms M =g N, there is a term P with M L£,P and N-25P. This
is easily shown by induction on the derivation of M =g N, using the rules in Table This immediately
implies consistency of the lambda calculus:

19

Table 2.3: The axioms and rules of combinatory logic

A=A B=DpB

(refl) A=A (cong) —p=ap
A=B
(symim) B=A ® xap=a
(ransy A=B_ B=C .
rans A=C ¥ "SABC = AC(BC)

Corollary 2.2. Consistency. If M and N are two different terms in B-normal form, then M #g N. If M
and N are two different terms in Bn-normal form, then M #3, N. d

2.2 Combinatory models of the lambda calculus

2.2.1 Combinatory algebras and combinatory logic

Definition. An applicative structure (A,-) is a set A together with a binary operation. A combinatory
algebra (A, -, k, s) is an applicative structure with distinguished elements k and s such that forall 2., y, z € A,

kxy =x sryz = x2(yz)

Here we write kxy for (k - x) - y, etc. A homomorphism of combinatory algebras is f: A — B such that
fk=k, fs=sand f(x-y) = fa- fy, forallz,y € A.

Example. The closed term algebra associated with a lambda theory 7 is (AL /T, -, K, S), where A% /T is
the set of 7T -equivalence classes of closed terms, M - N = (MN), K = Azy.x and S = A\zyz.xz(yz).
Similarly, the open term algebra is (Ac/T,-, K, S).

Combinatory algebras form an algebraic variety. The corresponding algebraic language is combinatory logic:
let V be a set of variables and C' a set of constants as before. The set €c of combinatory terms or terms of
combinatory logic is defined to be the smallest set of terms such that

eV ceC A BeCc
T € Co ceCo (AB)E@C Kec¢o Sec¢s

Again, we economize the use of parentheses by writing ABC instead of ((AB)C). A combinatory term is
closed if it contains no variables. The set of closed terms is denoted by Qﬁ%. A closed and constant-free term,
i.e. a term that is made up only from K and S, is also called a combinator. The axioms and rules for deriving
equations of combinatory logic are shown in Table[2.3] We write £ F¢;, A = Bif A = B can be derived from
a set of equations £ by these rules. A theory of combinatory logic is a set of closed equations that is closed
under derivability. The minimal theory is denoted CL, and we also write A =¢; B instead of ¢, A = B.

Terms of combinatory logic can be interpreted in a combinatory algebra A, relative to a valuation p of
variables an an interpretation I of constants. We call this the local interpretation to distinguish it from the
absolute interpretation that we will consider in Section[2.3.2]

Definition. Local interpretation of combinatory logic. Let A be a combinatory algebra, andlet I : C' — A
be an interpretation of constants in A. A valuation of variables in A is a map p: V — A. The local
interpretation [A]! of aterm A € €¢ is defined inductively:

[«]; = p(x) [y =1(c) [Kl,=k [Sl;=s [AB],=I[Al;-[B],

For terms A, B € €, we say that the interpretation I locally satisfies the equation A = B, notation I |=
A = B, if for all valuations p in A, [A]! = [B]}. We write £ |=ca A = B if for all combinatory algebras
A and all interpretations [: C' — A,if [=Ethen] = A = B.

20

Proposition 2.3. Soundness and Completeness for combinatory logic. Let £ be a set of closed equations
of combinatory logic. For combinatory terms A and B,

Erct A=B ifandonlyif & |Eca A= B.

2.2.2 The derived lambda abstractor

The significance of the two combinators K and S of combinatory logic lies in the fact that they can be used
to simulate lambda abstraction. Define I = SKK. Notice that Iz =¢; x, for all x. For a combinatory term
A € €¢ and a variable x € V, define the term *x. A € €¢ inductively:

Nex = 1
Xz.B = KB, ifz ¢ FV(B)
Nx.BC = S(\z.B)(Az.C), otherwise.

Notice that (*z.A)x =¢; A can be shown by induction for any term A. Also, FV(A*z.A) = FV(A) \ {«}.
We call * the derived lambda abstractor of combinatory logic. It is important to remark here that, in general,
the operator A* is well-defined only on terms, and not on equivalence classes of terms. For this reason, the
A* operator does not, in general, yield an operator *: A[x] — A, for a combinatory algebra A. We will see
in Section[2.3.2]that we do get such an operator when A is a lambda algebra.

Proposition 2.4. Combinatory completeness. For every term B € € with variables in x4, ..., x,, there
exists a closed term A such that B =c; Az -+ xp,.

Proof. Let B = *z1...x,.A. O
As a consequence, in the variety of combinatory algebras, all elements of A[z1,. .., x,] can be written in the

form Az, ...x,, where A € A. However, such A is not necessarily unique.

2.2.3 The local interpretation of lambda terms

Using the derived lambda abstractor A* of combinatory logic, we can define translations ¢/: A¢ — €¢ and
A: €c — Ag from lambda terms to combinatory terms and vice versa:

Cl = C S
(MN)a = MqNg (A= B
o T elle K, = J\zyx
Ae.M)a = Nz.My Sy = Axyz.awz(yz)

Notice: Again, these translations are defined on terms, rather than equivalence classes of terms. For example,
(Az.(Az.x)z) = S(KI)I and (Az.z).; = I are not equivalent in combinatory logic. The following hold:

Lemma 2.5. For any lambda term M, we have M x =g M. For combinatory terms A, B, if A =¢;, B
then Ay =g By. For lambda terms M, N, if My =ci Ne, then M =g N. For a combinatory term A,
()*Z‘.A))\ =8 /\l‘.A)\. O

We can now interpret lambda terms in any combinatory algebra, by first translating them into combinatory
logic via cl:

Definition. Local interpretation of lambda terms. Let A be a combinatory algebra and [: C' — A an
interpretation of constants. For lambda terms M, N € A and a valuation p: V — A, define

[M], = [Md],
IEM=N iff IkEM,=N,
Th(I) = {M=N|MNeA%, I=M=N}

21

This interpretation is not sound for the lambda calculus, since there are derivable equations, such as for
instance Az.(Az.z)z = Az.z, that do not hold in all combinatory algebras. In particular, Th(/) need not be a
lambda theory!

This leads us to consider the class of lambda algebras, which are precisely those combinatory algebras
that satisfy all the equations of the lambda calculus.

2.2.4 Lambda algebras

Let A be a combinatory algebra. Then €4 is the set of combinatory terms with one constant symbol for each
element of A. Let Iy : A — A be the canonical interpretation of each constant symbol as itself, i.e. the
identity function. For A, B € €4, we write A = A = B instead of Iy = A = B.

Definition. A combinatory algebra A is called a lambda algebra if for all combinatory terms A, B € €4,
A A =B B = A ': A=B.
A homomorphism of lambda algebras is a homomorphism of combinatory algebras.

Example. For any lambda theory 7T, the open term algebra Ac/7 and the closed term algebra AL /7T are
lambda algebras. In the open terms algebra, Ac /T = A= Biff T -3 Ay = Bi.

Proposition 2.6 (Curry). Lambda algebras form an algebraic variety. In fact, the class of lambda algebras
can be axiomatized over the class of combinatory algebras by the following five closed equations, known as
the Curry axioms:

1. k= s(s(ks)(s(kk)k))(k(skk))
2. 5= s(s(ks)(s(k(s(ks)))(s(k(s(kk)))s))) (k(k(skK)))
3. s(kk) = s(s(ks)(s(kk)(s(ks)k)))(kk)
4. s(ks)(s(kk)) = s(kk)(s(s(ks)(s(kk)(skk)))(k(skk)))

5. s(k(s(ks)))(s(ks)(s(ks))) = s(s(ks)(s(kk)(s(ks)(s(k(s(ks)))s)))) (ks)

Proof. See [3]. We will give a different axiomatization of lambda algebras in Remark [2.20]]

We denote the variety of lambda algebras by LA. We write ;4 for provability from the axioms and rules of
combinatory logic plus the five Curry axioms. We also write A =4 B instead of -4 A = B. The following
complements Lemma [2.5}

Lemma 2.7. For any combinatory term A, we have Ay o =pa A. For lambda terms M, N, if M =g N, then
M =14 Ng. For combinatory terms A, B, if Ay =g By, then A =14 B. O

If £ is a set of equations, we write £ |=ra A = B if for all lambda algebras A and all interpretations
I:C — A,ifI E Ethenl = A = B. The following is a soundness and completeness theorem for the
pure lambda calculus, i.e. for equations M/ = N that are provable in the pure theory A3. In Section[2.3.3] we
prove a more general theorem for arbitrary theories.

Theorem 2.8. Soundness and completeness for the pure lambda calculus. For lambda terms M, N € A¢,
Fs M =N ifandonlyif |pa M = N.

Proof. Soundness follows directly from the definition of lambda algebras. For completeness, notice that the
open term algebra A /AS of the lambda beta calculus is a lambda algebra in which M = N iff M =g N. U

22

Remark 2.9. Failure of (£) for the local interpretation. The reason that we state the soundness and com-
pleteness only for the pure lambda calculus at this point is that in general, the local interpretation in a lambda
algebra does not satisfy the rule (£), i.e. it is not in general true that I = A = Bimplies [E *z. A = *z.B.
A counterexample is the closed term algebra MO of the lambda-3-calculus. Plotkin [46] shows that there
exist closed terms M, N such that for all closed terms Z, MZ =3 NZ, but Mz #3 Nz for a variable .
Hence M° = Mz = Nz, but MY (£ Az.Mz = Ax.Nz. The absolute interpretation, to be defined in
Section[2.3.2] takes care of this problem.

2.3 Lambda algebras and indeterminates

2.3.1 A characterization of A[z]| for lambda algebras

Recall that for a combinatory algebra A, we denote by A[z] the algebra obtained by freely adjoining an
indeterminate z to A in the variety of combinatory algebras. If A is a lambda algebra then so is A[z]. More
generally, if A is a lambda algebra and f: A — B is a homomorphism of combinatory algebras, then B is a
lambda algebra. This is because lambda algebras are definable by closed equations (Proposition [2.6).

If A is a lambda algebra, then A[z] has an interesting explicit description. The following construction
is similar to constructions given by Krivine [32] and, in the case of Curry algebras, by Freyd [19]]. Let
A = (A, k,s), and define B = (B, e, K, S), where

B = {ac€A|a=1la}, wherel = s(ki),i=skk
aeb = sab

K = kk

S = ks

Note: ab denotes application in A, and a e b denotes application in B.
Proposition 2.10. 1. B is a well-defined combinatory algebra.
2. The map v: A — B with (a) = ka is a well-defined homomorphism.

3. For every homomorphism f: A — C and every x € C, there is a unique homomorphism g: B — C
such that f = govand g(i) = x. Consequently, B = Alz].

Notice that 1ab =¢; ab, and 1, =g Azy.zy. The proof of Proposition relies on the following seven
properties of lambda algebras. We will see later that lambda algebras are already characterized by these
properties (see Remark [2.20).

Lemma 2.11. The following hold in any lambda algebra:

(a) 1(sa) = sa,
(b) 1(sab) = sab,
(c) 1(ka) = ka,
(d) s(s(kk)a)b = 1a,
(e) s(s(s(ks)a)b)e = s(sac)(sbe),
(f) k(ab) = s(ka)(kb),
(9) sha)i = 1a,
Proof. One easily checks that (1(sa))x =g (sa)», and similarly for the other equations. d

Proof of Proposition 210}

1.: It follows by Lemma a)—(c) that all of K, S, a @ b, i and 1 are elements of B, for any a,b € B. In
particular, the operations on B are well-defined. Moreover, for all a, b, ¢ € B,

Keaeb=s(s(kk)a)b 2D 14 = a, and

23

Seaebec=3s(s(s(ks)a)b)c EHe) s(

2.: Using Lemma2.11)f),

sac)(sbc) =aece(bec).

t(ab) = k(ab) = s(ka)(kb) = t(a) o 1(b).
3.: Define g(a) = f(a) - x, and check that this has the desired properties. For uniqueness, take any homo-
morphism h: B — C such that f = h ot and h(i) = x. Then forall a € B,

h(a) = h(1a) 229 ns(

ka)i) = h((ka) @ i) = h(ka) - h(i) = h(ea) - h(i) = f(a) -z = g(a).
Corollary 2.12. Let A be a lambda algebra, and a,b € A. Then ax = bx holds in Alx] if and only if
la = 1b holds in A.

Proof. =: Suppose a,b € A and az = bz in A[z]. By Proposition [2.10} items 1. and 2., there is a unique
map h: A[z] — B extending ¢ and sending x to i. Then

10229 s(ka)i = (ka) @i = h(ax) = h(bx) = (kb) i = s(kb)i 19 1p.

<: la=1bin A = 1la=1bin A[z] = az = lax = 1bx = bx in Afz]. d

2.3.2 The absolute interpretation

Let M € €¢ be a lambda term whose free variables are among x4, ...,x, = Z. Let A be a combinatory
algebra, and let I : C' — A be an interpretation of constants. The local interpretation [M] II, defined in
Section [2.2.1] depends on a valuation of variables p: V — A. Since, in fact, it depends only on the values
of patay,...,x,, the local interpretation can be viewed as a function [M]L: A™ — A, sending an n-tuple
a € A" to [M] fi::a). In these terms, an equation M = N holds locally in A if M and N define the same
function A™ — A.

We will now consider a different interpretation of terms, interpreting M as an element in A[Z], i.e. as a
polynomial. We call this the absolute interpretation of M. The absolute interpretation distinguishes more
terms than the local one, since, in general, two different polynomials may define the same function. For

closed terms, however, the absolute and the local interpretations coincide.

Definition. Absolute interpretation. Let A be a combinatory algebra, and let I : C' — A be an interpre-
tation of constants in A. For each combinatory term A € €< whose variables are among T = x1, ..., Ty,
we define its absolute interpretation [A]2* as an element of A [Z] by the following inductive clauses. Notice
that although the absolute interpretation depends on I, we omit the extra superscript.

[odf =2 [=1(c) [KI*=k [SI"=s [AB] =[A]? [BIY"

x
We say that the interpretation I absolutely satisfies the equation A = B, in symbols I =" A = B, if
[A]®s = [B]2s, where FV (A, B) C z. Notice that, since the canonical homomorphism A[z] — A[y] is
one-to-one for C ¥, this notion is independent of the choice of variables z. The absolute interpretation of
lambda terms M € A is defined via the translation cl:

My = [Ma]3
TE® M =N iff I M,=N,

Remark. In the language of universal algebra, [-]2 is just the unique map making the following diagram
commute. Hence the local and the absolute interpretation can be defined in any algebraic variety.

J
ZC EEE—— EC—&-.@-

The terminology “an equation holds absolutely” is justified by the following lemma:

Lemma 2.13. Let A, B € € be combinatory terms with variables in T. Let A be a combinatory algebra
and I : C — A an interpretation of constants. The following are equivalent:

1. I A=B,
2. tol E A= B, wheret: A — AlZz] is the canonical map,
3. folI E A= B forall homomorphisms f: A — B.

Proof. 1.=3.: Consider f: A — B and p: V — B. Let g: A[Z] — B be the unique map extending f such
that g(z;) = p(x;) for all i. Then [A]/°7 = g[A]®* and [B]/°! = g[B]®*, hence [A]/°! = [B]/°!, which

x

proves fol = A= B.3.=2.: Trivial. 2.=1.:c0] E A= Biffforallp: V — A[Z], [[A]];OI = [[B]];OI,
Take p(;) = x; to get [A]® = [B]. 0O

Lemma 2.14. In any lambda algebra, 1(*z.A) = *x. A.
Proof. By definition of A* and Lemma b) and (c). d

The next lemma, which is crucial for the soundness of the interpretation of the lambda calculus, holds for
absolute, but not for local interpretations.

Lemma 2.15. The rule (£) is sound for the absolute interpretation. Let A be a lambda algebra, I : C' —
A an interpretation and A, B € € combinatory terms. Then

IE"A=08 = IE"™ \2.A=\2.B
Proof. Assume the variables of A and B are contained in x, y1, . .., Y.

=: Suppose A[z,y] = A = B. Then A[z,3] = (*z.A)x = A = B = (A*x.B)z, hence by Corol-
lary[2.12} A[g] = 1(*2z.A) = 1(*z.B). The claim follows by Lemma/[2.14
<: Suppose A[g] E N*z. A= N2z.B. Then Afz,y] = A= (*z.A)x = (*x.B)x = B. O

It follows from this lemma that the derived lambda abstractor A*z is a well-defined operator *z : A[z] — A
if A is a lambda algebra. When A[x] is explicitly constructed as (B, e, K, S) like in Section then
A*z: B — A turns out to be the map that sends every element a to itself. Using this * operator, the
absolute interpretation of a lambda term can be defined directly, i.e. without relying on the translation ¢/ into
combinatory logic:

[=c [l =o [MNE =M [N DM = 3o M5
Proposition 2.16. In the category of lambda algebras, the derived lambda abstractor *x : Alx] — A is
natural in A, i.e. forall p : A — B,

Alr] 2L Bl

A*xl ik*m
A B

Proof. Any element of A [z] can be written (not uniquely) as ax, where a € A. Then p(A*z.az) = ¢(la) =
1(pa) = Mz.(pa)r = Nx.p[z](ax). d

2.3.3 Soundness and completeness for lambda algebras

Proposition 2.17. Soundness. The set of equations that hold absolutely in a lambda algebra A is closed
under the axioms and rules of the lambda calculus. As a consequence, Th(A) is a lambda theory for any
lambda algebra A.

Proof. Consider each axiom and rule of the lambda calculus. («) and (3) are satisfied because A is a lambda
algebra. The rules (refl), (symm), (trans) or (cong) are trivially satisfied. Finally, the rule (§) is satisfied by
Lemma [2.15] For the second claim, notice that a closed equation holds absolutely iff it holds locally. O

Theorem 2.18. Soundness and Completeness for lambda algebras. Ler £ be a set of closed equations of
the lambda calculus. Then for lambda terms M, N,

Erg M =N ifandonlyif & la M = N.

Proof. Soundness follows by Proposition For completeness, observe that the open term algebra A /T
associated with the theory 7 is a lambda algebra satisfying M = N iff T -3 M = N. O

Corollary 2.19. For a set £ of closed equations of the lambda calculus, let E.; be its translation into combi-
natory logic. Then for lambda terms M and N,

EFg M =N ifandonlyif &qlpa My = Ng.
a

Remark 2.20. It is worth noting that Corollary 2.12] Lemma[2.15] and Proposition [2.17) were all proved using
only the seven properties of Lemma Hence, if a combinatory algebra A satisfies a)—(g), then
Th(A) is a lambda theory, which implies that A is a lambda algebra. Thus, the class of lambda algebras
is axiomatized over the class of combinatory algebras by the properties in Lemma Of course, these
axioms can be closed by using the derived lambda abstractor. However, after spelling everything out in terms
of s and k, the axioms given in Proposition [2.6|are considerably shorter.

2.4 Lambda theories and lambda algebras form equivalent categories

In this section, we define the category of lambda theories, and we show that it is equivalent to the category of
lambda algebras.

Definition. The category LT of lambda theories is defined as follows: An object is a pair (C, T), where C
is a set of constants and 7 a lambda theory in the language AY. The pair (C,T), like T itself, is called
a lambda theory. A translation from C to C’ is a function ¢: C — A2,. Any such ¢ extends uniquely
to a function @: A% — AOC/, defined by ¢M(c1,...,¢n) = M(pca,...,0cn), wWhere cq, ..., ¢, are the
constants that appear in M. A morphism from (C,T) to (C’,7”) is named by a translation from C to C’
such that 7+ M = N implies 7' 3 M = @N for all M, N € A%. ¢ and ¢ name the same morphism
ifT kg oM = M forall M A2,. Composition is defined by p 0) := p o 9.

Theorem 2.21. The category LT of lambda theories is equivalent to the category LA of lambda algebras.

Proof. We define a pair of functors F': LT — LA and G: LA — LT. F sends a lambda theory (C, T) to its
closed term algebra A2, /T, which is always a lambda algebra. F' sends a morphism ¢: (C,T) — (C', T")
to the homomorphism f: A2 /T — A2, /T induced by @: A, — A?,. G sends a lambda algebra A to
(A, Th(A)), which is a lambda theory by Proposition 2.17} G sends a homomorphism f: A — B to the
translation p: A — A with pa = fa.

Next, we describe a natural isomorphism 7: idpa — F o G. For every lambda algebra A, define 74 :
A — FoG(A) =AY /Th(A) by na(a) = a. This is clearly a homomorphism, and it is natural in A.. To see
that this is an isomorphism, notice that for every M € A} there is a unique a € A with Th(A) kg M = a,
namely, a = [M].

26

In order to show the existence of a natural isomorphism G'o F' 2 idyy, it now suffices to show that F' is full
and faithful. F' is one-to-one on hom-sets by definition of morphisms in LT. F is also full: if f: A2/T —

A2, /T’ is any homomorphism, then f maps a closed lambda term M (cy, . .., ¢,) to M(fcy, ..., fc,), where
c1,...,Cp are the constants that appear in M. This is because M is equivalent to an applicative term made
up from ¢y, ..., c, and the combinators k£ and s, which are preserved by f. It follows that f = F¢p, where
¢: C — A2, is defined by choosing a representative ¢(c) of f(c), for every c € C. |

2.5 Lambda models

The notion of lambda model arises, as in [5]], if one attempts to prove Proposition with respect to the
equations that hold locally. To do this, one needs the “local” equivalent of Lemma[2.15}

AEA=B = AE XNz A=N2.B.

This property, which is called weak extensionality, does not hold in general. Hence one defines a lambda
model to be a weakly extensional lambda algebra.

From our point of view, lambda models can be characterized as those lambda algebras which are intrinsi-
cally local: in a lambda model, an equation holds absolutely if and only if it holds locally. Or in other words:
in a lambda model, every polynomial is determined by its behavior as a function. In the language of category
theory, such a property is called well-pointedness, and indeed lambda models correspond to well-pointed
lambda algebras in a sense that will be made precise in Proposition [2.27]

Proposition 2.22. The following are equivalent for a lambda algebra A.:
1. A is weakly extensional.

2. A satisfies the following Meyer-Scott axiom: for all a,b € A,

Ve € A.ax = bz
la=1b

(MS), where 1 = S(KI),

3. every equation that holds locally in A already holds absolutely.

By weak

Proof. 1.=3.: Let A be weakly extensional and A = A = B. Assume FV(A,B) C 7.
Z.B, and finally

extensionality, A = A*Z.A = *Z.B. This is a closed equation, hence A |:ab5 NT.A=*
A = A = B by Lemmal2.15]

3.=2.: We show (MS): Suppose for all z € A, ax = bx. Then A " ax = bz by 3., i.e. ax = bz €
A[x]. Hence 1a = 1b by Corollary

2. = 1.: To show weak extensionality, suppose A = A = B. Then A | (*z.A)x = A = B =
(M*z.B)z, hence by 2., A = 1(*z.A) = 1(A*z.B), hence by Lemmal2.14] A = *z. A = *x.B. d

Lambda models are less natural than lambda algebras, because they do not form an algebraic variety. Histori-
cally, lambda models were a vehicle for proving soundness and completeness theorems such as Theorem[2.18]
see e.g. [S, Thm. 5.2.18]. We conclude this section by remarking that every lambda algebra can be embedded
in a weakly extensional one:

Proposition 2.23. If A is a lambda algebra and X an infinite set, then A[X] is a lambda model.

Proof. We show the Meyer-Scott axiom: assume a,b € A[X] and ax = bz for all x € A[X]. Then there is
some finite Y C X with a,b € A[Y]. Letz € X \ Y, then ax = bz in A[Y][z], hence 1a = 1bin A[Y] by

Corollary |

27

2.6 Models of the lambda-3n-calculus
2.6.1 Curry algebras

A Curry algebra [33]] is a lambda algebra with 1 = I. Note that Curry algebras form an algebraic variety.
Proposition 2.24. A lambda algebra A is a Curry algebra if and only if Th(A) is a lambda-n-theory.

Proof. If ¢ FV(M), then \e. Mz =3 (Azy.xy)M = 1,M. Hence in any Curry algebra, A\x. Mz =
1M = M. Conversely, if Th(A) is a lambda-fn-theory, then A = 1 = \zy.ay = Az.x = L d

Hence Curry algebras are to the lambda-fn-calculus what lambda algebras are to the lambda-S-calculus.

2.6.2 Extensional models

An applicative structure is extensional if for all a,b € A,

Vr € A.ax = bx
a=b ’

Extensional combinatory algebras are Curry algebras, and hence models of the A8n-calculus. Although
extensionality is an intuitive property, extensional models do not form an algebraic variety: e.g. the closed
term algebra of the lambda-fn-calculus is extensional, but the subalgebra of closed terms is not (see [l
Thm. 20.1.2] and [46]). In fact, a Curry algebra is extensional if and only if it is a lambda model, since
the Meyer-Scott axiom from Proposition [2.22]is equivalent to extensionality in the presence of the equation
1=1

2.7 Lambda algebras and categorical models

2.7.1 Reflexive ccc models

In this section, we relate the combinatory models of the lambda calculus to the models that arise from a
reflexive object in a cartesian-closed category. An object D in a cartesian-closed category C is called reflexive

if there exists morphisms e and p such that
™
P

The triple (D, e, p) is called a reflexive C-model or a categorical model of 3-conversion. If also poe = idp,
we speak of a categorical model of B3n)-conversion.

One defines an interpretation [M],,, of each lambda term M with FV(M) C {z1,...,z,} as a
morphism D™ — D. Assume that bound variables are renamed as appropriate. Recall that g* and e, are our
notations for the curry and uncurry operations, respectively.

2y, = D" 5D (the ith projection)
Mlayooon [NToy oo .
[MN]a,...c., = D" s ey ooon) o p ey p
Mley,..., z *
Mens1 My 0wy = D" OMesms)” o 2y

Proposition 2.25. The following are properties of categorical models of B-conversion:

28

1. Permutation. The interpretation is independent of the ordering of the free variables, or of the addition

of dummy variables, in the following sense: If o : {1,...,n} — {1,...,m} isinjective and FV(M) C
{Zs1,. . Ton}, then
Mley,..., Tm
Dm L) D.
<7\'a1 ----- k\ %ﬂcal ----- Ton
D7l

2. Substitation. Let FV(M) C {z1,...,2,} and FV(Ny,...,N,) C {y1,...,Ym}, and let M [N /7]
denote the simultaneous substitution of Ny,..., N, for z1,...,x, in M. Then

N U075 YRS
<[[N1]]ya'“7[[N$ %ﬂl’””mn
Dn

3. Soundness. If A/ =3 N, then [M]; = [N]z. In a categorical model of n-conversion, if M =3, N,

Proof. 1. and 2. are straightforward by induction on the term M. For 3., define M ~ N iff [M]; = [N]z;
by 1., this is independent of the sequence of variables Z, as long as FV(M, N) C Z. Clearly, ~ satisfies the
properties (refl), (symm), (trans) from Table 2.1] Moreover, it satisfies (cong) and (£) by 2.; to see that it also
satisfies (), first note that e, o (p X idp) = (eop), = (idpp), = €. Hence

D xD

([Ax.M]z,[N]z)

D" x D

By definition, the composition along the top is [(Ax.M)N]z, while by the Substitution Property 2., the
composition along the bottom is [M[N/xz]]z. This shows (Az.M)N ~ M[N/z]. Hence =3 C ~, and we
are done with the first claim. The case for n-conversion follows by a similar diagram chase. |
2.7.2 Reflexive ccc models and lambda algebras

From a categorical model (D, e, p), one can define a lambda algebra (A, -, k, s):

A = (1,D) (the hom-set)
ab = 1% pupiyp

o= 1 Perlp

s — 1 Meyz.zz(yz)] D.

Lemma 2.26. (A, k, s) is a well-defined lambda algebra.

29

Proof. 1t is easy to show by induction on terms that for any combinatory term A,

[Al, — 1t pn

HCHCC,A)\ =8 B)\:[[AA]]EZ[[B}\]]E: [[A]][o:[[B]]péA):AZB. a
Remark. Every lambda algebra arises from a reflexive model. The construction of a cartesian-closed category
from a lambda algebra is due to Scott [54], and it is also described in [31]].

The following proposition relates various concepts of lambda algebras to corresponding concepts of the
categorical interpretation. An object D in a category is well-pointed if for all f,g: D — E,

f
(Ve.1—"=D _+ _FE) = f=g

—_—
g9

We say that D is locally well-pointed if the same holds for all f,g: D — D.
Proposition 2.27.

1. Aisalambda model iff D islocally well-pointed.

2. AisaCurryalgebra iff poe=idp.

3 A is extensional iff D is locally well-pointed and p o e = idp.

4. Alz] = (1,DP)=(D,D).

5. Alzy,...,z,) = (D™, D).

6 AEM=N if M=N:(1,D)" = (1,D).

7. AE® M=N if M=Nec (D" D).
Proof. In A, one first computes I = [Az.2] = po (idp)*, 1 = [Azy.xy] =po (poe)”,and foralla € A,
l-a=poeoa.

1. =: Suppose A is a lambda model and suppose f,g: D — D suchthatforallz : 1 — D, fox = goux.
Letf =po frfand g = pog* € A. Thenf~x = fox =gox = gG-zforalxz € A, hence
1-f=1-g=poeopof*=poecopog'=f=g.
<: Suppose D is locally well-pointed. We show the Meyer-Scott axiom (see Proposition[2.22). Suppose
a,b € A such that for all z € A, ax = bz. This implies forallz : 1 — 1 x D,

a%DXD e,
1—%~1xD -
bxido= D x D ©

hence, by local well-pointedness, the square commutes. Currying the square, we get e o a = e o b, hence
l-a=1-b.

2. =: Suppose A is a Curry algebra. Then
(poc) =copo(poe) =col=col=copo(idp)" = (idp)",

hence po e = idp.
<: Suppose poe =idp,thenl =po (poe) =po(idp)" =L

3. From 1. and 2.

30

4. and 5. Consider the following two retracts:

Alz] and DP
) N (N
A— Alz] D——=DP.

(=)=

As we have seen in Section[2.3] the set A[z] can be identified with those a € A such that 1 -a = a. On
the other hand, arrows 1 — DY can be identified with those a : 1 — D such that poeoa = a,whichis
again just 1 - @ = a. This gives a one-to-one correspondence between the points of A[z] and (1, DP) =
(D, D). The correspondence Alz1,...,x,] = (D", D) is similar. Moreover, this correspondence induces
a lambda algebra structure on (D™, D), which turns out to be the natural “pointwise” one given by

(a,b)

a-b = D" 2L DxDESD
g = pn—qmvrlp
s pr — 1 LRovzrz@Al g

6. Wehave A = M = N iff [M], = [N], forall p: V — (1, D), iff [M]z o f = [N]z o f € (1, D) for
all f € (1, D).

7. Follows from 5. and Lemma[2.13] O

31

32

Chapter 3

Unorderability

The formulation of the untyped lambda calculus, by Church and Curry in the 1930’s, has preceded its modern
semantic theory by more than 30 years. It was not until the 1960’s that Dana Scott constructed the first truly
“mathematical” models of the lambda calculus. Scott discovered that such models can be constructed by a
combination of order-theoretic and topological methods. Specifically, he observed that there exist non-trivial

diagrams of the form
™
P

in certain cartesian-closed categories of complete partial orders and Scott-continuous functions. Recall that
an object D in this situation is called reflexive, and that it gives rise to a model of the lambda calculus in a
canonical way as described in Chapter 2|

The question now arises whether all models of the lambda calculus can be constructed in this way. This
question must be modified, since a simple analysis reveals that every reflexive CPO-model is uncountable
[48], while there are some countable models of the lambda calculus. Instead, one can ask the refined question:
can every model of the lambda calculus be embedded in a reflexive CPO-model? Alternatively: does every
lambda theory arise as the theory of a reflexive CPO-model? The answer is known to be negative: Honsell
and Ronchi Della Rocca [27] have exhibited a lambda theory that does not arise from such a model. One may
now further relax this question by asking:

(1) Can every model of the lambda calculus be partially ordered?

(ii) Can every model of the lambda calculus be embedded in one that admits a partial order?

These two questions are the subject of this chapter. Let us call a lambda algebra unorderable if it does not
admit a non-trivial partial order that is compatible with the algebra structure. Unorderable algebras are known
to exist. Plotkin has recently constructed a finitely separable algebra, a property with implies unorderability.
In Section [3.1} however, we show that one does not have to look very far to find unorderable algebras: the
most natural term models of the lambda calculus, namely the standard open and closed term algebras, are
unorderable. An application to reflexive CPO-models is discussed in Section[3.2]

Question (ii) is more difficult to answer, as indicated by the fact that the answer is still unknown. Let us
call a lambda algebra absolutely unorderable if it cannot be embedded in an orderable one. In Section 3.3
we give an algebraic characterization of absolutely unorderable T-algebras in any algebraic variety T. We
show that a T-algebra is absolutely unorderable if and only if it has a family of so-called generalized Malcev
operators. The question (ii) thereby reduces to the syntactic question whether it is consistent to add such
Mal'cev operators to the lambda calculus. This is an open problem in general, but we discuss some special
cases in Section[3.4] Finally, in Section[3.5] we relate various different notions of unorderability.

33

3.1 Lambda terms cannot be ordered

In this section, we investigate unorderable models of the lambda calculus. Let us first fix some terminology.
Preorders and partial orders were defined in Section [I.2.1] The unique minimal preorder on any set X is
called discrete, the unique maximal preorder is called indiscrete, and discrete or indiscrete preorders are
called trivial. By convention, if we wish to refer to a preorder that satisfies z < y = y < x, we will not call
it trivial, but symmetric. Of course, a partial order is symmetric iff it is discrete iff it is trivial.

Applicative structures and combinatory algebras were defined in Section Let (X, -) be an applica-
tive structure. Recall that a preorder < on X is called compatible if the application operation is monotone in
both arguments with respect to <, i.e. if

Va,b,a’, b/ € X.a<a' andb<b =a-b<a - V.

An applicative structure is called unorderable if it does not allow a non-trivial compatible partial order.

Notice that if (X, -, k, s) is a combinatory algebra, then a preorder < is compatible if and only if applica-
tion is monotone in just the second argument. Monotonicity in the first argument then follows by considering
f=MXax.x- b because a < o' impliesa-b=f-a< f-a' =d -b.

Recall that the open term algebra of the)\ 3-calculus is the combinatory algebra (Ac /=g, -, K, S), where
A¢ is the set of untyped lambda terms with constants from C, - is the application operation on terms, and
K and S are the terms A\zy.x and A\zyz.zz(yz), respectively. The closed term algebra (AL, /=g, -, K, S) is
defined analogously, and similarly for the A8n-calculus.

3.1.1 Plotkin’s unorderable algebra: Separability

In a recent paper [S0], G. Plotkin has constructed a finitely separable lambda, a property which implies
unorderability. Following an idea of Flagg and Myhill [43], Plotkin calls a subset A of a lambda algebra X
separable if every function p: A — X is realized by some element ¢) € X, meaning that for all a € A,
p(a) = ¢ - a. A lambda algebra is said to be finitely separable if every finite subset is separable. Flagg and
Myhill noticed that finitely separable algebras do not allow non-trivial compatible preorders: This is because
if a < b are two distinct comparable elements in X, then all pairs z, y of elements are comparable via some
peXwithg-a=xzand p-b=y.

3.1.2 The standard term algebras are unorderable

We will now show that the standard open and closed term algebras cannot be non-trivially partially ordered.
Notice that these are not finitely separable. For instance, consider the terms w = (Az.zz)(Azx.zz) and
I = A\z.z. The term w is unsolvable, while [is in normal form. Let 7" be another term in normal form. By
the Genericity Lemma (Barendregt [, Proposition 14.3.24), whenever Rw = T', then RI = T. Hence, w
and [cannot be separated.

How would one go about constructing a partial order on, say, the open term algebra of the \/3-calculus?
As a first approximation, one might take two distinct variables = and y, and let C be the preorder generated by
a single inequality = C y. For this preorder, one has M T N iff N is obtained from M up to 3-equivalence
by replacing some, but not necessarily all occurrences of the variable « by y. In other words, M T N iff
there is a term P (not itself containing x or y) such that M =g Pxxy and N =g Pxyy. This preorder is
non-trivial, because y [Z x. But is it a partial order? The following lemma, to be proved in Section[d.4] shows
that this is not the case:

Lemma 3.1. There exists a closed term A of the untyped lambda calculus with Azxxy =g Axyyy, but
Azxxzy #pn Axxyy #sy Axyyy for variables x # y. d

Notice that in the preorder that we have just defined, Azzzy T Azzyy C Axyyy = Axxxy. But since
Axxxy # Azzyy, the preorder L is not antisymmetric, hence not a partial order. By the same reasoning,
and y cannot be related in any compatible partial order on open terms. To show this section’s main result, we

34

need to replace the variables x and y by arbitrary terms « and ¢. This is achieved by the following lemma,
which states that, if s is a fresh variable, then su and st behave essentially like indeterminates: any equation
that holds for su and st will hold for variables x and y. Let 7 be one of the theories A3 or AGn.

Lemma 3.2. Let uq,...,u, be terms that are distinct with respect to T. If s is a variable not free in
ULy« ooy Uy, then suq, SUsa, . .., Su, behave like generic arguments. More precisely, for all terms M, N with
s € FV(M, N), and for variables x1, .. ., Ty,

M (suq)(sug) ... (su,) =7 N(sup)(suz) ... (su,)
implies
Mxixo ..., =7 Nx12Zo ... 20,

Proof. Let {z1, 2a,...,2m} be alist of all the free variables of the terms uy, . .., u,. Choose fresh, distinct
constants ¢y, ...,¢, and dq, ..., d,. Fori = 1...n, let u; be the closed term obtained from u; by replacing
free variables with the appropriate constants: w; = u;[c1/z1, ..., Cm/%m]. Further, add to the lambda cal-
culus a new constant ¢ ¢ C and equations ou; = d;, fori = 1...n. Let T + o denote the theory that is
obtained in this way on Ac (5} Then

M(suy)(sug)...(su,) =7 N(sup)(suz)...(su,)
= M(ouy)...(0Uy) =7+0 N(ou1)...(0Uy) (by renaming)
= Md,...dy =71y Nd; ...dy

The claim now follows from the fact that 7 + o is conservative over 7. This is a consequence of Plotkin’s
separability result [50]: the closed term algebra can be embedded in a separable algebra. Let ¢ : A /T — A
be such an embedding. Then choose ¢ € A such that ¢ - cu; = ud;, for i = 1...n. There is a unique
extension ' : A%, /T — A of 1, sending o to 4. Clearly, the theory induced by «/ is a conservative
extension of 7 satisfying the additional equations. |

Theorem 3.3. Let M be the open or the closed term algebra of the \(- or A\Bn-calculus. Then M does not
allow a non-trivial compatible partial order.

Proof. Let < be a compatible partial order on M. Let u # ¢t € M, and assume, by way of contradiction,
that u < ¢. Let A be as in Lemma[3.1] and let s be a fresh variable. Then by compatibility,

As.A(su)(su)(su)(st) < As.A(su)(su)(st)(st)
< As.A(su)(st)(st)(st)

As. A(su)(su)(su)(st),

hence, by antisymmetry,

A(su)(su)(su)(st) = A(su)(su)(st)(st)

Applying Lemma[3.2]to M = Azy.Azzxzy and N = A\zy.Azzyy, one gets Azxzry = Azxyy for variables
x and y, contradicting the choice of A. Consequently, the order is trivial. d

3.2 The Topological Completeness Problem

Recall that, for any cartesian-closed category C, a reflexive C-model is a model of the lambda calculus that
arises from a diagram

35

in the category C (see Section [2.7). These models have been particularly well studied in the category CPO
of cpo’s and Scott-continuous functions. Reflexive CPO-models are sometimes referred to as continuously
complete, because every Scott-continuous function f : D — D is definable by an element f € D. Honsell
and Ronchi Della Rocca [27] also use the term fopological model. The following is a long standing open
problem ([27]):

Open Problem. (Topological Completeness) Is there a reflexive CPO-model whose theory is A5 or A\3n?

Two related questions have been answered: Honsell and Ronchi Della Rocca [27] have shown that there is a
lambda theory C,, which is not induced by any reflexive CPO-model. The reflexive CPO-models are thus
incomplete for arbitrary lambda theories. On the other hand, Di Gianantonio et al. [16] have shown that A3n
can arise as the theory of a reflexive CPO;-model. If wy and w; denote, respectively, the first infinite ordinal
and the first uncountable ordinal, then CPO; is the category whose objects are wy- and w;-complete partial
orders, and whose morphisms preserve limits of w;-chains (but not necessarily of wy-chains). However, the
construction given in [16] makes decisive use of non-Scott-continuous functions.

We will now explore some consequences of Theorem 3.3|for topological completeness. First, one notices
that in all models whose theory is A3 or AS7, the denotations of closed lambda terms necessarily form a
discrete subset:

Corollary 3.4. In any partially ordered lambda algebra whose theory is A3 or ABn, the denotations of closed
terms are pairwise incomparable.

Proof. The set of closed term denotations is a sub-lambda algebra which is isomorphic to the closed term
algebra; hence the partial order is discrete on it by Theorem[3.3] u

Recall that two elements x, y of a partially ordered set D are called compatible if there exists z € D with
z < zand y < z. We can now show that any complete reflexive CPO | -model, if such a model exists, must
satisfy one of two peculiar properties:

Theorem 3.5. Suppose D is a reflexive CPO | -model whose theory is A3 or ABn. Then either:
1. The denotations of closed terms are pairwise incompatible, or

2. There exist closed lambda terms M and N such that, for all x,y € D,

(x <yory<x) — Mzy = Nxy.

Proof. Suppose 1. does not hold, i.e. there are two distinct closed terms « and ¢ whose denotations have an
upper bound v € D. Let A be as in Lemma[3.1] and let M = Azyrs.A(s(rz))(s(rz))(s(rz))(s(ry)) and

N = Azys. A(s(rz))(s(rz)) (s(ry)) (s(ry))-
=: Suppose z < y ory < x. Then Mzy = Nzy by the same reasoning as in the proof of Theorem3.3]

<: Suppose, by way of contradiction, that M zy = Nxy for incomparable x,y € D. Definer : D — D
by

ifz<zandz Ly
ifz€xandz <y
v ifzgzxandz Ky

1 ifz<zrandz <y
U
t

Then r is continuous; suppose it is represented by 7 € D. Then
D = Xs.A(su)(su)(su)(st) = Mayi = Nayi = As.A(su)(su)(st)(st).

But the proof of Theorem [3.3] shows that the first and the last term are ASn-different, contradicting the
assumption that D was a complete model. O

36

3.3 A characterization of absolutely unorderable algebras

In Section [3.1] we have shown that the combinatory algebra of open lambda terms cannot be non-trivially
ordered. However, it can be embedded in an orderable algebra; this follows e.g. from the work of Di Gi-
anantonio et al. [16]. Plotkin conjectures in [S0] that there exists a combinatory algebra which is absolutely
unorderable, i.e. which cannot be embedded in an orderable combinatory algebra. In this section, we charac-
terize, for any algebraic variety T, those T-algebras which are absolutely unorderable.

Let T be an algebraic variety. Recall that a preorder < on a T-algebra A is compatible if whenever
a; < b;fori =1...k, then fay...ar < fby...bg, for each k-ary function symbol f € . Notice that
monotone preorders are closed under arbitrary intersections. If < is monotone, then so is the dual preorder
>. Every monotone preorder determines a congruence ~ on A, which is the intersection of < and >. Also
notice that < naturally defines a partial order on A /~.

A T-algebra A is said to be unorderable if it does not allow a non-trivial compatible partial order. Also,
A is said to be absolutely unorderable if for any embedding A — B of T-algebras, B is unorderable.

3.3.1 Absolutely unorderable algebras and generalized Mal'cev operators
Consider a T-algebra A. Let < be the smallest compatible preorder on A[u, t] such that u < .
Lemma 3.6. < is trivialon A, i.e.a <b= a="0bfora,be A.

Proof. Let ~ be the kernel of the canonical morphism A[u,t] — A[z] which sends both v and ¢ to . Then
~ is a congruence, hence in particular a compatible preorder on A[u, t]. Since also u ~ ¢, by definition < is
contained in it. But ~, hence <, is trivial on A. O

Lemma 3.7. A is absolutely unorderable if and only if t < u.

Proof. =: Suppose A is absolutely unorderable. Consider the natural map A — Alu,t] — Afu,t]/~«.
Lemma [3.6] implies that, the composition is an embedding, hence < must be trivial as a partial order on
Alu,t]/~<. Equivalently, < as a preorder on A [u, ¢] is symmetric. Since u < ¢, it follows that ¢ < w.

<: Suppose A is not absolutely unorderable. Then there is an embedding ' : A — B of T-algebras where
B has a non-trivial compatible partial order <. Hence there are U # T € B such that U < T'. Consider
the unique map G : Afu,t] — B such that u — U, t — T and G|o = F. Define a < bin Afu,] iff
G(a) < G(b) in B. Then < is a compatible preorder on A[u,t]. But u < ¢, hence < is contained in <. But
t € u, hence t # u. O

Further, < has the following explicit description: On A [u,], define a <1 b if and only if there is a polynomial
A(z1,x2,73) € Alx1, X2, 23] such that A(t,u,u) = a and A(t,t,u) = b.

Lemma 3.8. < is the transitive closure of <.

Proof. Notice that < is reflexive. Let </* be the transitive closure. Clearly, <I, and hence <1*, is contained
in <. On the other hand, <* is a preorder on A[u,t] satisfying u <0* ¢. To see that <* is compatible, let
f be a k-ary function symbol in X. First assume a; <1 b; for i = 1...k. Then there are A;(x1,x2,x3) €
Alzy, 29, 23], for i = 1...k, such that A;(t,u,u) = a; and A;(t,t,u) = b; for each i. By considering
A(x1, 29, 23) = f(A1(x1,22,23) ... Ax(x1, 22, 23)), it follows that fay ...ar < fby...b;. Hence < is
compatible, which readily implies compatibility for <1*. Therefore, < is contained in <I*. d

Putting this together with Lemma[3.7} we get the following characterization of absolutely unorderable alge-
bras. Recall that an equation p(u, t) = q(u, t) holds absolutely in A iff it holds in A[u,¢].

37

Theorem 3.9. Characterization of absolutely unorderable T-algebras. Let T be an algebraic vari-
ety. A T-algebra A is absolutely unorderable if and only if, for some n > 1, there exist polynomials
M, (z1, 22, x3) € Alz1, 29, 23], for i = 1...n, such that the following equations hold absolutely in A

= Ml (t7u7u)
Ml(t,tau) = M2(tvu7u)
M (t,t,u) = M;s(t,u,u) 3.1
M, (t,t,u) = u

Proof. By Lemmas[3.7)and[3.8] A is absolutely unorderable if and only if there are t1,...,t,—1 € Alu,]
such that t <1t < ... <t,, <u. The corollary follows by definition of <. O

In the case n = 1, the equations have the simple form ¢ = M(¢t, u,u) and M(¢,¢,u) = u. These
equations were first studied by A.I. Mal’cev [37]] to characterize varieties of congruence-permutable algebras
(so-called Mal'cev varieties). A ternary operator M satisfying these equations is called a Mal’cev operator.
Accordingly, we call My, ..., M, satisfying a family of (generalized) Malcev operators, and we call
the equations the (generalized) Malcev axioms. Hagemann and Mitschke [25] have shown that an
algebraic variety has n-permutable congruences if and only if it has operators satisfying the axioms (3.1). It
was proved by W. Taylor [63, [11] that algebras in a variety with n-permutable congruences are unorderable;
however, the converse, to the best of my knowledge, is a new result. Also note that Theorem 3.9|characterizes
individual algebras that are absolutely unorderable, rather than varieties of unorderable algebras.

3.3.2 An application to ordered algebras and dcpo-algebras

Recall from Section [[.3.5] that an algebraic signature ¥ and a set of inequations Z define a variety O of
ordered algebras. The free ordered (¥, Z)-algebra over any poset P was denoted by Op. One may ask under
which circumstances the canonical map 7 : P — Op is order-reflecting. The following theorem shows that
the answer depends only on the presence of Mal'cev operators in (X, 7). Recall that a k-ary operation in X is
simply a X-term ¢(z1, ..., xg).

Theorem 3.10. Let 3 be a signature and T a set of inequations. Let P be a non-trivially ordered poset and
let 3 : P — Op be the canonical map from P into the free ordered (%, T)-algebra over P. The following are
equivalent:

1. j1is not order-reflecting.

2. Every ordered (3, 7)-algebra is trivially ordered.

3. There are ternary operations M, ..., M,, in X such that 7 entails
< Ml (t7 U, u)
Ml(tatvu) < Mg(t,U,U)
My (t,t,u) < M;s(t,u,u) (3.2)
M, (t,t,u) < u

Proof. 1.=2.. Suppose B is a non-trivially ordered (3, Z)-algebra with elements a < b. We show that)
is order-reflecting. Let z,y € P with j(x) < 5(y). Define g : P — B by

_ a ifz<y
9(2)_{ boifzgy

38

Then g is monotone; therefore, by the universal property of Op, there exists a unique homomorphism of
ordered algebras h : Op such that ¢ = h o 3. By monotonicity of h, we get g(z) = h(y(z)) < h(y(y)) =
g(y) = a, hence z < y.

2. = 3.: Suppose every ordered (3, 7)-algebra is trivially ordered. Then, in particular, Oy, is trivially or-
dered, and hence Z t~,0q s < tiff 7 104 t < 5. We can therefore regard 7 as a set of equations. The claim
follows by applying Theorem[3.9]to A = Oy.

3. = 2.: Suppose (X,Z) has operators satisfying (3.2). Then for any (X, Z)-algebra B, if a < b € B, then
b<Mj(bya,a) < Mjy(b,b,a)<... <M, (b,b,a) < a, hence B is trivially ordered.

2.=1.. Amapj): P — Op from a non-trivially ordered set into a trivially ordered one cannot be order-
reflecting. O

Remark. Notice that the proof of 3. = 2. shows that the inequalities (3.2) already imply the corresponding
equalities (3.1).

The equivalent of Theorem holds for dcpo-algebras as well. This is due to the following lemma, which
relates the existence of non-trivial dcpo-algebras to the existence of non-trivial ordered algebras:

Lemma 3.11. Let X be a signature and T a set of inequations. There exists a non-trivially ordered (X%,T)-
dcpo-algebra if and only if there exists a non-trivially ordered (X, T)-algebra.

Proof. =: Trivial, since every dcpo-algebra is an ordered algebra.

<: Let (A, <) be an ordered (X, Z)-algebra. We consider the ideal completion of A: A subset I C A is
an ideal if it is downward closed and directed. Let 7 = IdI(A), the ideal completion of A, be the set of all
ideals, ordered by inclusion. Abramsky and Jung [3]] prove that 7 is a (3, Z)-dcpo-algebra. Moreover, the
map A — J : x — Jx is order preserving and reflecting, and hence J is non-trivially ordered if A is.

Corollary 3.12. Let X be a signature and T a set of inequations. Let D be a non-trivially ordered dcpo and
let 3 : D — Dp be the canonical map from D into the free ordered (X, T)-algebra over D. The following
are equivalent:

1. 7 1is not order-reflecting.
2. Every (¥, Z)-dcpo-algebra is trivially ordered.
3. There are ternary operations My, ..., M,, in X such that Z entails (3.2).

Proof. The equivalence of 2. and 3. follows from Theorem [3.10]and Lemma [3.T1} The implication 2. = 1.
is trivial, and 1. = 2. follows as in the proof of Theorem [3.10} notice that the function g defined there is
continuous. |

3.4 Absolutely unorderable combinatory algebras

If A is a combinatory algebra, then the statement of Theorem takes a particularly simple form, due to
combinatory completeness: A combinatory algebra A is absolutely unorderable if and only if there are a
number n > 1 and elements My, ..., M, € A such that the following hold absolutely in A:

t = Mjtuu
M ttu = Mstuu
Myttu = Mstuu 3.3)
M,itu = u

39

Note that if A is a lambda algebra, one can replace these equations by the closed equations A*tu.t = Mjtuu
etc.

But does an absolutely unorderable combinatory algebra exist? Unfortunately, this is not known. Clearly,
an absolutely unorderable combinatory algebra exists if and only if the equations are consistent with the
axioms of combinatory algebras for some n. The answer is only known in the cases n = 1 and n = 2. In
these cases, (3.3) is inconsistent with combinatory logic, as we will now show. Notice that if the axioms are
consistent for some n, then also for all m > n, by letting M, 11, ...,M,;, = Azyz.z

Let Y be any fixpoint operator of combinatory logic, for instance the paradoxical fixpoint combinator
Y =M.z f(xz))(Ax. f(xx)). Write ux. M for Y (Ax.M). The operator p satisfies the fixpoint property:

px. A(r) = A(pz.A(z)). (fix)

The diagonal axiom is
py-pz. Az, y) = pe.Az,z). (A)
The following lemma is due to G. Plotkin and A. Simpson:

Lemma 3.13 (Plotkin, Simpson). Assuming the diagonal axiom, the Malcev axioms are inconsistent
with combinatory logic for all n.

Proof. Let x be arbitrary. Let A = pz.Mjzzz. Then A = pz.x = . Also,

r=A = pzMzzz
uy.pzMyzyz by (A)
pzMizxz by (fix)

pzMoxzz by

,.u.z..Mn_lxxz
= uz.z by

Hence x = pz.z for all z, which is an inconsistency. a

Theorem 3.14 (Plotkin, Simpson). For n = 1, the Malcev axioms are inconsistent with combinatory logic.
Proof. Suppose M is a Mal'cev operator. Let x be arbitrary and let A = py.puz.Mzyz. Then

(Malcevy)

AL uz.MzAz) MaAA x,
hence x = pzMzxAz = pzMaxz = pz.z. a
Theorem 3.15 (Plotkin, Selinger). For n = 2, the Malcev axioms are inconsistent with combinatory logic.

Proof. Suppose M; and M, are operators satisfying the Mal'cev axioms (3.3). Define A and B by mutual
recursion such that

A = px.f(MizAB)(MixAB)
B = py.uz.f(MaABy)(M2ABz).
Then
B = J(M;ABB)(MzABB) by (fiv)
— f(M{AAB)(M;AAB) by (3.3)
= A by (fix)
So pz.frx = pr. f(MizAA)(MjzAA) = A= B = uy.pz.f (Mo AAy) (Mo AAz) = py.uz. fyz, which is
the diagonal axiom. By Lemma [3.T3] this leads to an inconsistency. d

40

3.5 Relating different notions of unorderability

3.5.1 Local notions

We defined a combinatory algebra to be unorderable if it does not allow a non-trivial compatible partial
order. There are other notions of unorderability that are worth investigating. For instance, one can ask for
the existence of non-symmetric preorders instead of partial orders. Or one can ask for the (pre)order to be
compatible with abstraction as well as with application: < is called a lambda-(pre)order if it is compatible

and
Ve € A.ax < bz

la < 1b

We thus arrive at the following four unorderability notions for a combinatory algebra A:
1. unorderable if every compatible partial order on A is trivial.
2. un-preorderable if every compatible preorder on A is symmetric.
3. un-\-orderable if every lambda-order on A is trivial.
4. un--preorderable if every lambda-preorder on A is symmetric.

Between these notions, only the obvious implications hold:

unorderable
un-preorderable un-\-orderable

N S

un-\-preorderable

To see that no other implications hold, first observe that the open term algebra is unorderable, but \-pre-
orderable: let M < N iff for all valuations p, [M], < [N], in the standard D.,-model. It follows from
[29,64] that this preorder is non-trivial; it is a lambda-preorder because the order on the standard D,-model
is pointwise.

The counterexample in the other direction is due to G. Plotkin, and it is given in the following theorem:

Theorem 3.16. (G. Plotkin) There is an extensional, partially ordered lambda algebra A that does not allow
a non-trivial lambda-preorder.

Proof. The idea of the construction is to work in a category where the order relation on function spaces is not
pointwise. We use the category of meet cpo’s and stable functions CPO”, which was defined in Section
Recall that the objects of this category are cpo’s with bounded binary meets which act continuously, and that
the morphisms are stable functions, i.e. continuous functions preserving the bounded meets. As we outlined
in Section[I.2.5] the usual Scott D..-construction of models of the lambda-37-calculus goes through in this
category.

Let Dy be the cpo with two elements L < T. Define D, to be the stable function space D,? n. Then
D; has three elements B, I, T, where B is the constantly L function, T is the constantly T function, and 1
is the identity. Notice that the stable order on D; is as shown:

T T I
| NS
1 B

Do Dy

41

Define eg; : Dg — Dj tosend T to T and L to B, and define p1g : D1 — Dy to send f to f(L). The pair
(o1, p10) is is an embedding-projection pair in the category CPO", in particular, eg; o pyg is stably less than
the identity. From this, one constructs the other embedding projection pairs and takes the inverse limit D as
usual. Then D = DP, and as a lambda algebra, D is extensional by Proposition Clearly the order < on
D is non-trivial and compatible.

For convenience, we identify all relevant function spaces with the corresponding subspaces of D. Let
P+ D — D, be the projection of D onto D,,, and e,, the corresponding embedding.

Now suppose that C is a lambda-preorder. We will show it is trivial, i.e. it is either discrete or indiscrete.
First notice that, since we are in an extensional model, 1 = I and hence

Vax € D.ax C bx
alb

(3.4)

Chasing the definition of the D ,-model, one calculates that for f € D,, .1 = D2~ and x € D, the applica-
tion f - x is given by e,, o f o p,(x). From this and (3.4), it follows that f C g € D, iff f -2 C g - x for
all x € D,,. One distinguishes three cases:

Case1: [C T. For any pair of elements x,y € D, define f : Dy — Dby f(I) = z and f(T) = y
and f(B) = L. This is stable and therefore realized by some f € D. We get that z T y and hence C is
indiscrete.

Case2: T C I. Similar.

Case 3: Neither I T T nor T' C I. Suppose, by way of contradiction, that there are distinct elements
2,y € D such that x C y. Then for some n the projections z,, = p,(z) and y,, = p,(y) are distinct. Since
the projection p,, itself is realized by some p,, € D, one gets x,, C y,,. But then, since z,, # ¥, there are
Zn_1y+-.,20i0 Dy _1,...,Dg suchthat a = x,2,,_1...20 and @’ = y,,z,_1 . .. 29 are distinct elements of
Dy. One then knows that ¢ T a’, and hence it must be the case that either L. T T or T T L. In the first case,
one has

T= I.TCT-T =T
1= I-1CT-1 =T,

hence, since C is a lambda-preorder,] T 7T'. Similarly, in the second case, one has 7' C I, the required
contradiction. O

3.5.2 Absolute notions

There is a multitude of notions of absolute unorderability that one can consider. Fortunately, we will see that
all of them coincide. Recall that we defined a combinatory algebra A to be absolutely unorderable if for
every embedding A — B, the algebra B is unorderable. First, one can adapt this with respect to preorders,
lambda-orders etc. Second, one can replace the word “embedding” by “homomorphism”. Third, one can
restrict attention to certain subcategories, e.g. lambda algebras or lambda models.

Instead of cataloging some 30 different notions and showing them all to be equivalent, we start with some
simple observations. If P is some property of objects in a category, we say that an object A absolutely
satisfies P if for all A — B, B satisfies P.

First notice that, since lambda algebras are defined by closed equations, their full subcategory is right-
closed in the category of combinatory algebras: i.e., if A — B is a homomorphism of combinatory algebras,
and A is a lambda algebra, then so is B. Hence, a lambda algebra A satisfies some property absolutely
as a lambda algebra iff it does so as a combinatory algebra. The corresponding property is true for Curry
algebras.

Next, there are some obvious implications: if A absolutely satisfies P with respect to homomorphisms,
then also with respect to embeddings. We also have the implications that were discussed in Section[3.5.1]

It therefore suffices to show, for each of the categories of combinatory algebras, lambda algebras, and
Curry algebras, that the weakest notion that we are considering implies the strongest one. This is done in the
following proposition.

42

Proposition 3.17. For a combinatory algebra A, the following are equivalent:
1. There is A — B for some non-symmetrically preordered combinatory algebra B.
2. There is A — B for some non-trivially partially ordered combinatory algebra B.
For a lambda algebra A, the following are equivalent:
3. There is A — B for some non-symmetrically preordered lambda algebra B.
4. There is A — B for some non-trivially lambda-ordered lambda model B.
For a Curry algebra A, the following are equivalent:
5. There is A — B for some non-symmetrically preordered Curry algebra B.
6. There is A — B for some non-trivially lambda-ordered extensional algebra B.

Proof. 1.=2.. Suppose A — B and B is non-symmetrically preordered. Let B’ = B/(< N >), then B’
is non-trivially partially ordered and A — B’. Now let B” = B’ x A, which is non-trivially ordered by the
componentwise order where A is discrete. We have A — B”.

3.=4.: Suppose A — B and B is non-symmetrically preordered. First, construct A — B’ as in 2.;
then consider A — B’ — B”[X] for a countable set X. We know that B”[X] is a lambda model by
Proposition[2.23] It has a non-trivial lambda order by Lemma [3.18] below.

5. = 6.: Same as 3.=4. O

Lemma 3.18. Suppose < is a non-trivial partial order on a lambda algebra B. Then < extends naturally to
a lambda-order on B[X], for countable X.

Proof. First, consider the case of adjoining a single indeterminate A C A[z]. Let < be a partial order on
A, and define on A[z] the partial order a < b iff *z.a < A*z.b. Notice that if a and b were in A, then
Az.a = Ka and M*z.b = Kb, hence a < bin Afz] iff Ka < Kbin A iff a < bin A, ie. the order
on A[z] is an extension of the order on A. Now consider B[X], which can be regarded as a union of an
ascending chain of subsets B C Blz;] C B[z, 23] C ---. Starting with a partial order on B, one can
extend it step by step to all of B[X]. In the limit, we obtain a lambda-order, because if ax < bz for all
x, then a,b € A = BJ[zy,...,x,_1] for some n and one can take * = x,. But ax,, = bz, in Alx,] iff
Nxz,.ax, = *z,.bx, in A, ie. 1la = 1b. O

Finally, notice that none of the local notions of unorderability that we have considered implies absolute
unorderability: Plotkin’s finitely separable algebra [S0], although it cannot be non-trivially preordered, can
still be embedded in an orderable algebra (for example by Theorem [3.9).

43

44

Chapter 4

Finite Lambda Models

It has long been known that a model of the untyped lambda calculus, in the traditional sense, can never be
finite or even recursive [5]]. For instance, no consistent lambda theory equates any two of the countably many
Church numerals 0 = Azy.y, 1| = A\zy.zy, 2 = Azy.z(vy), etc.; hence, these terms must have distinct
denotations in any non-trivial model. Consequently, model constructions of the lambda calculus typically
involve passing to an infinite limit, yielding unwieldy models in which term denotations or equality of terms
are not effectively computable.

By contrast, we introduce a notion of finite models for the lambda calculus. These finite models are
models of reduction, rather than of conversion. Therefore, as we shall see, they are not subject to the usual
limitations on size and complexity. Informally, by a model of conversion, we mean a model with a soundness

property of the form
M =N = [M] =[N,

where 2 is e.g. - or n-convertibility, and [] is the function that carries a lambda term to its interpretation in
the model. On the other hand, a model of reduction has an underlying partial order and a soundness property
of the form

M — N = [M] < [N],

where — is e.g. 8- or Sn-reduction. Models of reduction have been considered by different authors [23]
30, 49]. We will focus here on a formulation which was given by Plotkin [49] in the spirit of the familiar
syntactical lambda models |5]. The key observation here is that models of reduction, unlike models of
conversion, may be finite, and that they can be easily constructed. In special cases, models of reduction allow
a limited form of reasoning about convertibility of terms. This is the case for instance if the underlying partial
order is a tree.

We begin by reviewing syntactical and categorical models of reduction in Section 4.1} In Section 4.2]
we introduce a reasoning principle for models whose underlying order is a tree. We also give a method
for efficiently constructing such models. In Section this is further specialized to the case where the
underlying order is flat. Examples are given in Section Some reflections on completeness properties
follow in Section #.5] In Section [4.6] we investigate the connection between models of reduction and the
D .-construction.

4.1 Models of reduction

4.1.1 Syntactical models of reduction

Definition. (Plotkin [49]) An ordered applicative structure (P,) is a poset P, together with a monotone
binary operation -: P x P — P. Let PY be the set of all valuations, i.e. functions from variables to P. A
syntactical model of 3-reduction (P, -,]) is an ordered applicative structure together with an interpretation

45

function
[-]:AxPY =P

with the following properties:
L [z], = p(z)
2. [MN], = [M], - [N],
3. [Az.M], - a < [M] y(z:=q). foralla € P

4. pleviry = Plevony = [M], = [M]
5. (Va.[M] p(zi=a) < [Nlpzi=a)) = [Az.M], < [Az.N],

Moreover, we say (P, -, []) is a syntactical model of Bn-reduction, if it also satisfies the property
6. [Ax.Mz], < [M],,ifx ¢ FV(M).

A syntactical model of conversion is a syntactical model of S-reduction (X, -, []), where X is discretely
ordered, i.e., a set. Notice that this notion coincides with the familiar syntactical lambda models as defined
e.g. in [3].

Remark. Properties do not form an inductive definition; rather they state properties of a function []

which is given a priori. In particular, [3] does not uniquely determine the interpretation of a lambda abstraction
[Ax.M],.

We have seen in Chapter [3|that many models of conversion are equipped with a partial order. This, however,
is entirely different from the partial order we consider on a model of reduction. Models of conversion have
an approximation order, where a < b is often understood to mean that a is “less defined” or “diverges more
often” than b. On the other hand, models of reduction have a reduction order, where a < b means a reduces
to b. More precisely, one has the following soundness theorem:

Proposition 4.1 (Plotkin [49]). The following are properties of syntactical models of 3-reduction:
1. Monotonicity. If p(x) < p/(z) for all z, then [M], < [M],.
2. Substitution. [M[N/z]], = [M] s(z:=[n],)-

3. Soundness for reduction. If \/—25 N, then [M], < [N],. In a syntactical model of Sn-reduction: If
M N, then [M], < [N],. O

Syntactical models of S-reduction are easily constructed. One may, for example, start with any pointed poset
P and monotone function -: P x P — P, and define, somewhat uningeniously, [Az.M] p» = 1. Among
the possible interpretation functions on a given ordered applicative structure, this choice is the minimal one.
Much more interesting is the situation in which there exists a maximal such choice. We will explore such a
situation in Section[4.2.2]

4.1.2 Categorical models of reduction
Let D be a cartesian-closed category of posets and monotone functions, with the pointwise order on hom-sets.

Definition. A categorical model of 3-reduction (P, e, p) is given by an object P € D, together with a pair
of morphisms e: P — P and p: PP — P, such that

P?PP.

If moreover p o e < idp, then (P, e, p) is a categorical model of Bn-reduction.

46

Categorical models of reduction have been studied by various authors, e.g. by Girard [23] for the case of
qualitative domains, or by Jacobs et al. [30]], where they are called models of expansion. For a detailed
discussion of these and other references, see Plotkin [49].

From a categorical model of reduction (P, e, p), one can construct a syntactical model of reduction
(P,-,[]) by letting a - b = e(a)(b) and by defining [] inductively:

[[x]]p = p('T)a
[MN], = e([M],)([N],),
[Az.M], = p(Aa.[M] y(z:=q))-

Proposition 4.2. If (P, e,p) is a categorical model of B-reduction, then the above construction yields a
well-defined syntactical model of [3-reduction (P, -,[|). Moreover, (P, e,p) is a categorical model of [3n-
reduction, then (P, -, [|) is a syntactical model of Sn-reduction.

Proof. To see that the inductive definition is well-defined, and in particular that the function Aa.[M] ,(z:—q)
indeed defines an element in P”, it is best to work directly in the category D and to define an interpretation
[M]z,«, of each lambda term M with FV(M) C {z1,...,z,} as a morphism P™ — P, just as we did

yeeey

Tiley o n, = LN the ith projection
. P i P (the ith proj)
May,...xnsIN]zy,...,2n %
MNJ.. . pr e Ny o) 2oy
[-
(@1rTpar) e
[[)‘xn+1 M]]a:h...ﬂcn P il ! + PP — P.
It is easily seen that the two definitions coincide in the sense that
21),..,0(Tn M]eq,..., Ty
[[M]]pzl <P(1), ’p()> Pn |I]] 1 P
The verification that this is a syntactical model of (-, respectively, Sn-reduction is now routine. O

4.1.3 Models of #7n-reduction: Order-extensionality

We have seen in Chapter 2] that an extensional model of S-conversion is always a model of 3n-conversion.
The property that corresponds to extensionality for models of reduction is order-extensionality: An ordered
applicative structure (P, -) is called order-extensional if

Ve € P.ax < bx
a<b

Lemma 4.3. [f a syntactical model of 3-reduction (P,-,[|) is order-extensional, then it is a model of fn-
reduction.

Proof. Suppose x € FV(M). Thenforalla € P, [Ax.Mx],-a < [Mx],z.=0) = [M] p(z:=a) - [2] p(z:=a) =
[M], - a, hence [Ax.Mz], < [M],. d

4.2 Tree models

4.2.1 Recapturing convertibility

The soundness property for models of reduction does not in general yield useful information about convert-
ibility, since interconvertible terms M = N may have different denotations. However, if the reduction under
consideration is Church-Rosser, then M = N implies that there is a term @ with M — @ and N — Q.

47

Therefore, the denotations [M], and [IN], must be compatible. Recall that a and b are compatible, in sym-
bols a T b, if there exists ¢ with a < cand b < c¢. In a model of reduction, one has the following restricted
form of soundness for convertibility:

M = N = [M], < [N],. A.1)

The latter property is especially useful if the underlying poset P has many pairs of incompatible elements.
Therefore, we will pay special attention to the cases where P is a tree or a flat partial order.

Definition. A pointed poset P is called a tree if for all a,b € P, a Z bimplies a < bor a > b. Equivalently,
for each z € P, the downdeal |z is linearly ordered. A tree P is said to be bounded if there is a number
n € N such that each |« has at most n elements. The smallest such n is called the height of P.

A model of reduction is called a tree model if the underlying poset is a tree.

4.2.2 A method for constructing models

In general, there may be many different ways of defining an interpretation function |] that makes a given
ordered applicative structure (P, -) into a syntactical model of reduction. Even if one restricts attention to
those cases where [] is defined inductively from a categorical model (P, e, p), with e(a)(b) = a - b, there is
a choice involved in determining the morphism p : P” — P. In general, the greater p is chosen with respect
to the pointwise order, the greater the resulting interpretation [] will be, and the better one will be able to
make use of the soundness property for convertibility {.1]

The best possible situation arises if we can find a right adjoint p of e, because if p is such a right adjoint,
then it is maximal with the property eop < id. It is well-known that if P is a complete lattice, thene : P — @
has a right adjoint if and only if e preserves suprema. In this case, one can define p(y) = \/{z € P | e(z) <
y}. But following the remarks in Section we are interested in posets P that have incompatible pairs of
elements, and which can therefore not be complete lattices. In the case of bounded trees, the existence of a
right adjoint is characterized by a property which we call strong extensionality:

Definition. Let P be a bounded tree. We say that an ordered applicative structure (P, -) is strongly exten-
sional if for all a,b € P,
Ve € P.ax C bx
alb

Proposition 4.4. Let (P, -) be an ordered applicative structure, where P is a bounded tree. Let ¢ : P — P¥
be the map defined by e(a)(b) = a - b. Then e has a right adjoint in the category of posets if and only if (P, -)
is strongly extensional.

Proof. =: Suppose e has a right adjoint p : P — P. Leta,b € P such that ax O bx for all 2. Since P is
atree, one has ax < bx or ax > bx for every x. Define a monotone map f : P — P by f(z) = max(az, bz).
Since e(a)(z) = ax < f(x) for all x, one has e(a) < f and hence a < p(f), and similarly for b. Hence
a Z b, and (P, -) is strongly extensional.

<: Suppose (P, -) is strongly extensional. For any f € PP, consider the subset Py = {z € P | e(z) <
f} C P. Notice that for any a,b € Py, e(a) T e(b), hence ax T bz for all x, hence a T b by strong
extensionality. Since P is a tree, either a < bor a > b. Therefore Py is linearly ordered. Since P is bounded,
the set P is finite, and hence it has a maximal element p(f). Clearly, the function p thus defined is monotone,
and x < p(f) iff x € Py iff e(x) < f. Therefore e - p. u

Corollary 4.5. The last proposition yields a practical method for constructing a tree model of reduction:
Begin with a tree P and a monotone binary operation -: P x P — P, such that (P, -) is strongly extensional.
Define | | inductively as follows:

1. [a], = pl)

48

2. [[MN]]p = [[M]]p) [[Nﬂp
3. [M\x.M], is the maximal b € P such thatb - a < [M],(y:—q) for alla € P.
Then (P,-,[]) is a well-defined model of 3-reduction.

Proof. Proposition 4.4] together with Proposition ensures that this is well-defined, in particular, that a
maximal b exists in 3. d

The following lemma is sometimes useful for reasoning about such a model:

Lemma 4.6. If [| is defined as in Corollary then for all n > 1, the denotation of an n-fold lambda
abstraction [Ax . .. x,,.M], is the maximal b € P such that for all a; .. .a, € X,

b-ay- - an < [M]

p(zr:=a1)...(zp:=an)"
Proof. By induction on n. O

If (P,-) is order-extensional, then the construction in Corollary yields a model of Sn-reduction by
Lemma[4.3] We end this section with a lemma that relates order-extensionality to strong extensionality for
tree models:

Lemma 4.7. If P is a tree, and if (P,-) is strongly extensional and extensional, then it is also order-
extensional.

Proof. Suppose for all z, ax < bz, hence ax T bz, hence a T b by strong extensionality. Since P is a tree,
either a < bor a > b. In the first case, we are done; in the second case, ax > bx, and hence ax = bz, for all
x, which implies a = b by extensionality. O

4.3 Partial models

As the examples in Section [4.4] will show, it often suffices to consider tree models whose underlying poset P
is flat, i.e. P = X for a discrete set X. If one also assumes that the application operation -: P x P — Pis
strict in each argument, then one can think of L as the undefined element, and of - and [] as partial functions.
Since it is sometimes convenient to think in terms of these partial operations, we restate the definition of a
model of reduction in this special case. The venturi-tube (= denotes directed equality: A — B means that if
A is defined, then so is B, and they are equal.

Definition. A partial applicative structure (X, -) is a set X with a partial binary operation -: X x X — X.
Let Val(X) be the set of partial valuations V — X. A partial syntactical lambda model (X, -,[]), or partial
model for short, is given by a partial applicative structure together with a partial map

[]:Ax xVal(X) = X,
such that
L. fal, = pla)
2. [MN], = [M], - [N,
3. [Az.M], - a = [M],(3:=q) foralla € X

4. pleviny = Plevony = [M], = [M]
5. (va'[[M]]p(oczza) = [[N]]p(:c:a)) = [[)‘Z'M]]P = [P‘I"NHP

Moreover, if

49

6. [\e.Mz], = [M],.if z & EV(M).
then (X, -, []) is a partial Bn)-model.

Here, equality is understood to be Kleene equality, meaning A = B if and only if A and B are either both
undefined or both defined and equal. Notice that the directed equality /= on X is just the partial order on the
flat poset X | . Thus, the axioms 1-5 and 6 correspond exactly to the axioms for a syntactical model of -,
respectively, Sn-reduction.

In a partial model, the denotation of some terms may be undefined. The idea of using partiality in models
for the lambda calculus is not new. In fact, Kleene’s “first model”, which consists of Godel numbers of partial
recursive functions and their application, is partial. The models we consider here are even “more” partial; we
do not even assume that the interpretations of basic combinators such as S and K are defined. The following
soundness properties ensure that the class of terms whose denotation is defined is closed under reduction, and
that interconvertible terms have the same denotation if they are both defined.

Proposition 4.8. The following are properties of partial models:
1. Soundness for reduction. If A/ N, then [M], = [N],.

2. Soundness for convertibility. If M/ =3 N, and if [M], and [N], are both defined, then [M], =
[NT,.

3. In a partial Sn-model, the respective properties hold for B, and = 8-

Proof. Soundness for reduction follows from Proposition Soundness for convertibility follows from the
Church-Rosser property. O

Partial applicative structures are particularly easy to manipulate in practice, since they are just given by
a set X and a “multiplication table” such as the one in Table It is easy to read properties such as
strong extensionality off the table: A partial applicative structure is strongly extensional if no two rows of the
multiplication table are compatible, and it is order-extensional if no row is subsumed by another. In particular,
if the table is everywhere defined, i.e. if (X, -) is a total applicative structure, then both strong extensionality
and order-extensionality coincide with (ordinary) extensionality.

4.4 Examples

4.4.1 A class of finite models to distinguish the terms 2,,

Let x be a variable and define ' = z and 2”T! = 2"z forn > 1. Let w,, = Az.z" and Q,, = w,,w,.

None of these terms has a normal form, e.g. Qo = (Az.zz)(A\zx.xzx) reduces only to itself. The terms €2,, are
unsolvable; therefore, their interpretations coincide with L in the D.,-model [29, 64]. We will now give a
class of finite partial models that distinguishes these terms.

Fix an integer p > 1 and let X = Z, = {1,2,...,p}. Addition and subtraction in X are modulo p; let
=, denote equality modulo p. Define -: X — X by

o n+1l ifm=,1
IR m 1 ifm#, 1.

A “multiplication table” for this operation is shown in Table Clearly, (X,) is a strongly extensional
applicative structure. Define [| as in Corollary [4.5]to get a partial model. For n > 2, we calculate 1" =, n
and m"™ =, m + 1 form # 1. Hence, forall z € X andn > 2,

™ =, (n—-1)-=z
= [wn] = [Ax.2"] =, n—1
S R =[] = (-1)-(-1) =

Hence, [2,,] is always defined for n > 2, and we have [Q,] = [Q,,] iff n =, m.

50

Table 4.1: Multiplication table for a partial model

. 1 2 3 p—1 p
1 2 3 4 D 1
2 3 3 4 P 1
3 4 3 4 P 1
p—1|p 3 4 p 1
p 1 3 4 p 1

4.4.2 A non-trivial 3-element model

In this section, we provide the proof of Lemma [3.1] from Chapter[3] At the heart of the proof is a 3-element
partial model which distinguishes two appropriately chosen unsolvable terms Auuut and Auutt.

Lemma. There is a closed term A of the untyped lambda calculus with Auuut =g Auttt, but Auuut #g,
Auutt # g, Auttt for variables u # t.

Proof. Define terms

h = Azyx.zzy(zzy(zzyx))
f = hh
A = Qdwwt Az fu(fo(fw(ftx))).

Then for all z, y:
fyz 5 fy(fy(fy)),
hence for all u, t:

Az fu(ftx) =N Az fu(fu(fu(ftx))) = Auuut
Mefu(fte) 2 Az fu(ft(ft(fta))) = Auttt.

To see that Auuut #s, Auutt for variables u and ¢, we will construct a partial model. Let X = {k,0,1},
and let - be defined by the following “multiplication table”:

Then (X,) is a strongly extensional applicative structure. Define |] inductively as in Corollary Al-
though (X, -) is total, [] will be partial.

Consider the function ¢(c, b, a) = [zzy(22y(22yx))] p(2:=c) (y:=b) (z:=a) = ccb(ccb(ccba)). Table
shows the values of this function, and one observes that 1)(c,b,a) = k- ¢-b-a for all ¢,b,a € X. Hence
by Corollary[4.5] [h] = [Azyz.z2y(z2y(zzyx))] is defined and equal to k, and consequently [f] = [hh] =
kk = 0. If p(u) = p(z) = 0 and p(¢t) = 1, then

[fu(fulfu(fte)], =
[fu(fulft(fte)], = o.
By soundness, fu(fu(fu(ftx))) £y fu(fu(ft(ftx)) = Auuut 5, Auutt. D

51

Table 4.2: Values for ¢(c,b,a) andk-c-b-a

U

c
korOorl

o
=

S

) k-c-b-a

Y

== O O oK R RS

— O R~k O R ORI

O = OlF= OO~k OO
O = Ol= OO~k OO

4.5 Completeness

Given a syntactical model of - or n-reduction (P, -, []), one can define its lift (P, ,e,[]’} as follows:

a-b ifa,b# L
1 else,

, M], if 1L forall z € FV(M
MY, = {[[L]]p ;]spe('x);é orall z € FV(M)

It is easily checked that this is again a model of (-, respectively, Sn-reduction. As a trivial consequence, one
has the following completeness theorem for partial models:

Proposition 4.9. Completeness: If M #g N, then there is a partial model and p for which [M],, [N], are

defined and [M], # [N],. If M #gy, N, then the model can be chosen to be strongly extensional. d
Proof. Take a model of conversion such that [M], # [N], for some p, e.g. a term model. Then its lift is a
partial model with [M], Z [NT,. d

Of course much more interesting questions can be asked, e.g. how close one can come to a finite completeness
theorem for models of reduction? In other words: can every inequality M #3z N be demonstrated in a finite
model of reduction? The answer to this question must be no, since such a finite completeness theorem would
yield a decision procedure for convertibility of lambda terms, which is known to be an undecidable problem.
It is an open problem to identify subclasses of terms for which a finite completeness property holds, or to
describe the class of equations that hold in all finite models of reduction, tree models, partial models etc.

4.6 Relating models of reduction to D,.-models

Consider a finite categorical model of reduction (P, e, p), such that eo p < idpr and p o e = idp. Since P is
finite, it is a dcpo and e and p form a Scott-continuous embedding-projection pair. Therefore, one can take P,
e and p as the basis for carrying out the D -construction in the category CPO, as outlined in Section[[.2.6]

Let Dy = Pand D, = Df". Leteg =e: Dy — Dyandpg = p : D1 — Dy. From this, construct the
other embedding-projection pairs and take the bilimit D, as usual. Let ¢,, : D,, = Dy, and 7, : Do — D,
be the limiting morphisms. For each n > 0 one has

€n D Pn D
D, —— D,/ D, <——D;»
Lnl lLZ" and WnT Tﬁ"
Do Do
Doo —> D Doo <5~ Do

52

Note that each (D,,, €,,, pr) and (Do, €00, Do) 18 @ categorical model of reduction. Let []™ and []°° be the
respective interpretation functions. How are they related? For a valuation of variables p : V — D, denote
by py, the valuation 7, o p : V — Dy,. One may expect that [M]}} = 7,[M]5°. However, this is in general
not the case. The following proposition relates [™ and []*°:

Proposition 4.10. For all lambda terms M,

[M] = \/‘Obn[[M]]Zn-

n>

Proof. Firstrecall from Propositionthat idp_ = \/‘n LnOTp. Also note that 7, 0pcotli™ = ppomiroli» =
Prn. The proposition is proved by induction on M. There are three cases:

Casel: [e]F = p(x) =\ ta 0 T 0 p(2) = \hy 10 © pu(@) =V ol

Case2: [MN]Z = eoo([MIX)INTZ) ‘= eoo (Vo 1nIMT2) (Ve 0 NT,)
=V oo (n[MT2,) (aINT2,) = VAo 5 (e [MTZ,) (e [NTZ,)
=Vl (i © (ealMI2,) 0) (eaINT,) = Vit en(IMTZ,) (INTE,)
=\, tn[MN]2 .

Case3: [X\o.M]7 = poc(ra € Deo.[M]

z:=a)

(IH) n
) = pOO()‘a’\/n Ln[[M]]pn(:L‘::ﬂ"na))

= vn p(x;()\a-Ln IIM]]Z"(w::Tr,La)) = \fn Poo © [’77;71 ()\b S Dn'[[M]]:)L,L(:E::b))
=\, tn © Tp 0 Po 0 L7 (A0 € D, .[M]?)

pn(z:=b
=V tn 0 Pa(Ab € D [M]7 (o)) = Vo ta[Az M
In particular, it follows that ¢, [M]} < [M]S° for every M, and by applying ,, to both sides, it also follows
that [M]} < m,[M]5°. To see that equality does not in general hold, notice that D, by construction, is
a model of conversion. Hence for all M =5 N, one has m,[M]5° = 7,[N]5°. On the other hand, D,
is finite and hence a proper model of reduction. Therefore, it is possible to find M, N with M =g N and

[M]5, # [NTG,-

Corollary 4.11. If M and N are lambda terms such that, for some n, [M]; 72 [N]} , then [M]5° Z
[N]]zo The converse holds if D, is bounded complete (this is the case, for instance, if P is a tree).

g

Proof. Suppose [M]5° < [N]5°. Let ¢ € D, such that [M]5°, [N]5° < ¢. Then [M]} < m,[M]5° <
¢, and similarly for [N]? . For the converse, assume D, is bounded complete. Assume that for all n > 0,

[[M]]Z Z [[N]]Z Then Ln[[M]]Zn Z [[N]],’,j for all n. Let ¢,, = ¢y, [[M]]g V oLy, [[N]]z in Do,. Then

(¢n)n>0 is an increasing sequence and [M]5° =\, 1, [M]% <\, ¢y, and similarly [N]>* < \/,, ¢,,, hence

[M]F & [N]®. ’

53

54

Chapter 5

Henkin Representations, Polymorphism,
and Empty Types

The polymorphic lambda calculus was independently discovered by Girard [22] and Reynolds [S1]. It has
been extensively studied as a prototypical programming language because of its great expressive power and
economy of syntax. The basic idea is to augment the simply-typed lambda calculus with type variables
«, 3, ... and with explicit universal quantification over types. This allows the formulation of algorithms that
uniformly handle data of more than one type. Type instantiation and type abstraction is made explicit on
terms: If ¢ is a term of type Va.7, then to is a term of type 7o /«], for all types o. Conversely, if s is a term
of type 7, then Ac.s is a term of type Va.7. Now consider for instance the type

Polybool =Va.ao — o — «.

A term t of this type yields a term to of type 0 — o — o, for every type 0. Moreover, following Strachey’s
concept of parametric polymorphism [62], one expects the behavior of to to vary uniformly with the choice
of ¢. In the polymorphic lambda calculus, there are only two such uniform functions of type Polybool, i.e.
there are exactly two closed terms of type Polybool, corresponding to the first and second projections:

p1 = Aaz:a y:a.x and ps = Aa Az:a A y:auy.

Several notions of models for the polymorphic lambda calculus have been proposed in the 1980’s. These
models follow one of two basic designs:

1. Environment-style models, which have been considered by Bruce and Meyer [[10], extend the familiar
Henkin models of the simply-typed lambda calculus. These models are non-strict, in the sense that
a function type ¢ — 7 is interpreted as a subset of the set of functions from ¢ to 7, and similarly a
universal type Vo7 is interpreted as a subset of an infinite product [[_ 7[o/a].

2. Categorical models, introduced by Seely [S6], are based on general principles for the interpretation of
quantifiers in categorical hyperdoctrines. Seely’s PL-categories are a canonical extension of the ccc
interpretation of the simply-typed lambda calculus. These interpretations are strict, in the sense that
both function types and universal types are interpreted directly by their categorical counterparts.

These two classes of models do not readily mesh, because it is known that strict interpretations collide with
the classical foundations: Reynolds showed that there are no set-theoretic strict models of the polymorphic
lambda calculus [52].

The aim of this chapter is to reconcile the categorical and the set-theoretical approaches by giving a
categorical treatment of non-strict models. This generalizes both Seely’s models and the models of Bruce
and Meyer. The central concept is that of a Henkin representation: a functor H between ccc’s is a Henkin

55

representation if it preserves finite products and if for all objects A, B, the canonical morphism H(B4) ~—
H(B)") is monic.

In Section [5.1] we prove three Henkin representation theorems characterizing those ccc’s which can
be Henkin-represented, respectively, in the category of non-empty sets . T, the category of sets .%, and
a category .#* of presheaves over some poset P. After reviewing the simply-typed lambda calculus in
Section we show in Section that the three Henkin representation theorems correspond naturally to
completeness theorems for three different classes of non-strict models: Friedman’s set-theoretic models with
non-empty types [21], set-theoretic models with possibly empty types, as investigated by Meyer et al. [39],
and Mitchell and Moggi’s Kripke lambda models [42], respectively. Sections [5.4] through [5.6]are devoted to
Henkin representations of PL-categories and their relationship to completeness theorems for the polymorphic
lambda calculus.

5.1 Henkin representations of cartesian-closed categories

5.1.1 Henkin representations

Definition. Let C and D be cartesian-closed categories. A functor H : C — D is called a Henkin repre-
sentation if it preserves terminator and binary products, and if for all objects A, B € C, the canonical arrow
(Hea)" : H(BA) — HBH4 is monic.

Recall that a ccc-representation F' : C — D is a functor that preserves all ccc structure, and in particular
F(BA) = FBY4 and (Fea 5)" = F(ca,5*) = id. Thus, every ccc-representation is a Henkin representa-
tion, but not vice versa. Henkin representations arise naturally as the forgetful functors of various concrete
ccc’s into .. Even though Henkin representations do not in general preserve exponentials, they are ‘compat-
ible’ with ccc structure in an essential way: their kernels are ccc-congruences. This is why they correspond
to useful notions of ‘model” for typed lambda calculi.

Definition 5.1. A ccc-congruence ~ on a ccc C is given by an equivalence relation ~ 4 g on each hom-set
(A, B), such that the following hold:

1 f~anf g~BcY 9 f~anf g~acyg 3 f~axpc f
. . . *
gofr~acgof (fs9) ~aBxc (1, d") [~acs [

The kernel of a functor F' : C — D is defined by f ~4 p f'iff Ff = Ff’, forall f, f': A — B. Clearly,
the kernel of a ccc-representation is a ccc-congruence. The same is true for Henkin representations:

Lemma 5.2. The kernel of a Henkin representation H : C — D is a ccc-congruence.

Proof. 1. and 2. are obvious, since H preserves binary products. For 3., suppose f ~axp.c [/, ie. Hf =
H f’. One has

CBxB—=>C H(CB)x HB —*~ HC H(cB) L, gone,
*xid = Y xi = *
Frx BT / H(f)deBT / H(f >T %
AxB HAXx HB HA
and similarly for f’. Since (H f)* = (H f')*, and since (He)* is monic, one gets H(f*) = H(f""). a

Remark 5.3. Henkin representations do not form a category, since they do not in general compose. If H; and
H, are Henkin representations, then the composition Hs o H; will be a Henkin representation if Hy preserves
monics or if H; is a ccc-representation.

56

Henkin representations can also be described in terms of partial exponential diagrams. We say that a diagram

DxB C' is a partial exponential diagram if for every morphism g : A x B — C, there is at most one
h: A — D such that

DxB—1-C.

}z,xidBT /

Ax B

We have dropped the condition for the existence of h from the definition of exponential diagrams in Sec-
tion[I.1.6] In general, the word “partial” stipulates that one requires uniqueness, but not existence, while the
word “weak” or the prefix “pre-” indicates the opposite.

A Henkin representation of a ccc C can now be characterized as a finite product preserving functor
He A,B

H : C — D such that for all A, B € C, the arrow H(B*) x HA —>~ HB is a partial exponential
diagram. The advantage of this definition is that it makes sense for a category D with finite products, even
if it is not cartesian-closed. Our definition of Henkin representations for PL-categories in Section will
make use of a similar notion of partial V-diagrams.

5.1.2 Henkin representations and well-pointed ccc’s

Definition. An object A is well-pointed if for every f # g : A — B, there is a point p : 1 — A such that
fop# gop. Acategory D is well-pointed if all its objects are well-pointed.

Note that for a ccc D, the following are equivalent:
1. D is well-pointed.
2. The point functor I" = (1, —) is an embedding.
3. T'is a Henkin representation.

Proposition 5.4. Every ccc representation F' : C — D from a ccc C into a well-pointed ccc D gives rise to
a Henkin representation H =T o F' : C — .. Conversely, every Henkin representation H : C — % arises
in this way.

Proof. If D is well-pointed, then I' o F' : C — .# is a Henkin representation by Remark For the
converse, suppose H : C — .7 is a Henkin representation. Define D by |D| = |C|and D(A, B) = H(B*).
Composition and identities are given by the respective H-images of the canonical morphisms o : CZ x B4 —
C4 and id* : 1 — A4 in C. Associativity and the identity laws follow from the commutativity of the
following diagrams in C, and of their images under H:

DC % CB x BA &) DC X CA BA (id,id") BA % AA
oxidl lo (id*,id)l \ lo
DB x BA - DA BB x BA ——— B4

Define F : C — D as the identity on objects, and by sending f : A — Bto H(f*) : 1 — H(B%) =
D(A, B). It is routine to check that D is a well-pointed ccc, that F' is a ccc representation, and I'o F' = H.
O

5.1.3 Freely adjoining arrows to a ccc

If A is an object of a ccc C, let C[1 i>A] be the ccc obtained from C by freely adjoining an indeterminate
arrow z : 1 — A. The category C[12> A], together with the canonical ccc-representation 7 : C — C[15A],

57

is uniquely determined by the following universal property: for every ccc- representatlon F:C — Dand
every arrow f : 1 — F'A in D, there is a unique ccc-representation o C[1% A] — D such that

C—1>C[1%4]

RN

D

and F'z = f. The category C’ = C[15 A] has a concrete description as the Kleisli category of the comonad
T(B) = A x B (see Lambek and Scott [34]). This means, the objects of C’ are those of C, and the hom-sets
are given by C'(B, C’) (A x B, V). The identity at Bin C’is ' : Ax B — B in C, and the composition

gofinC'isAxB "5 AxC %L DinC.2:1— AinC'isid: A — Ain C. The canonical functor
j.C%C’sendsf.B%CtofOW :Ax B—C.

It is an interesting question to ask which properties are preserved or reflected by the canonical functor
7: C — C[13 A]. We will pay particular attention to the question under what conditions 7 is an embedding,
and under what conditions it is faithful (i.e., isomorphism reflecting).

Definition. In any category, a morphism f : A — B is called a cover if, whenever f factors through a monic
m,

A—fDB

|

U,

then m is necessarily iso. We sometimes write f : A —> B for a cover. Notice that any morphism f : A — B
with a right inverse f o g = idp is a cover, called a split cover. Also notice that any f is iso iff it is a monic
cover. An object A is called well-supported if for each object B, the second projection 7/ : A x B —> Bisa
cover.

An object A is partially initial if every hom-set (A, B) has at most one element.

Lemma 5.5. Suppose F' : C — D has a right adjoint. Then F preserves epics and partial initial objects.
Moreover, if C has pullbacks, then F preserves covers.

Proof. Let p : F' 4 G be the adjunction. Suppose e : B — C'is epic and

g vy
FB-LFrCc 7D = B—°~(C =+ GD,
h ph

which implies ¢g = @h, hence g = h. Hence F'e is epic. Dually, right adjoints preserve monics. Now
suppose A is partially initial. Then |(F'A, B)| = |(A,GB)| < 1, hence F'A is partially initial. Now assume

C has pullbacks, and suppose f : A —> B is a cover. Assume Ff = FA 5 U . FB. Since G is a right
adjoint, Gm : GU ~— GF' B is monic, and we can consider

0g B = B = FB
A S e
GU>G—m>GFB GU>G—m>GFB U»r—— FB,

where w is the unit of the adjunction. Notice that pullbacks always preserve monics, hence m’ is monic, and
it must be iso since f is a cover. The last diagram implies that m is iso, and it follows that F'f is a cover. [

58

Lemma 5.6. Let C' = C[15A] and j : C — C' the canonical functor. The following hold:
1. 7 preserves epics, monic cones, partial initial objects, and well-pointed objects.
2. jis an embedding if and only if the unique morphism A — 1 is epic in C.
3. jis faithful if and only if it is an embedding and A is well-supported.

Proof. 1.: Recall that in a ccc, the product functor 7(B) = A x B has a right adjoint; hence it preserves
epics and partial initial objects by Lemma[5.5] Now suppose f : B — C'isepicin Cand g o 3f = hof in
C'. By the characterization of C[1 A], this means

id g
Baxh Ax o= D,

h

Ax B

holds in C, and hence g = h. Thus, 3f is epic. Now, suppose B is a partial initial object in C. Then A x B
is also partially initial, hence |C’(B, C)| = |C(A x B, C)| < 1, hence B is partially initial in C’. Moreover,
T, and hence 3, preserves monic cones. Now, suppose B is well-pointed in C, and suppose f #¢g: B — C
inC’. Then f # g : A x B — C, hence f* # g* : B — C* in C, and since B is well-pointed, there is
p:1— Bwith f*op# g* op. This implies f o (ida X p) # go (ida X p), hence f o jp # go gpin C'.
2.: =: Certainly A — 1is epic in C[15 A] (it splits). But embeddings reflect epics.

<: Suppose A — 1isepicin C. Then 7’ : A x B — B is epic for all B. Consider f,g: B — C'in C
with 3f = 39. Then fon' =gon’: Ax B — C,hence f = g.

3.: First notice that any monic-preserving embedding F’ reflects isos iff it reflects covers: Suppose F' reflects
isos and F'f is a cover. Suppose f factors through a monic m, then F'f factors through F'm, hence F'm is
iso, hence m is iso, hence f is a cover. Conversely, suppose F’ reflects covers. If F'f is iso, then F'f, hence f,
is a monic cover, hence an iso. Since j : C — C[11>A] preserves monics, it suffices to show that j reflects
covers iff A is well-supported.

= Suppose 7 reflects covers. Clearly, A x B —> B is a split cover in C[1-=> A], hence a cover in C, making
A well-supported in C.

«: Suppose A is well-supported in C, and suppose f : C' — B is such that F'f is a cover in C[15>A].
Suppose f factors through a monic m : D »— C. Then F f factors through F'm, hence F'm is iso in C[1 -2 A].
This means, there is m~* € C’'(C, D) = C(A x C, D) such that in C,

AxC—"pC

m
m~1

D.
But 7’ is a cover, therefore m an iso in C. This shows f is a cover. O
Lemma5.7. If f #g: A — BinC, then 3f o x # jg o x in C[15 A].
Proof. 3f ox = fon' o(ida,ids) = fin C, and similarly for g o . d

Proposition 5.8. Let C be a small ccc. If A C |C| is a set of objects such that A — 1 for all A € A, then
there is a ccc-embedding F 4 : C — D such that F'A is well-pointed for all A € A. F 4 preserves monic
cones. Moreover, if each A € A is well-supported, then F 4 can be chosen to be faithful, i.e. isomorphism-
reflecting.

Proof. We adjoin countably many arrows 1 — A to each A € A. More precisely, let I be the directed poset

of finite subsets X C N x .4, ordered by inclusion. Let A : I — CCC be tlage diagram that associates to each
ZTiy, A i . .

X = {(i1, A1), ..., (in, Ay} € Tacce C[X] := C[1—254,,...,1-2%" 4], and to each inclusion

59

t: X — Y € I the canonical ccc-representation A, : C[X] — C[Y]. Notice that by Lemma A,
is a monic-preserving embedding, and moreover, if each A € A is well-supported, then A, is faithful. We
can take D to be the colimit of the diagram A. Concretely, assume that each C[X] has the same objects as
C, and that the embeddings A, are actual inclusions on hom-sets. Then D can be described as follows: the
objects of D are those of C, and the hom-set D(B, C) is the directed union of the hom-sets C[X](B, C),
where X € I. One checks that D is a ccc and that the inclusion F' : C < D is a ccc-embedding preserving
collective monics, and moreover, F' is faithful if the A, are. To show that A is well-pointed in D, let A € A
and assume f # g : A — B in D. Then there is X € I with f,g € C[X]. Let (i, A) ¢ X and consider
C[X, 1”—’A>A]: onehas fox; 4 #gox;aby Lemma Hence A is well-pointed in D. O

5.1.4 Henkin representation theorems

A Henkin representation theorem characterizes those ccc’s which can be Henkin embedded in a given cate-
gory, or in a category from a given class. We consider Henkin representations into the category of non-empty
sets .#’T, into the category of sets .#, and into a category .’ of presheaves over a poset P. We will see in
Section [5.3|how each of these target categories corresponds to a certain class of models of the simply-typed
lambda calculus. The first one corresponds to Friedman’s set-theoretic models with non-empty types [21]];
the second one corresponds to set-theoretic models with possibly empty types, as investigated by Meyer et al.
[39], and the third one corresponds to Mitchell and Moggi’s Kripke models [42]]. Our Henkin representation
theorems will translate into completeness theorems for each of these classes of models.

Representation Theorems for cartesian-closed categories have been considered in the papers of Cubrié
[14] and Simpson [60]. The difference to our representation theorems is that Cubri¢ and Simpson work with
strict ccc representations rather than Henkin representations, and they only consider representations of a free
cartesian-closed category.

Henkin representations in .7+

Theorem 5.9. A small ccc C can be Henkin-embedded in 7% if and only if for every object A, the morphism
A — 1 is epic.

Proof. =: In.T,one has A — 1 for all A; moreover, embeddings reflect epics.

«: Consider the ccc-embedding F4 : C — D from Proposition with A = |C|. Then C 4 p L
7% is a Henkin-embedding. d

Corollary 5.10. If for every object A in a small ccc C, the morphism A — 1 is epic and A is well-supported,
then there is a faithful (i.e., isomorphism-reflecting) Henkin-embedding H : C — /. O
Henkin representations in .

Definition. A cartesian-closed category C is called special if for every object A, either the morphism A — 1
is epic, or A is partially initial.

Theorem 5.11. A small ccc C can be Henkin-embedded in . if and only if it is special.

Proof. =: The category . is special, because each non-empty set A satisfies A — 1, while the empty set
is (partially) initial. Moreover, embeddings reflect epics and partial initial objects, and hence specialness.

«: Suppose C is special. Consider the ccc-embedding F 4 : C — D from Proposition with 4 =
{A€|C|| A— 1}. Theneach A € Ais well-pointed in D by construction of D; moreover, each A ¢ A is

partially initial and therefore trivially well-pointed. Hence C DL isa Henkin-embedding. O

Corollary 5.12. Let M be a monoid, i.e. a one-object category. A small ccc C can be Henkin-embedded in
M if and only if C is special.

60

Proof. =: .M is special, and embeddings reflect specialness.

«<: There is an obvious ccc-embedding H : .7 — .M which preserves monics. If C is special, it can be
Henkin-embedded in . and hence, by Remarkin M O

Corollary 5.13. Let I be a set. A small ccc C can be Henkin-embedded in " if and only if there is a family
(~4)ier of ccc-congruences on C such that each quotient C/~; is special, and such that (\;c; ~; is the
identity relation. g

Remark. If a ccc C has an object A such that A is partially initial and A — 1, then C is a preorder, i.e. every
hom-set has at most one element. Indeed, if f, g : B — C, then

hence f = g. As a consequence, if C has a non-trivial hom-set, then any Henkin embedding C — .# not
only reflects, but also preserves partial initial objects and epics A — 1.

Henkin representations in .7"

Any small ccc C can be ccc-embedded in a category of presheaves ., for instance by the Yoneda embed-
ding (see Example[I.5). If one takes A to be a poset, it is still possible to obtain a Henkin embedding:

Theorem 5.14. Any small ccc C can be Henkin-embedded in ./ * for some poset P. Moreover; the embed-
ding preserves monic cones.

Let A and B be small categories, and let /' : A — B be a functor. This induces a functor . F. B _ oA
which we denote by F.. Note that F), always preserves monic cones and limits, since these are taken pointwise
in .74 and .#B. The following two lemmas give sufficient conditions for F, to be a Henkin representation,
respectively, an embedding.

Definition. A functor F' : A — B is called left-full if forall g : FA — B in B, there exists f : A — A’ in
Asuchthat B=FA’andg = Ff.

Lemma 5.15. If F : A — B is left-full, then F, : B — ¥ is a Henkin representation.

Proof. We need to show that the canonical natural transformation ¢ : F,(QF) — F,Q™ is monic for
all P,Q € .#B. Let A € A. Unraveling the definition of exponentiation in a functor category yields that
pa: SBB(FA) x P,Q) — SA(A(A, -) x F.P,F,Q) s given by (¢.an) ar(f,z) — npar(Ff,),
wheren : B(FA,—-)x P -5 Q, A € A, f: A— A andx € (F.P)A" = P(FA’). To show that ¢4 is
one-to-one, assume) # 7' A(FA,—) x P — Q. Then there are B € B, g : FA — B and z € PB such
that ng(g,z) # n5(g,). Since F is left-full, there is f : A — A’ in A such that B = F A" and g = F'f,
hence

(pam)ar(f,x) = npa (Ff,x) = np(g,2) # np(9,2) = npa (Ff,2) = (0an’)a (f,),
and therefore @ om # @ 4n'. This shows that ¢ 4 is one-to-one for every A, hence ¢ is monic. O
Lemma 5.16. If F : A — B is onto objects, then F, : /B — ./ is an embedding.

Proof. Let P,Q € Bandn#1n : P — Q. Thenng # 13 : PB — QB forsome B € B. Let A € A
with B = FA. Then (Fin)a = npa # Nw s = (Fin')a, hence Fun # Fo'. |

The proof of Theorem [5.14] now rests on the fact that every small category A is, in the terminology of Freyd
and Scedrov [20]], dominated by some poset P, i.e. there is a left-full functor F : P — A which is onto
objects.

61

Table 5.1: Typing rules for the simply-typed lambda calculus

(var) lNezo>zxz:o
(const) —_
I'>c?:0 (app) I'>M:0—71 I'>N:o
“ ap I>MN:T
k J—
I>x:1 eio>M: 7
. I'>M:o I'>N:71 (abs) ' \ei:oM :0 > 71
(pair) I'>(M,N):oxT I'>M:o rcr’
(weaken) ; =
(1) TITeM:oxT 'e-M:o
m I'>miM:o
(m2) TeMioxs
2 I'>aoM 7

Lemma 5.17 (Freyd, Scedrov [20]). Every small category A is dominated by some poset P.

Proof. Let the objects of P be finite sequences of objects and morphisms Ag Jo, Ay EENSEE SN A,

ordered by the prefix ordering. Then P is a poset, and the obvious functor F' : P — A is left-full and onto
objects. O

Proof of Theorem[5.14; Let C be a small ccc. Then C? is dominated by some poset P by Lemma [5.17}
let ¥ : P — C°. By Lemmas and the functor F, : .#S” — %P is a Henkin embedding;
moreover it preserves monic cones. By precomposing F). with the Yoneda embedding, one obtains a Henkin
embedding F, oY : C — .7F. O

5.2 The interpretation of the simply-typed lambda calculus
5.2.1 The simply-typed lambda calculus

Let T'C be a set of type constants t, u, Simple types o, T, . .. are given by the grammar:
o=t | 1 | OXT | o—T
Let V be an infinite set of variables x,y,.... For each type o, let C, be a set of individual constants

¢?,d?, The collection (T'C,(C,),) is also called a simply-typed signature. Raw typed lambda terms
M, N, ... are given by the grammar:

Mu=z || « | (M,N)| mM | moM | MN | \z:0.M | Mo

We have the usual notions of free and bound variables, and we write FV(M) for the free variables of a
term M. We identify raw terms up to renaming of bound variables, and we write M [N/z] for the result of
substituting N for x in M.

A type assignment I' = x1:01,T3:02,...,%y:0., is a finite, possibly empty sequence of pairs of a
variable and a type, such that z; # x; for all ¢ # j. We write I' C I if I" is contained in I as a set. A valid
typing judgment is an expression of the form I > M : o which can be derived by the rules in Table[5.1} An
equation of the simply-typed lambda calculus is an expression of the formI'>M = N : o, where '>M : o
and I' > N : ¢ are valid typing judgments. If is an equation and £ is a set of equations, we write £ -, E
if E can be derived from & by the rules in Table As usual, & is called a theory if it is closed under
derivability, i.e. if £ F¢ F implies E € £. The smallest theory of the simply-typed lambda calculus (for a
fixed signature) is denoted by \. It is also called the pure theory.

62

Table 5.2: Equational rules for the simply-typed lambda calculus

(refl) T>M=0M:o ,
I'>M=N:o (i) ToM=x:1
(symm) T>N=M:0o
I>M=N:0 TIbN=P:o (proju) Tom(M,N) =M :0o
(trans) oM =P o
congy TEM=M:0 TPoN=N:r (projz) T>m(M,N)=N:7
cong1 T> (M,N)= (M ,NY:0x1 ,
I'>M=M :0xTt (surj) e (mM,moM)=M:0xT1
(congz) 'smM=mM :0o
(congs) T'>M=M :0xt ® > (Az:o.M)N = M[N/x]: 1
3 7
I'>moM =mM' @7 x ¢ FV(M)
(conga) ' M=M:0c—-7 I'bN=N":0) e \eio.(Mz)=M:0—> 71
84 T>MN=MN :71 ddvary TEM=MG:oc TCT
Dxo>M=M:1) I'sM=M:0o
(congs) I'> A \zioM = Mvio M :0— 71

5.2.2 Strict interpretation in a cartesian-closed category

Fix a simply-typed signature. An (strict) interpretation I of the simply-typed lambda calculus in a ccc C,
which we schematically write as I : A — C, consists of an interpretation of types and an interpretation of
typing judgments. A type o is interpreted as an object [o] of C. A valid typing judgment I' > M : 7 is
interpreted as a morphism [I' > M : 7]. A strict interpretation I is uniquely determined by its values on
type constants and individual constants.

Let I : TC — |C| be an interpretation of type constants as objects of C. This extends uniquely to an
interpretation [o]! of every type:

[" = 1)
ny =1
[ox7]" = [o] x[r])
[o =)' = (1)
If T = 1:01,...,2Zm:0, is a type assignment, we write [[']! = [o1]! x -+ x [o,]!. Let I, : Cy —

(1,[o]?) be an interpretation of term constants as morphisms of C, for each type o. This extends uniquely to

63

an interpretation [I' > M : 7] of valid typing judgments:

>z :0;]f = [T LEN [o;]7, the jth projection
[oe o) = [12D o)
[1] [S1= [[11}]1 ,
> (MN):oxr]! = [r)f LA N rorr s] = [o x 7]
[C>mM:o)f = [T} M [o]! x [7]* 5 [o]*
[C>mM: 7]l = [T} w [o]" x [7]* L [o]!
(IT>M:o—7]",[T>N:0]’) - e
[C>MN:7] = [I) ([x [o]" = [7]
[C>Av:oM:o— 1) = [T (ICioeMir]') ([[|)MI =[o—7]*

Lemma 5.18. The interpretation of the simply-typed lambda calculus in a ccc has the following properties,
which are proved by induction on M :

1. Permutation of Individual Variables. If s : {1,...,i} — {1,...,m} is injective and FV(M) C
{zs1,...,xq},and if IV = x1:01, ... Tpiom and T = 241:041, . . . 5204 then

[[F’ [T'>M:7]!
qu---k\ 41\4 i

2. Term Substitution. Let I' = x1:0q, ... TmiOm and IV = yy:p1,...y::p1, and suppose I' > M : 7 and
IY> Nj:ojforj=1,...,m. Let M[N /Z] denote the simultaneous substitution of Ny, ..., N, for
T1,...,%, in M. Then

[T'>M[N/z]: ‘r]]

F/]]I
(II">Ny:o1]! e [T >Ny : UNN 4]% 7]t
N

We say that an interpretation [satfisfies an equation I' > M = N : 7, in symbols, I EI'> M = N : 7, if
[C>M:7]f =[T'> N : 7]l If € is a set of equations, then we write [|= £ if [|= E forall E € £. The
set of all equations that an interpretation I satisfies is written Th(I). If M is a class of ccc’s, then we write
€ Em E, for an equation FE and a set of equations &, if for every strict interpretation I in a ccc C € M,
I Eimplies I = E.

a

Proposition 5.19. Soundness of the strict ccc interpretation.

EFs E implies €& lcce E.
O

If 7 is a theory and I : PL — C is an interpretation such that I = 7, then we also wr1te I T — C.
An interpretation can be post-composed with a ccc- representatlon in an evident way: T LcL Cisthe
interpretation .J defined by [o]’ = Fo]! and [T > M : 7]/ = F[L' > M : 7]

64

5.2.3 The cartesian-closed category associated to a theory

From a theory 7 over a simply-typed signature, one constructs a cartesian-closed category §...(7) as fol-
lows: The objects are simple types o, and the morphisms fy; € (o,7) are named by terms M such that
x:0 > M : 7is a valid typing judgment. Two terms M and /N name the same morphism if 7 ¢ z:0 > M =
N:T.

Proposition 5.20. The above construction yields a well-defined cartesian-closed category Feec(T). There is
a canonical strict interpretation Iy : T — Feee(T) with [o]!0 = o and [z:o0> M : 7]l0 = foy : 0 — 7.
Moreover, I has the following universal property: For any strict interpretation J : T — C, there is a unique
ccc-representation F : Feco(T) — C such that

I

SCCC(T) T’ C D

Corollary 5.21. Completeness of the strict ccc interpretation. Each theory T of the simply-typed lambda

calculus arises as the theory of some ccc-interpretation. Consequently, for any set of equations &,

E Ecce E implies £, E.

5.2.4 Henkin representations of a free ccc

Definition. The free ccc over a simply-typed signature is the cartesian-closed category associated to the pure
theory A over that signature.

Cubri¢ proved in [[14] that for any object A in a free ccc, the unique morphism A — 1 is epic, and hence the
condition of Theorem[5.9]is satisfied. The proof uses a strongly normalizing system of Mints reductions. Let
us remark here that, using these Mints reductions, one can show more about the morphism A — 1:

Proposition 5.22. In a free ccc, the morphism A — 1 is a coequalizer of the diagram

Proof sketch: Let f : A — B be named by the term 2:A > M : B, and assume f om = f ox’. This
means -, y:A, z:A > M|y/x] = M|[z/x]. Suppose M’ is the unique normal form of M with respect to the
system of Mints reductions. Then M’[y/x] and M'[z/x] are the respective unique normal forms of M [y/z]
and M [z/x], hence they are syntactically equal. It follows that M’ does not contain x freely, and therefore f

M’ T
factors as A — 1 — B. We already know that the factorization is unique because A — 1. g

As a consequence, in a free ccc, every object A is well-supported, i.e. 7' : A x B —> B for all B. Indeed,
products preserve coequalizers, and coequalizers are covers. With Corollary [5.10] one gets:

Corollary 5.23. Any free ccc has a faithful (i.e. isomorphism-reflecting) Henkin-embedding into /. O

5.2.5 The non-strict interpretation of the simply-typed lambda calculus

Let C be a ccc. A non-strict interpretation of the simply-typed lambda calculus I : A — C is a Henkin
representation H : Feee.(A) — C. One defines [o]! = H[o]!o and [T > M : 7] = H[I' > M : 7]fo.
A non-strict interpretation I satisfies an equation ' > M = N : 7, insymbols I ET'>>M = N : 1, if
[C> M :7]f = [I'> N : 7]f. As before, we denote by Th(I) the set of equations that are satisfied in I.
For a class M of ccc’s we write £ =2"! E if any non-strict interpretation in some C € M that satisfies
& also satisfies E. The following soundness theorem is an obvious consequence of Lemma 5.2}

65

Proposition 5.24. Soundness of the non-strict ccc-interpretation.

Ets E implies & =T B
O

Remark. Completeness is also evident, because the strict ccc-interpretations are among the non-strict ones.
More interesting are completeness theorems with respect to certain smaller classes of models. This is the
subject of the next section.

5.3 From Henkin representation theorems to completeness theorems

5.3.1 The problem with empty types

By a set-theoretic model of the simply-typed lambda calculus, we mean a non-strict interpretation in ..
The equational rules for the lambda calculus from Table are not complete for equational reasoning in
set-theoretic models. This was first noticed by Meyer et al. in [39]. If in some model, the interpretation [o]
of a type o is the empty set, then the model satisfies every equation of the form

zio,'>M=N:T. (GN))
On the other hand, if [[a]]I is non-empty, then the model satisfies the rule

zo,I'>M=N:71 x € FV(M,N)
(non-empty) oM =N - (5.2)

for that type o. (By this we mean, for every instance of the rule, if the model satisfies the premise, then it
satisfies the conclusion. We also say the rule is sound for the model.) So in any particular set-theoretic model,
for each o, either or holds. However, in a general theory of the simply-typed lambda calculus, this
is not true. Meyer and his co-authors give the following example: Let o and 7 be type constants, and let
f:(0c = 0 — o) — 7 be an individual constant. Let p; = Az:0.A\y:0.x and po = Az:0.\y:0.y. Then the
following is sound for any set-theoretic interpretation:

ro> fpr=fps:T
>fp1r=fp2:7 ©.3)

This is because, if o]’ is empty, then p; = po holds as a consequence of , while if o] is non-empty,
then (5.3) follows from (5.2). On the other hand, (5.3) is not sound for arbitrary theories of the lambda
calculus: specifically, let 2 be the poset with two elements | < T, and consider the following interpretation
I:)\— 7% for types, we let

[ol' (L) =0, [o)'(T) ={s1,s2}, [7)'(L) ={tn.tz}, [71°(T) = {u},

with the unique maps [o]’ (L) — [o]*(T) and [r]/ (L) — [7]*(T). Let A = [o — o — o], and notice
that A(L) = A(T) = {31,32}{51752}2. Let 72 @ {s1,82}% — {s1,52} be the first projection. Now define
[[f]]I o —0— 0]1 — [[T]]I via

MW@ ={ 3 527™ UOE =
With respect to this interpretation, [fp1]f (L) = t; # t2 = [fp2]?(L). On the other hand, there is a unique
morphism [¢]? — [7]!. Hence, z:0 > fp1 = fps : 7 holds for the interpretation I, while > fp; = fps : 7
does not. Consequently, the rule (5.3) is not admissible for arbitrary lambda theories.

As the example shows, the equational rules in Table [5.2] are not complete for the class of set-theoretic
models. On the other hand, the rule (non-empty) is sound only for set-theoretic models with non-empty types.
Hence, the need arises to consider the following three classes of models, and their associated completeness
theorems, separately:

66

1. One may consider set-theoretic models where all types are non-empty. This is the classical approach
[21]]. In this case, the rules in Table @ together with (non-empty), are sound and complete.

2. One may consider all set-theoretic models. This necessitates a more elaborate system of inference
rules. A sound and complete system was given in [39]].

3. One may enlarge the class of models to allow non-set-theoretic ones. The class of Kripke lambda
models, introduced in [42]], is a convenient such class, and for it, the rules in Table [5.2] are sound and
complete.

Each of the three classes of models can be described in terms of Henkin representations, and the completeness
theorems in each of the three cases can be derived from the three respective Henkin representation theorems

of Section[5.1.4

5.3.2 A categorical analysis of the rule (non-empty)

We have already remarked that in a set-theoretic model, the rule (non-empty) is sound for a type o if [0/ is
non-empty. More generally, if I : A — C is a non-strict interpretation of the simply-typed lambda calculus,
and if [o]! is an object such that [o]! — 1 is epic, then the rule (non-empty) is sound for o with respect to 1.
Because if ¢ FV(M, N), and if [z:0,T > M : 7]! = [2:0,T > N : 7]/, then, using Lemma

, [[FDM:T]]I
[o]" x [[) —— [1) =[],
[C>N:r]f

and hence I = T'> M = N : 7. Conversely, assume that (non-empty) is sound for o in some theory 7. Then
[o]fo — 1is epic in the ccc Feee(T), for the canonical interpretation .

5.3.3 Set-theoretic models with non-empty types

Fix a simply-typed signature. By a set-theoretic model with non-empty types of the simply-typed lambda
calculus, we mean a non-strict interpretation I : A — .+, We write £):’;‘;’ﬂ;"”""’ F for semantic consequence
with respect to that class of models. We write & H2"¢""” E if E can be derived from the equations £ by the
usual simply-typed lambda calculus rules, together with the rule (non-empty).

Theorem 5.25. Soundness and Completeness for non-strict interpretations in .. The rule (non-empty)
is sound for non-strict interpretations in .. Moreover, any theory that is closed under (non-empty) arises
from such an interpretation. As a consequence,

& Ergnsriet B ifand only if - € H1Oen .

Proof. Soundness: It follows from the remarks in Section that the rule (non-empty) is sound for
':r.lj(;l‘istrtct.

Completeness: Assume & ="9""! E._ Let T be the theory generated by £ and (non-empty). We need
to show F € T. Let Iy : T — Feee(T) be the canonical interpretation. Then A — 1 for all objects of
Sece(T), hence there is a Henkin embedding H : Feee(T) — -#+ by Henkin Representation Theorem 5.9
Let=Holy:T —". ThenTh(I) = Th(ly) =T,hence [FE =TI FE=FEcT. O

5.3.4 Set-theoretic models with empty types

For reasoning about possibly empty types, we use the extended proof system of Meyer et al. [39]. Fix a
simply-typed signature. An emptiness assertion is an expression e(7), where 7 is a type. We use the letter
A to denote a sequence of emptiness assertions, and we write A C A’ if A is contained in A’ as a set. An

67

Table 5.3: Rules for the simply-typed lambda calculus with emptiness assertions

(empty) Aye(o),xz:o,'>M=N:71
() Aye(o),T>M=N:T1 AjzioT'>M=N:71
cases ATSM=N:r
= : C A/
(add-emp) AT>M=N:T1 ACA

ANT>M=N:T

extended equation is an expression of the form A T'> M = N : 7,where '> M : 7and ' > N : 7 are
valid typing judgments (note that no A appears in typing judgments). The intuitive meaning of an extended
equation e(71),...,e(mx),[' > M = N : 7is: if 7y through 71 are empty, then I' > M = N : 7 holds. We
freely use suggestive notation such as e(o) I> E to denote an extended equation whose left-hand side contains
an emptiness assertion e(o), and z:0 > F to denote an extended equation whose left-hand side contains a
type assertion z:0, where £/ may contain other emptiness or type assertions.

We consider three special rules for extended equations, which are shown in Table[5.3] Notice that in the
rule (cases), the variable x cannot be free in M, N. We write £ F¢ E for derivability using these rules,
together with the equational rules of the simply-typed lambda calculus. Throughout this subsection, we will
write F for an extended equation, and £ for a set of extended equations. An extended theory is a set of
extended equations that is closed under derivability. If 7 is an extended theory, then we write 7° for its
subset of equations, i.e. those extended equations of 7 that contain no emptiness assertions. 7 ° is a theory,
which we call the core of 7.

Recall that a ccc C is special if for every object A, either A — 1 is epic or A is partially initial. Let
I : A — C be an interpretation of the simply-typed lambda calculus in a special ccc, and let E be an
extended equation, say, e(71),...,e(7;),I' > M = N : 7. We say that I satisfies E, in symbols I = E, if

[m]%, ..., [7x])" partially initial = [f>M:7) =[T>N:7].

If M is a class of special ccc’s, we write £ = E, respectively & [="00"! E, if I |= £ implies I |= E for
all strict, respectively non-strict, interpretations [in a ccc in M.

Definition 5.26. An extended theory 7 is called principal if for each type o, either 7 contains all extended
equations of the form x:0 > E’, or it contains al// extended equations of the form e(o) > E’.

Proposition 5.27. The correspondence between principal extended theories and special ccc’s.

1. Let I : A\ — C be a strict or non-strict interpretation of the simply-typed lambda calculus in a special
ccc. Then the set T = {E | I |= E} is a principal extended theory.

2. Conversely, every principal extended theory arises in this way from some strict interpretation I.

Proof. 1.: First, we need to check that 7 is indeed an extended theory. It is easily checked that the rules
(empty), (cases) and (add-emp) are sound with respect to any interpretation [in a special ccc C. For (cases),
one uses the fact that C is special: the conclusion follows from the first premise if o]/ is partially initial,
and from the second premise if [o]/ — 1. The fact that 7 is principal follows directly from the definition
of I = E: consider any type o. If [¢]! is partially initial, then 7~ contains all extended equations of the
form z:0 > E'. If [o]! is not partially initial, then 7 (trivially) contains all extended equations of the form
e(o) > E'.

2.: Let T be a principal extended theory. Let 7° be the core of T, i.e. the subset of those extended equations
of T that contain no emptiness assertions. Let C = F...(7°) be the cartesian-closed category associated
to the theory 7°, and let Iy : 7° — C be the canonical interpretation. We show that C is a special ccc.
Consider any object o. If 7 contains all extended equations of the form x:0 > E’, then [o] is partially

68

initial. Otherwise, 7 contains all extended equations of the form e(o) > E’. Therefore, the first premise
of (cases) always holds for the type o, and hence the rule (add-emp) is sound for T at type sigma. By the
remarks in Sectionthis means that [o]?° — 1. Therefore C is special.

We now claim that 7 = FE iff Iy = E, for any extended equation E. Let E be e(1),...,e(1;) > Eo,
where F) is an equation, i.e. Fy contains no more emptiness assertions.

First, assume 7 = E. Assume that [r1]%, ..., [74]% are partially initial in C. Under this hypothesis, we
need to show I |= Ey. Since C is the ccc associated to the theory 7°, this implies that 7° x;:7; > Ey for
it = 1...k. With E, by repeated application of the rules (cases) and (add-emp), one gets T - Fj. Since
Ej is a (non-extended) equation, it must be in the core, i.e. T° F Ey, hence Iy = Fy.

Conversely, assume that 7 = E. We claim that Iy [~ E. Since 7 is a principal extended theory and
T /%" E, it must be the case that 7 contains all extended equations of the form z:7;>E’, foreach j = 1.. . k.
Therefore, each [7;]° is partially initial in C. Also, from T /%" E, by (add-emp) one has T /%" Ey, hence
Iy [~ Ey. This shows that Iy ~ E. O

The proof of the completeness result for set-theoretic models rests on the following lemma, which implies
that any extended theory is an intersection of principal ones:

Lemma 5.28. Maximal extended theories are principal. Let E be an extended equation and let T be a
maximal extended theory such that T B/ E. Then T is principal.

Proof. Consider the following two hypothetical arguments:

1.: If there is some extended equation z:0 > E’ that is not in T, then, by maximality, T U{z:c > E'} F¢* E.
Consider any derivation of E from 7 U {z:0 > E’}. Alter this derivation by adding an emptiness assertion
e(o) to each extended equation throughout. An inspection of the proof rules in Tables and shows that
this alteration yields a valid derivation of e(c) > T U{e(0), z:0> E'} F¢ ¢(0) > E, where e(o) > T denotes
the set of equations {e(c) > E” | E” € T}. Applying the rules (add-emp) and (empty) at the leaves, one
gets T F¥" e(o) > E.

2.: If there is some extended equation e(c) > E’ that is not in T, then, by the same reasoning as in 1.,
THY 201> E.

Now observe that cases 1. and 2. cannot happen simultaneously, since otherwise 7 F¢ E by (cases). It
follows that 7 is principal. a

Theorem 5.29. Soundness and Completeness for special ccc’s. Let CCCy,,. be the class of special ccc’s.
Then

& ':CCCWL. E lﬁc £):’é‘g’&"ri” E lﬁf £ |_§xt E.

spec

Proof. Soundness is an immediate consequence of the first part of Proposition For completeness,
assume £ /%" E. Let T be a maximal extended theory containing £ such that 7 /%% E. T is principal by
Lemma[5.28] By the second part of Proposition it follows that 7 is the extended theory of some strict
interpretation I : A — C. Hence I |= € but I [~ E, which implies € Fccc,,. E- O

spec

Soundness and completeness for set-theoretic models now follows by applying the Henkin Representation
Theorem We write ="' for semantic consequence for extended equations with respect to set-
theoretic models.

Theorem 5.30. Soundness and Completeness for non-strict interpretations in ..

E YTt E o ifand only if € RO E.

Proof. Soundness is a special case of Theorem For completeness, suppose € 17" E. By Theorem|5.29
there is a special ccc C and a strict interpretation Iy : A — C such that Iy |= € but I = E. By Theorem|5.11
there is a Henkin embedding H : C — .. Let I = H o Iy : A\ — .. It follows from Remark [5.1.4] that I
validates the same extended equations as Ij.]

69

5.3.5 Kripke lambda models

By a Kripke lambda model, we mean a a non-strict interpretation I : A — .%* in a presheaf category over
some poset P. We write & [=j70"" F for semantic consequence in the class of Kripke lambda models.

Theorem 5.31. Soundness and Completeness for non-strict interpretations in .””. Each simply-typed
lambda theory arises from some non-strict interpretation in a presheaf category .#* over some poset P. As
a consequence,

& Eronstrict B if and only if € b4 E.

Kripke

Proof. Soundness is a special case of Proposition[5.24] Completeness is an immediate consequence of The-
orem o

5.3.6 A remark on the principal model property

The class of set-theoretic models with non-empty types and the class of Kripke lambda models each have
the principal model property: any lambda theory that arises from the class actually arises as the theory of
a single model. However, the principal model property does not hold for interpretations in .%. Indeed,
among the extended theories, the ones that arise from a single model are the principal ones in the sense of
Definition [5.26}—but not all theories are principal.

The reason for the failure of the principal model property lies with the categorical properties of .. Unlike
the category of non-empty sets, the category of sets does not embed its own discrete powers. Notice that any
discrete power (.#1)! of the category of non-empty sets has enough points to be Henkin-embedded in .+
via the point functor I' = (1, —). As a consequence, a ccc C can be Henkin-embedded in (.#*)7 if and only
if it can be Henkin-embedded in . T, and a lambda theory arises as the theory of a family of models with
non-empty types if and only if it arises as the theory of a single such model. A similar property holds for the
class of Kripke lambda models, because any discrete power of a presheaf category .# % is again of this form.

What the proofs of Theorems [5.29] and [5.30] really show about set-theoretic models is that any extended
theory is the theory of some interpretation in a discrete power ./ of the category of sets. The proof is
indirect, by first showing that any extended theory is an intersection of principal (namely, maximal) ones. In
the process, the categorical meaning of the extended equations gets lost. Is it possible to give a more direct
proof in the spirit of categorical logic, via a construction of a category directly from an extended theory?
This would be the ultimate form of Theorem [5.30] Presumably such a proof would require a categorical
characterization of those ccc’s that can be Henkin-embedded in .#7. Unfortunately, the characterization
given in Corollary is not very elegant, and a more satisfactory Henkin Representation Theorem for the
class .1 is not known.

5.4 Henkin representations of PL-categories

5.4.1 PL-categories

Let U : CCC — Cat and |—| : CCC — ¥ be the forgetful functors that map a small ccc to its underlying
category and to its set of objects, respectively.

Definition. A PL-category B = (B,Q), F,~,V,n) consists of
1. a small base category B with finite products and a distinguished object €2,
2. a contravariant fiber functor F' : B” — CCC, together with a natural isomorphism
v (V.Q) =v [Py,
3. anatural transformation V : U(Fy xq) —v U(Fv), together with a natural isomorphism

n: (Fr,C,D)yxa —v.c,p (C,VvD)y.

70

We sometimes write a PL-category as (B, F, V) if the remaining parts of the structure are understood.

Remarks. We assume that the finite products of the base category are chosen. We use the letters V, W, . ..
for objects of B. The fiber functor ' maps an object V' to a cartesian-closed category Fy, called the fiber at
V. We also call Fon the n-fiber, and in particular, F7 is called the O-fiber. We use the letters C, D, ... for
objects and f, g, . . . for morphisms of the fibers, and we denote hom-sets of Fy by (C, D)y . Each morphism
of the base ¢ : V' — W gives rise to a ccc-representation of fibers F, : Fyy — Fy. For an object V' € B,
let y @ V' x © — V be the first projection. The resulting functor F., : Fyy — Fy xq is called the dummy
Junctor at V , and we denote it by Ay . Notice that Ay, like 7y, is natural in V. Each Ay has a right adjoint
Vv : Fyxq — Fy. Notice that Vi, is not assumed to be a ccc-representation. Both the functor Vy and
the adjunction 7y : Ay - Vy are assumed to be natural in V. The naturality of 7 in V' means that for all
CeFwyand D € Fyxgandforallp: V — W,

(AwC, D)wxg — o> (C, ¥ D)w
ngi J/Fw (5.4)
(AvC', D'y xa WCN,‘D, (C',\Vv D)y,

where C' = F,C and D’ = F,oD. In the literature on hyperdoctrines and universal quantification [55} [L5]],
the condition that V is natural in V' is sometimes relaxed: one only requires that F,Vy, and Vv F,xq are
naturally isomorphic as functors Fyy o — Fy-. In this case, condition (5.4) is replaced by the so-called
Beck-Chevalley condition. In our setting, the Beck-Chevalley condition and are equivalent.

0
The adjunction Ay - Vy can be described concretely in terms of its co-unit Ay Vy D 2. D by the

following property: for every object C' € Fy and every morphism g : Ay C — D, there exists a unique
h =nyg: C — Yy D such that

0
AyVyD —2 D

N

Ay C.
In analogy to product diagrams and exponential diagrams (see Section [I.1.6), we call a diagram of the form
Ay E J, D with the above universal property a V-diagram. Condition (5.4)) is equivalent to the requirement

that F, preserves V-diagrams, i.e. Fi,0w,p = 6y r,p forall o : V. — W and D € Fy xq.

Definition. Let B = (B,Q, F,~,V,n) and B = (B',QY, F',v/,¥',n’) be PL-categories. A PL-repre-
sentation (B,G) : B — B’ is a finite product preserving functor B : B — B’ together with a natural
transformation G : F' — F' o B, such that BQ = Q' andforall V € B, C € Fy,and D € Fy «q:

nv,o,
B(V,Q) —=— |Fv| Fyxo —Y—Fy (AyC, D)y xg —<==— (C, Yy D)y
Bl l|Gv Gvan lGV vaﬂi \LGV
B'(BV,Q) —— [Fy/, Fpveo ——Fhy, (A CD)pvxe — (C',VpvD')pv,
YBV Vv NBv,c’,D!

where C' = Gy C and D' = Gy «qD. The condition that G preserves 7) can be equivalently expressed in
terms of V-diagrams by requiring Gy xq(fv,p) = H’BV, D

Notice that G is a natural transformation of functors B — CCC; in particular, each Gy : Fy — F gv isa
cce-representation.

Small PL-categories and PL-representations form a category, which we denote by PL.

We will now consider a notion of congruence relation on a PL-category. We are only concerned about
congruences on the morphisms of the fibers, and not on the morphisms or objects of the base.

71

Definition. A PL-congruence ~ on a PL-category B is given by a family of equivalence relations on the
hom-set of the fibers, i.e., an equivalence relation ~v, ¢ p on (C, D)y foreach V € B and C, D € Fy, such
that for each V, ~v is a ccc-congruence on Fy, (see Definition @, and in addition:

f~vxaaven f
nvf~vevep nvf

If (B,G) : B — B’ is a PL-representation, then its kernel is a PL-congruence on B3, defined by f ~v.c.p ¢
iff Gy f = Gyg, forall f,g € (C,D)y.

Conversely, let ~ be a PL-congruence on 3. One can define the quotient 3/~ by taking the quotient
(C,D)v /~v,c.p at each hom-set of the fibers; one checks that this is a well-defined PL-category with the
same base category as B.

5.4.2 Henkin-PL -representations

A pre-structure P = (P, M) consists of a base category P with finite products and a contravariant functor
M : P — CCC. For any pair of objects V, W € P, we consider the first projection my,y : V x W — V,

and the associated functor M, ,, : My — My xw, which we again call the dummy functor, and which we

denote by Ay . We say that a diagram Ay, C i> D in My ww is a partial V-diagram if for every object
C’ € My and every morphism g : Ay ywC’ — D, there exists ar most one h : C' — C' such that
f
AVVWC e D
AV,WhT

AVJ/VC .
A Henkin natural transformation between functors F', G : B — CCC is a natural transformation H : UF —
UG such that for each V' € B, Hy is a Henkin representation of ccc’s.

Analogous to Henkin representations of cartesian-closed categories, we can now define Henkin represen-
tations of PL-categories:

Definition. Let B = (B,), F,~,V, n) be a PL-category and P = (P, M) be a pre-structure. A Henkin-PL-
representation(B, H) : B — P is a finite product preserving functor B : B — P together with a Henkin
natural transformation H : UF' — UM o B, such that forall V € B and D € Fy «q,

Hyxqbv,p

Apv,po(HyVyv D) = HyxoAyVy D ————— Hy oD

is a partial V-diagram. Notice that, by naturality of H,

Hy
Fy ——— Mpy
Ay =Fr,, i lABV.BQ_MBWV

Fyxo 77— MpvxBa.
VXQ

Lemma 5.32. The kernel of a Henkin-PL-representation (B, H) : B — P, defined for all f,g € (C,D)y
by f ~v.c.p giff Hv f = Hvg, is a PL-congruence on B.

Proof. ForeachV € B, Hy : Fy — Mpy is a Henkin representation of ccc’s, and hence ~y is a ccc-
congruence on Fy by Lemma It remains to be seen that for C € FV and D € FV x Q, f ~vxq,AvC.D

72

f"implies nv f ~v,c v, 0 nv f'. Suppose f, ' € (AyC, D)y xq with Hyxof = Hyxaf’. One has

ov, Hy xafy.
AyVyD —2- D Apv,paHyYy D =———= HyxoAvVYy D "L Hy oD
, =
Avnva / ABV,BQHV"?V](‘T HVXQAV"]VfT %’

AyC Apy,poHy(C =————= HyxoAvC.

The top row is a partial V-diagram, hence the arrow Hy 7y f is uniquely determined by Hy xq f. Since there
is an identical diagram for f’, and since Hy o f = Hy xqf’ by assumption, one has Hyny f = Hyny f/.0

Definition. We say that a Henkin-PL -representation (B, H) is a Henkin-PL-embedding if its kernel is the
trivial congruence, i.e. if Hy is a Henkin embedding for each V. Notice that we do not require B to be an
embedding of the base; it seems unnecessary to do so since we are only concerned with equality in the fibers.

5.4.3 Standard structures

Consider a cartesian-closed category D. Let D be the pre-structure (., M), where the base category is the
category of sets, and the functor M : .# — CCC maps a set X to DX, the X-fold power of D. We call this
pre-structure the standard structure over D.

For a ccc, we considered the point functor I' : C — .. We now consider an analogue to this functor
for PL-categories. Consider a PL-category B = (B, Q, F,~,V,n), together with a functor H® : F; — D.
We define I'yo = (B, H), where B : B — . is the point functor of the base category, mapping V' to
the hom-set B(1,V), and H : Fy —y Mpy = DBV is the natural transformation defined on objects by
HyC(z) = HY(F,C), where C € Fyy and z € BV = (1, V). The following proposition gives a sufficient
condition for (B, H) to be Henkin-PL -embedding.

Proposition 5.33. The pair (B, H) is a Henkin-PL-embedding B — D if the following hold:
1. HY is a Henkin embedding,
2. HY preserves monic cones, and
3. the functors F, : Fy — Fy, where x : 1 — V, form a collective embedding for each V € B.

Proof. Clearly B preserves products and I is natural. What remains to be shown is that each Hy, is a Henkin
embedding, and that the condition on V-diagrams is satisfied. First, notice that Hy : Fy — CBY factors as

Fy

(F.T,):DEBVJ/ Y

FlBV s CBV.

(HO)BV

Clearly, (F.)zepv is a ccc representation; by assumption 3, it is also an embedding. Assumption 1 im-
plies that (H°)BV is a Henkin embedding, hence Hy is a Henkin embedding for every V. Now suppose

AyVyD ev—’D> D is a V-diagram in B. We need to show that

Hyxqbv,p

Apv.pa(HyVyD) = Hy xoAvVy D Hy oD
is a partial V-diagram. Unraveling the definitions, this amounts to showing that for each y € BV, the

collection of morphisms

HF.01 ¢
s

(H()vlcr HOFZC)2:1—>Q

73

is collectively monic, where C' = F,oD. Since H" preserves monic cones by assumption 2, it suffices to
show that for every C' € Fg, the family

(VIC FZG_I)C) cm)zzlﬁﬂ

is collectively monic. Let f # g : A — V,C. Thenn~'f # n~'g : AyA — C. By assumption 3, there
isz: 1€ Qwith Fon™tf £ F.n~lg,ie F.(01.c 0 A1f) # F.(1.c 0 Arg). But F,A; = idp,, hence
(F.01,c) o f # (F,61,c) o g, which proves the claim. |

5.4.4 Freely adjoining arrows to the base of a PL -category

Given a PL-category B = (B,Q, F,~v,V,n), we may freely adjoin an arrow 2 : 1 — U to the base as
follows: Let B’ be the Kleisli category of the comonad T'(V) = U x V, i.e. B’ has the same objects as B
and B'(V,W) = B(U x V,W) (compare Section[5.1.3). Define ' : B"” — CCC by F{, = Fyryv; this
is natural in V. Define Q' = Q, v{, = yuxv, Vi, = Vuxy, and 77{/7C7D = Nuxv,c,p. 1t is trivial to check
that B = (B',Q', F’,~',V',n’) is indeed a PL-category; for instance V{, = Yuxv : Fuxvxa — Fuxv
is indeed right adjoint to A}, = Ayxv : Fuxy — Fuxvxa. Let 3 = (By,Go) : B — B’ be the natural
PL-representation, defined by Bop = p o7’ and (Go)v = Ay : Fyy — F{, = Fyxy. Letz € B'(1,U) be
id € B(U,U). We write B’ as B[1-5U], which is justified by its universal property:

Proposition 5.34. B[1-5U] has the following universal property: for any PL-representation (B, G) : B — D
and any arrow 1 : 1 — BU in D, there is a unique PL-representation (B, G : B[15U] — D such that

B—Ls B[15U]

(B,G) J,<B’G>

3

and Bx = .

Proof. Let B’ map an object V to BV and a morphism ¢ € B'(V,W) = B(U x V,W) to BV 24,

BU x BV %, BW. Define G4, by

!
Fl, —— Dpy.

Gy
TDwxid

Fuxv o DpyxBv
UxV

It is readily checked that this is the unique PL-representation with the desired properties. g
Lemma 5.35. The canonical PL-representation j : B — B[l gﬁ] is a PL-embedding.

Proof. In B, there is always a point ¢ : 1 € €, for instance v~ '1. The unique extension B[1Q] — B of
the identity that sends x to v is a left inverse to 7. O

Proposition 5.36. Any PL-category BB can be PL-embedded in a PL-category B’ such that the functors F :
Fl. — F|, where z : 1 — Qm, form a collective embedding for each n.

Proof. To B, adjoin countably many arrows 1 — € by constructing a sequence B = By 2% By 2 - of
PL-categories, where ;11 = Bi[lﬂﬂ] and j; is the canonical embedding. Notice that the n-fiber of B; is
the n + i-fiber of B. Let B’ be the colimit of this sequence, i.e. the objects of the base are the same as for each
B;, and the hom-sets of the base and objects and hom-sets of the fibers are constructed as the directed unions
of the respective parts of the B;. It is easily checked that B’ is a PL-category with a canonical PL-embedding

74

7 : B — B'. To show that the functors F : F,, — F} form a collective embedding, it suffices to show that
for every V, the functors F} {/m . F; ",XQ — {, form a collective embedding, where = : 1 — €). Consider two
morphisms f # g : C — D in F{, . Then C, D, f, and g already exist in some 5;. Consider z; : 1 — Q
in B; 1. Writing F'* for the fiber functor of 3;, one has

i3
FVXQ

| N

i+1 7+1
FVXQ i+1 F
VXz;

hence FZ Vi, Jif # XI 2ig, which implies Iy, . f # F'V x z;g. a

5.4.5 Henkin-PL -representation theorems
Henkin-PL -representations in St

Lemma 5.37. If the O-fiber of a PL-category has the property that A — 1 for every object A, then the same
is true for any n-fiber.

Proof. LetV,, : Fon — F} be the right adjoint of the canonical functor A,, = F : F} — Fon. Let C, D be
objects of F» and consider f,g: 1 — D such that

f
C——=1"_+_D
g
V’Vlf
—_—
= Vv,C—»1=V,1_ +_V,D
Vng
;
= ANV, 1——1" "+ _ D.
g
But both A,, and V,, preserve terminators, hence A,V,,1 =1and f = g. g

Theorem 5.38. Let I3 be a PL-category whose base is generated by §). Then B can be Henkin-PL-embedded
in /%, the standard structure over ., if and only if for every object A of the O-fiber, the morphism A —» 1
is epic.

Proof. =: Trivial, because a Henkin-PL-embedding B — S+ gives rise to a Henkin embedding F; —
%, and embeddings reflect epics.

<: By Lemma[5.37] C' — 1 holds for all objects of all fibers. By Proposition B can be embedded
in a PL-category B’ such that the functors F?, : F{, — F}] form a collective embedding, for every V' € B.
Note that in the sequence of PL-categories (B3;); constructed in the proof of Proposition the 0-fiber of
B; is the n-fiber of B. Hence, C' — 1 holds for all objects of F' f, and therefore for all objects of F as well.

By Theorem there is a Henkin embedding H° : F} 4, p 5 o+, By Lemma F 4 preserves
monic cones, and so does the point functor I'. Therefore, Proposition [5.33] is applicable and we obtain a

Henkin-PL-embedding B’ — 28 O

Henkin-PL -representations in SP

Theorem 5.39. Any PL-category BB can be Henkin-PL-embedded in FP , for some poset P.

75

Table 5.4: Typing rules for the polymorphic lambda calculus

() I'>M :Va.r

Iypeapp I'>Mo :7[o/d]
P'>M:71 a ¢ FTV(T)

(typeabs) I'> Aa.M :Va.r

Table 5.5: Equational rules for the polymorphic lambda calculus

I'>M=M :VarT

(conge) I’ Mo=Mo:1 (B) I'> (Aa.M)o = Mlo/a]: T
I'>M=M:7 agFTV(I) a ¢ FTV(M)
(cong7) I'>Aa.M = Aa.M' Va1 () ' Aa.(Ma) =M :Va.r

Proof. By Proposition [5.36] B can be embedded in a PL-category 3’ such that the functors F?, : F{, — F}
form a collective embedding, for every V' € B. By Theorem |5.14} there is a Henkin embedding H® :
F| — #F, for some poset P, such that H? preserves monic cones. With Proposition [5.33] one obtains a

Henkin-PL-embedding of B’ in SP. O

5.5 The interpretation of the polymorphic lambda calculus

5.5.1 The polymorphic lambda calculus

The polymorphic lambda calculus was independently introduced by Girard [22]] and Reynolds [51]. Here, we
describe a version of the second order lambda calculus with surjective pairing and a unit type.

Let 7V be an infinite set of type variables o, (3, ..., and let TC be a set of type constants t,u,
Polymorphic types o, T, ... are given by the grammar:

o= | t | 1 | oXT | J—>T|Va.0.
Let V be an infinite set of individual variables x, vy, For each closed type o, let C, be a set of individual
constants ¢°,d°, The collection (T'C, (C,),) is also called a polymorphic signature. Raw polymorphic

lambda terms M, N, ... are given by the grammar:
M=z | c? | * | (M, N) | m M | moM | MN | Az:o. M | Mo | Aa. M.

As usual, the individual variable z is bound in the term Ax:0.M. Moreover, the type variable « is bound in
the term A«. M and in the type Va.o. All other occurrences of variables are free, and we write FV (M) for the
free individual variables and FTV (M) for the free type variables of a term M, as well as FTV (o) for the free
type variables of a type o. We identify types, as well as raw terms, up to renaming of bound variables. There
are three kinds of substitution: substitution of types in types 7[c/a], substitution of types in terms M [/,
and substitution of terms in terms M[N/z].

A type assignment I’ = x1:01,22:09,...,Ty: 0y, is defined as for the simply-typed lambda calculus. We
write FTV(T") = FTV(o1) U ... UFTV(0,,). The valid typing judgments T > M : o of the polymorphic
lambda calculus are derived by the rules in Tables [5.I]and [5.4 An equation is again an expression of the
formI't>M = N : o, where' > M : o0 and ' > N : ¢ are valid typing judgments. If E is an equation and
€ is a set of equations, we write £ -, E if E can be derived from £ by the rules for the simply-typed lambda
calculus in Table together with the one for the polymorphic lambda calculus in Table[5.3] £ is called a
theory if it is closed under derivability. The smallest theory of the polymorphic lambda calculus (for a fixed
polymorphic signature) is denoted by PL.

76

5.5.2 Strict interpretation in a PL -category

Fix a polymorphic signature. A (strict) interpretation I of the polymorphic lambda calculus in a PL-category
B, which we schematically write as I : PL — B, consists of an interpretation of types and an interpretation
of typing judgments, both relative to a sequence & = aq, . . .

alpha,, of type variables. A type o with FTV (o) C {a} is interpreted as an object [o]% of Fqon. A valid
typing judgment T > M : 7 with FTV(I', M, 7) C {a} is interpreted as a morphism [[' > M : 7]4 of Fn.
Like for the simply-typed lambda calculus, an interpretation [is uniquely determined by its values on type
constants and individual constants.

Let I : TC — |F}| be an interpretation of type constants as objects of the O-fiber. This extends uniquely
to an interpretation [o]. , ~of every type. Recall that -y is the natural isomorphism (V,) <>y [Fy/[, and
that Fo : I} — Fon is the cce-representation induced by the unique morphism O : 2™ — 1. We assume that
bound variables are renamed as necessary.

[[a[[i%é = on 7{23 where 7; € (2™",) is the ith projection
t a - Folt
ng = 1
oxrlh = [olL x [l
[o =L = ([7]5)1s
Ma'oll = Vanlolh.

If C is any object of Fy, then it corresponds, via v, to a morphism of the base ¢ : V' —). The morphism
(idv,p) : V=V x Q gives rise to a functor Flig, ,y : Fvxo — Fy, which we denote by [C]y,. We call
this functor the substitution functor.

Lemma 5.40. The following are properties of the interpretation of polymorphic types:

1. Permutation of Type Variables. The interpretation is independent of the ordering of the free type

variables, or of the addition of dummy variables, in the following sense: If s : {1,...,k} — {1,...,n}
is injective and FTV(7) C {as1, - . ., ask }, then
[[T]](Iyl,...ﬁa" = <7T517~-a7'rsk> IIT]]ésl,...,ask .

In particular, if o’ ¢ FTV (o), then [[O’]]g“a/ = Agn[o]L.
2. Type Substitution. For all types ¢ and 7 with FTV (o) C {a} and FTV(7) C {&, o/},

[rlo/a'Tlz = llolalar [T15,a- O

Notice that [C]y 0 Ay = Fig,) © Firy, = idp, . Therefore, applying [C]y to the co-unit 0y, p : AyVy D —
D yields a natural transformation insty.¢ p : VD —p [C]y D, which will be useful for the interpretation
of type application.

IfT = 21:01, ..., %0, is a type assignment, we write [[]L = [o1]L x -+ x [o,,]5. Let I, : C, —
(1, [e]")1 be an interpretation of term constants as morphisms of the O-fiber, for each closed type o. This

77

extends uniquely to an interpretation [I' > M : 7|1 of valid typing judgments:

[C>z;:0;]8 = [T 25 [o T thejthprojection
[[>e o]k = ﬂrné%1F°”” o1
o1l =)L 2 1=[]}
Do (MN) i oxr]l = [LMl N, g (o1 = o x 7L
omMolt = o], EEMe, fogr o 1t 5 o

[C>M:oxT]L

[P mM el = [T] [o1% x [715 = [o]%
T ML = [rjf LMoo leNel), el o oL 5 []2
[oMo — 7L = [r]L oM paniell _ o o oL
[Co Mo rloja/llh = [C)h E22Yo v oL o 5 ([o]ilan [F)L o0 = [rlo/o)IL
[Co A0/ M Varr]l = [r]t 22 Peed oo o JL o = Ve 7]k

Lemma 5.41. The interpretation of the polymorphic lambda calculus in a PL-category, defined inductively
as above, has the expected properties:

1. Permutation of Type Variables. If s : {1,...,k} — {1,...,n}isinjective and the free type variables
FTIV(I, M, 1) C {as1,. .., ask}, then

[[F > M : T]]il,...7an = F<7Tsl7~~a7rsk:>|IF > M T]]ozéh SOk "
2. Permutation of Individual Variables. If s : {1,...,1} — {1,...,m} is injective and FV(M) C
{zs1,...,xq},and if IV = x1:01, ... Tpiom and T = 241:041, . . . 5204 then
[[F/]]I [T>M: 7']]

(Ts1se & 4M 14

3. Type Substitution. Whenever FTV(I', M, 1) C {a, &’} and FTV (o) C {a}, then

(T > M :7)[o/d1]L = [[o]Li])an [T > M : T]]a o -

4. Term Substitution. Let I' = z1:01, ... Zp:0m, and IV = y1:p1, ... y1:p1, and suppose I' > M : 7 and
IY>N;:ojforj=1,...,m. Then

[T'>M[N/z):7] L

IgF — [
([F'DNl:Ulﬂé,.‘.,[F’DNn:am 4]\/[:7]](&
[r15 O

As usual, we say that an interpretation I satisfies an equation 't>M = N : 7,insymbols I =T'>M = N :
7,if [[> M : 7]L = [T > N : 7]L. This notion is independent of &, as long as FTV(I', M, N, 7) C &. We
write =4 for semantic consequence in a class M of PL-categories, meaning £ =4 E if all interpretations
in a PL-category in M that satisfy £ also satisfy E.

78

Proposition 5.42 (Seely [56]). Soundness.

Er, E implies & Epc E.
O

If 7 is a theory and I : PL — B is an interpretation such that [|= T, then we also v&}rite 1:7 — B
An interpretation can be post-composed with a PL-representation in an evident way: 7 — B S, B'is the
interpretation .J defined by [o]Z = G[o]L and [T > M : 7]2 = G[I' > M : 7]L.

5.5.3 The PL-category associated to a theory

From a theory 7 over a polymorphic signature, one constructs a PL-category $pr(T) = (B, Q, F,~,V,n)
as follows: Fix an enumeration o, o, . . . of type variables, and fix an individual variable z. The base B
has countably many objects, which we denote 1,9, Q2,...; the hom-set (2", QF) is given by all k-tuples
(o1,...,0k) of polymorphic types with FTV(o1,...,0%) C {a1,...,a,}. Composition is given by substi-
tution:

Q= (mfoy/adl,. .. mloi/el),

where 7[o;/c;] denotes the simultaneous substitution of o1, ..., 0 for aq,...,a,. The identity at Q™ is
(a1, ..., ap,). One checks that the base has finite products.

The objects of the n-fiber are defined via |Fon| = (Q™,Q), i.e. they are polymorphic types o with
FTV(o) C {ay,...,a,}. The morphisms fy; € (o, 7)qn of the n-fiber are named by terms M such that
x:0 > M : 7 is a valid typing judgment. Two terms M and /N name the same morphism if 7 -, x:0 > M =
N : 7. Justas in the construction of the ccc associated to a simply-typed theory (see Section[5.2.3)), one checks
that F is indeed cartesian-closed. The action of ' on morphisms ¢ : Q" — QF of the base is as follows:
Fis,.....0,,) maps objects T to 7loi/ ;] and morphisms fjs to fM[o;/a;]- This defines a ccc-representation
For — Fgn. Notice that Agno = 0. The right adjoint Vo~ acts on objects as Voro = Vay,41.0. The
adjunction Ngn g+ @ (0, T)gn+1 = (0, Y 41.7)qn is given by nan o - far = fac,.i.0m-

Proposition 5.43 (Seely [56]]). The above construction yields a well-defined PL-category Fpr (T). There is
a canonical strict interpretation Iy : T — Fpr(T) with [[0']];;0 = o and [z:0 > M : T]]é =fy:o0—T.

Moreover, 1y has the following universal property: For any strict interpretation J : T — B, there is a unique

PL-representation G : §pr.(T) — B such that
T
Iol \

SPL(T) —a B. O
Corollary 5.44. Completeness of PL -categories for the polymorphic lambda calculus. Each theory T of
the polymorphic lambda calculus arises as the theory of some strict interpretation in a PL-category. Hence,

EEpc E implies EF, E.
O

5.5.4 The non-strict interpretation of the polymorphic lambda calculus

A non-strict interpretation of the polymorphic lambda calculus in a pre-structure P, denoted [: PL — P,
is a Henkin-PL-representation H : §p,(PL) — P. One defines [0]L = H[o]X and [T > M : 7]L =
H[T' > M : 7]%. The notations I |= E, as well as € [=""! E, have their usual meanings. The following
Soundness Theorem is a consequence of Lemma [5.32] Again, completeness is evident, since the class of
non-strict interpretations includes the class of strict ones.

79

Proposition 5.45. Soundness of the Non-Strict Interpretation.

Erp E implies & =4 E.
O

A non-strict interpretation of the polymorphic lambda calculus in a standard structure D is called a standard
model. The case D = . gives rise to set-theoretic models with non-empty types which are closely related
to the environment-style models that were described by Bruce and Meyer [10]. The case D = .#* gives rise
to polymorphic Kripke models. Finally, the case D = .& gives rise to set-theoretic models of polymorphism
with possibly empty types. We will leave the discussion of the latter class of models for elsewhere.

5.6 From Henkin-PL -representation theorems to polymorphic com-
pleteness theorems

5.6.1 Set-theoretic models with non-empty types

A set-theoretic model of polymorphism with non-empty types is a non-strict interpretation in the standard
structure .+, Write Iz’;%’f{"”m for semantic consequence with respect to this class of models.

Theorem 5.46. Soundness and Completeness for set-theoretic models of polymorphism with non-emp-
ty types. The rule (non-empty) is sound for set-theoretic models of polymorphism with non-empty types.
Moreover, any theory that is closed under (non-empty) arises from such an interpretation. Consequently,

on-strict : : on-empty
£ et B ifand only if - € Hy e .

Proof. Soundness follows from Lemma and the remarks in Section For completeness, let 7 be
a theory that is closed under (non-empty). Let Iy : T — $pL(T) be the canonical interpretation. Because
of the rule (non-empty), one has C' — 1 for all objects of the base, hence, by Theorem @ there is a

Henkin-PL-embedding H : §p (T) — .. Then the interpretation I = H o I satisfies exactly 7. O
5.6.2 Polymorphic Kripke models

A polymorphic Kripke model is a non-strict interpretation in a standard structure . where P is a poset.
Semantic consequence for this class of models is denoted by =570,

Theorem 5.47. Soundness and Completeness for polymorphic Kripke models. Each polymorphic lamb-
da theory is the theory of some polymorphic Kripke model. Therefore,

E it B ifand only if € b .

Proof. This is a direct consequence of Theorem[5.39] O

80

Chapter 6

First-Order Axioms for Asynchrony

The distinction between synchronous and asynchronous communication is a relevant issue in the design and
analysis of distributed and concurrent networks. Intuitively, communication is said to be synchronous if
messages are sent and received simultaneously, via a ‘handshake’ or ‘rendez-vous’ of sender and receiver.
It is asynchronous if messages travel through a communication medium with possible delay, such that the
sender cannot be certain if or when a message has been received.

Asynchronous communication is often studied in the framework of concurrent process paradigms such
as the asynchronous m-calculus, which was originally introduced by Honda and Tokoro [26], and which was
independently discovered by Boudol [9] as a result of his work with Berry on chemical abstract machines
[8]. Another such asynchronous paradigm is the join calculus, which was recently proposed by Fournet and
Gonthier as a calculus of mobile agents in distributed networks with locality and failure [17, |18].

In this chapter, we study properties of asynchronous communication in general, not with regard to any
particular process calculus. We give a general-purpose, mathematically rigorous definition of asynchrony,
and then we show that this notion can be equivalently characterized by a small number of first-order axioms.
We model processes by labeled transition systems with input and output, a framework that is sufficiently
general to fit concurrent process paradigms such as the 7-calculus or the join calculus, as well as data flow
models and other such formalisms. These transition systems are similar to Lynch and Stark’s input/output
automata [35], but our treatment is more category-theoretic and close in spirit to Abramsky’s interaction
categories [1} 2].

Various properties of asynchrony have been exploited in different contexts by many authors. For instance,
Lynch and Stark [35] postulate a form of input receptivity for their automata. Palamidessi [45] makes use
of a certain confluence property to prove that the expressive power of the asynchronous 7-calculus is strictly
less than that of the synchronous 7-calculus. Axioms similar to the ones that are presented here have been
postulated by Shields [S9] and Bednarczyk [6] for a notion of asynchronous labeled transition systems, but
without the input/output distinction which is central to the present approach.

The main novelty of our approach is that the axioms are not postulated a priori, but derived from more
primitive notions. We define asynchrony in elementary terms: an agent is asynchronous if its input and/or
output is filtered through a communication medium, such as a buffer or a queue, possibly with feedback.
We then show that our first- and second-order axioms precisely capture each of these notions. This charac-
terization justifies the axioms a posteriori. As a testbed and for illustration, we apply these axioms to an
asynchronous version of Milner’s CCS, and to the core join calculus.

6.1 An elementary definition of asynchrony
If R is a binary relation, we write R~! for the inverse relation and R* for the reflexive, transitive closure of

R. We also write < for — ', etc. The binary identity relation on a set is denoted A. The composition of
two binary relations R and @ is written R o () or simply RQ, i.e. x RQ)z if there exists y such that z RyQz.

81

We write 2R for the unary relation {y|zRy}, and similarly Ry for {x|zRy}. The disjoint union of sets X
and Y is denoted by X + Y.

6.1.1 Labeled transition systems and bisimulation

To keep this chapter self-contained, we summarize the standard definitions for labeled transition systems and
weak and strong bisimulation.

Definition. A labeled transition system (LTS) is a tuple S = (S, A, —g, so), where S is a set of states, A is
a set of actions, —g C S x A x S is a transition relation and sy € S is an initial state. We call A the type
of S, and we write S: A.

We often omit the subscript on —g, and we write |S| for the set of states S. For @ € A, we regard 2 asa
binary relation on |S| via s % s’ iff (s, , s’) € —. The definitions of strong and weak bisimulation rely on
the following principle of co-inductive definition:

Principle 6.1. Let X be a set and P a property of subsets of X. If P(R) is defined by clauses of the form
Fi(R) C G;(R), where F; and G; are set-valued, monotone operators, and if F; preserves unions, then P is
closed under unions. In particular, there is a maximal R,,q, € X with P(Raz).

Proof. Since JF; preserves unions, it has a right adjoint 7. Then P(R) <= Vi.F;(R) C G;(R) —
R C N, FiGi(R). Hence P is the set of pre-fixpoints of a monotone operator and therefore closed under
least upper bounds. Let R0, = J{R | P(R)}. O

Definition. Let S and T be LTSs of type A. A binary relation R C |S| x |T| is a strong bisimulation if for
alae A, RS C HRand RS C HR 1 In diagrams:

sRt s Rt s Rt s Rt
ia = 3. aJ/ ia and ai = 3. ai J/a
t s Rt s’ s Rt

Next, we consider LTSs with a distinguished action 7 € A, called the silent or the unobservable action. Let
= be the relation —+*. For a € A \ 7, let = be the relation —*% 7*, A binary relation R C |S| x |T|is a
weak bisimulation if forall o« € A, R* C 2 Rand R~'% C 2R, In diagrams:

sRt s Rt sRt s Rt
o 53 a] Jo and o =3.a |
t s Rt s’ s Rt

By Principle[6.1] it follows that there is a maximal strong bisimulation, which we denote by ~, and a maximal
weak bisimulation, which we denote by ~. We say that s € |S| and ¢t € |T| are strongly (weakly) bisimilar
if s ~ t (s = t). Finally, S and T are said to be strongly (weakly) bisimilar if sg ~ £y (sg = tp).

Remark. Note that R C |S| x |T| is a weak bisimulation if and only if for all « € A, RS> C SR and
RS C 3R

If S, T, U are labeled transition systems and if R C |S| x |T| and @ C |T| x |U| are weak (respectively,
strong) bisimulations, then so are the identity relation A C [S| x [S|, the inverse R=! C |T| x [S|, and the
composition Ro@ C |S| x |[U|. Hence weak and strong bisimilarity each define a global equivalence relation
on the class of all states of all possible labeled transition systems.

In particular, ~ and ~, as binary relations on an LTS S, are equivalence relations. We denote the respective
equivalence classes of a state s by [s].. and [s]~. On the quotient S/~, we define transitions [s]. = [t]~
iff s %~ ¢, making it into a well-defined transition system. Similarly, on S/, we define [s]~ — [t]~ iff
s B~ t. Forall s € S, one has s ~ [s]. and s = [s]~, and hence S ~ (S/~) and S ~ (S/~). We say that
S is ~-reduced if S = S/~, and ~-reduced if S = S /.

82

6.1.2 Input, output and sequential composition

So far we have distinguished only one action: the silent action 7. We will now add further structure to the
set of actions by distinguishing input and output actions. Let in and out be constants. For any sets X and Y,
define a set of input actions In X := {in} x X, and a set of output actions OutY := {out} x Y. Note that
In X and OutY are disjoint. We will write input and output actions as in x and out z instead of (in,) and
(out,), respectively. Let B be a set whose elements are not of the form in x, outy or 7. The elements of
B + {7} are called internal actions.

Definition. We define X —p5Y to be the set In X + OutY + B + {7}. A labeled transition system S of type
X—pY is called an LTS, or simply an agent. If B is empty, we will omit the subscriptin X —pgY.

The traditional CCS notation is “z” for input actions and “Z” for output actions. We use in z and out = instead
to emphasize the distinction between a message in x and its content x.

Our labeled transition systems with input and output are similar to the input/output automata of Lynch and
Stark [35]. However, we consider a notion of sequential composition that is more in the spirit of Abramsky’s
interaction categories [} 2]. Given two agents S: X—pgY and T: Y —g5Z, we define S; T: X—pZ by
feeding the output of S into the input of T'. This is a special case of parallel composition and hiding. Notice
that this notion of sequential composition is different from the one of CSP or ACP, where T cannot start
execution until S is finished.

Sequential composition, together with certain other agent constructors that we will investigate in Sec-
tion[6.3.1] can be used to build arbitrary networks of agents.

Definition 6.2. Let S: X—pY and T: Y—pZ be agents with respective initial states so and to. The
sequential composition S; T is of type X — p Z. It has states |S| x |T| and initial state (s, ¢o). The transitions
are given by the following rules:

s g s’ « not output t S t! « not input g 2y g s + in_y>T 4
(5,8) Dsr (1) (s,t) =sir (5,1) (s,t) sr (8,1)

Example 6.3. For any set X, define an agent Zx of type X — X with states X + {_L}, initial state | and
transitions 1 — g and 2 2% | forall z € X. Zx acts as a buffer of capacity one: A possible sequence
of transitions is

inx outx inz out z

J.—)a:—)J_m—y>yﬂ>J_—>z—>J_...
Let X = {«}. Then Zx and Zx; Zx are the following agents:

out x
@ = v
inx
IX :CJD\/\—_/\\(E Ix;ZX = inx i inx
out x

(x, L) (x,)

outx

Here the initial state of each agent is circled. When representing agents in diagrams like these, it is often
convenient to omit the names of the states, and to identify weakly bisimilar states. With that convention, we

write:
inx inx inx

Ix=@_ "¢ IxIx~@_ e e

outx outx outx

Note that Zx;Zx is a queue of capacity 2. Let Y = {y,z}. The following diagrams represent Zy- and
Iy;Iy:

iny out z
out z iny out z out z iny iny
X\

Iy: .m. Iy;Iy% .C.W.V.

~——
inz outy inz inz outy outy
outy inz
[}

83

Again, Zy; Zy is a queue of capacity 2. Notice that it is first-in, first-out.

Two LTSs S and T of type A are isomorphic if there is a bijection between |S| and |T| preserving — and
initial states.

Lemma 6.4. 1. Sequential Composition of labeled transition systems is associative up to isomorphism.

2. The following hold for the composition S; T':

s =g s « not output tSpt « not input s %s 5 ¢ gT "
(5:1) Ssir (5',1) (5,t) Zsrr (5,1') (s,t) =s;r (s, 1)

3. Sequential Composition of agents respects both weak and strong bisimulation, i.e.

SleQ T1%T2 and SlNSQ TlNTQ
S1; Ty ~ Sy; Ty S1; Ty ~ S2; Ty

Proof. 1. Itis easy to check that ((s,t),u) = ((s',#'),u') if and only if (s, (t,u)) = (s', (t',u')).

2. The first two statements are trivial from Deﬁnition For the third one, assume s —* s; oy, So —* 8

andt 5 t; % ¢, 5% ¢/ Then (5,8) 5% (s1,t) 5% (s1,t1) = (s0,t2) 5% (s, ta) 5% (s',t').

3. Let S1,S2: X—gY and Ty, Ty: Y—p5Z. Suppose @ C |S1| x |Sz| and R C |T4| x |T3| are weak
bisimulations. We show that Q x R = {({s1,t1), (s2,t2)) | s1Qs2 and t1Rta} C [S1; T1| X |So; T2l is a
weak bisimulation. It suffices without loss of generality to show one of the two directions. Suppose

<81,t1> Q X R <827t2>
|
{s1,1)
for some o € X—pZ. There are three cases, depending on which of the three rules in Definition [6.2| was
used to derive (s1,t1) — (s},}):
Case 1: s; = s}, t; =t} and a is not output: By () there is s/, such that s; = s} and s} Qs}. Let th = t5.
Case2: 1 =1}, s; = s} and a is not input: By R there is ¢}, such that to = ¢} and ¢} Rt}. Let s = so.
Case3: s MYy gty Y ¢ and o = 7: By Q and R, there are), and t} such that sy == s, s, Qsb,
ty =2 t} and t} Rt}
In each case, by 2],
(s1,t1) @ X R (s2,12)
Tj/ \U/a
(s1,11) @ X R (s, 15).

For strong bisimulation, the proof is similar. d

Unfortunately, agents do not form a category under sequential composition: there are no identity morphisms.
In Section we will introduce two categories of agents, one of which has unbounded buffers as its
identity morphisms, and the other one queues.

84

6.1.3 Buffers and queues

For any set X, let X* be the free monoid and X** the free commutative monoid generated by X. The
elements of X* are finite sequences. The empty sequence is denoted by €. The elements of X ** are finite
multisets. The empty multiset is denoted by . We define the following agents of type X — 5 X:

1. The bujffer Bx has states X**, initial state (), and transitions w DT wr and zw 245 w, for all

weX*andx € X.

2. The queue Q x has states X *, initial state ¢, and transitions w N wx and zw 245y w, forallw € X*
and x € X.

The only difference between the definitions of Bx and Qx is whether the states are considered as sequences
or multisets. We will write B and Q without subscript if X is clear from the context. B acts as an infinite
capacity buffer which does not preserve the order of messages. For example, one possible sequence of
transitions is

@ inx outx inw

— —>xy—>xyz—> TZ — 2 — WZ.

@ acts as an infinite capacity first-in, first-out queue. A possible sequence of transitions is

inxc iny out x outy
e—>x—>zy—>y—>yz—>yzw—>zw

Lemma 6.5. [. B;B~BandB;B +# B.
2. Q:Q~Qand Q;Q # Q.
3. Q;B~Band Q;B + B.
4. If | X| > 2, then B; Q % Band B; Q # Q.

Proof. 1.-3.: Define (u,v)Rw iff vu = w, where u, v and w are multisets or sequences, as appropriate. In
each case, R is a weak bisimulation. To see that strong bisimilarity does not hold, observe that in each case,
the composite agent has silent actions, while B and Q do not.

outx

4.: Observe that 5; O has a transition sq LN s1 from its initial state such that s; Hyome i possible,

but s; 2222 s not. This is not the case for either B or Q. Such properties are preserved under weak
bisimulation. a

The remainder of this chapter is devoted to examining the effect of composing arbitrary agents with buffers
and queues.

6.1.4 Notions of asynchrony

In the asynchronous model of communication, messages are assumed to travel through a communication
medium or ether. Sometimes, the medium is assumed to be first-in, first-out (a queue); sometimes, as in the
asynchronous 7-calculus, messages might be received in any order (a buffer).

Our approach is simple: we model the medium explicitly. An asynchronous agent is one whose output
and/or input behaves as if filtered through either a buffer B or a queue Q.

Definition 6.6. An agentS: X—pY is

out-buffered if S=~S;B out-queued if S~S§S;Q
in-buffered if S~ DB;S in-queued if S~ Q;S
buffered if S=B;S;B queued if S= Q;S;0Q

We use the word asynchrony as a generic term to stand for any such property. The reason we distinguish six
different notions is that, although it is probably most common to think of asynchrony as part of the output
behavior of an agent, it is equally sensible to regard it as part of the input behavior, or both. Since input
and output behave somewhat differently, we will study them separately. Yet another notion of asynchrony,
incorporating feedback, will be defined in Section[6.3.2]

85

Remark. Because of Lemmal6.5] the operation of pre- or post-composing an agent with /5 or Q is idempotent
up to ~. Consequently, any agent of the form S; 3 is out-buffered, any agent of the form ;S is in-buffered,
an agent is buffered iff it is in- and out-buffered, and so on. Also, each of the six properties is invariant under
weak bisimulation.

Notice that it is almost never the case that an agent S is strongly bisimilar to S; B or to 3; S. This will be
clear from the examples in Section[6.1.5] Weak bisimulation appears to be the finest equivalence relation that
is sensible for studying asynchrony. It is also possible to consider coarser equivalences; the results of this
chapter generalize in a straightforward way to any equivalence on processes that contains weak bisimulation;
see Remark [6.12]

Let B be a set. Buffered agents S: X — Y form the morphisms of a category Bufz, whose objects are sets
X, Y, etc.; the identity morphism on X is given by the buffer Bx. Similarly, queued agents form a category
Quey. These categories have a symmetric monoidal structure, which will be described, along with other
constructions on agents, in Section[6.3.1]

6.1.5 Examples

Example 6.7. The first example shows the effect of post-composing different agents with the buffer 3. Notice
that although B has infinitely many states, S; 5 may have only finitely many states up to weak bisimulation.

r T outy
uty 0
S= ¢ SiBryy = (t,0) <" (t,y) <" (ty2) e N e im
linm inwl inml inwi .T[y).
u outy outy 2
(u, 0) (u, y) (u, y*)
Example 6.8.

outy T outy
o ——>0
out z B . T
inx
out z
[] e ——>0

Example 6.9. Here is an example on in-bufferedness. Notice that an input action is possible at every state of
B;S.

inx
. outy
inx Yty

0 B{I}, S =~ :}—>
inx OM‘Z 4z

6.2 First-order axioms for asynchrony

In this section, we will give necessary and sufficient conditions for each of the notions of asynchrony from
Definition These conditions are in the form of first-order axioms, by which we mean axioms that use
quantification only over states and actions, but not over subsets of states or actions. The axioms, which are
shown in Tables through characterize each of our notions of asynchrony up to weak bisimulation;
this means, an LTS is asynchronous iff it is weakly bisimilar to one satisfying the axioms. It is possible to lift

86

Table 6.1: First-order axioms for out-buffered agents

outy
§—>S§

S
\La = al
¢ y outy

S —

outy

outy ’ outy
PN

S——> 8§ —_—

S
a al = ai
S/

S//

/ / /

S
la
t

0

outy

[

-~ <

where o # outy

output-commutativity (OB1) output-confluence (OB2)
outy
s s
outyl =5 =5
S//

output-determinacy (OB3)

the condition “up to weak bisimulation” at the cost of introducing second-order axioms; this is the subject of
Section[6.6

6.2.1 Out-buffered agents

Table [6.1] lists three axioms for out-buffered agents. We use the convention that variables are implicitly
existentially quantified if they occur only on the right-hand-side of an implication, and all other variables are
implicitly universally quantified. Thus the axioms are:

(0B1) Output-commutativity: output actions can always be delayed.

(0B2) Output-confluence: when an output action and some other action are possible, then they can be per-
formed in either order with the same result. In particular, neither action precludes the other.

(0B3) Output-determinacy: from any state s, there is at most one transition outy foreachy € Y.

Each of these axioms is plausible for the behavior of a buffer. Output-determinacy is maybe the least intuitive
of the three properties; the idea is that once an output action is stored in a buffer, there is only one way of
retrieving it. Together, these axioms characterize out-bufferedness up to weak bisimulation:

Theorem 6.10 (Characterization of out-buffered agents). An agent S is out-buffered if and only if S = T for
some T satisfying (OB1)—(0OB3).

This is a direct consequence of the following proposition:
Proposition 6.11.
1. Every agent of the form S; B satisfies (OB1)—(0B3).
2. If S satisfies (OB1)—(0B3), then S =~ S; B.

Proof. 1. Clearly, the buffer 3 satisfies (0B 1)-(0B3). Moreover, these conditions are preserved by arbitrary
sequential composition from the left. We show this for (OB 1); the other cases are similar. Suppose B satisfies
(0B 1). To show that S; B satisfies (OB 1), consider transitions

(uy8) " (u, ')

ia
oy

87

Table 6.2: First-order axioms for in-buffered agents

« / inx / inx /
§—>S§ s —2> ¢ Ss——>§ §——s
inx = inxi lmz [e% = (xl la
t S/I H t S/l 8// % t
input-commutativity (1B1) input-confluence (1B2)
inxc /
§——> 8§
;o nx
mwl =5 =35 s = s—1

input-receptivity (1B4)

input-determinacy (1B3)

Table 6.3: First-order axioms for out-queued agents

outy outy

/

outy outy

I !

§——=>5 —5 S §—>§
ST
t s outy ¢ s s ”“ty
where « not output where « not output
output-commutativity’ (0Q1) output-confluence’ (0Q2)
outy ’
S Y=z
{mtzi = and
3/ — S//
S/I

output-determinacy’ (0Q3)

Table 6.4: First-order axioms for in-queued agents

SHS H

S
lmz = mxi

l

S
lmz
—1

inx /

~

H

V)

S
ial

H%

S PSS
Where o not 1nput where « not input
input-commutativity’ (1Q1) input-confluence’ (1Q2)
inx /
§——>5§
;o inx
mml =S5 =S5 s = s§s—>t

input-receptivity (1Q4)

input-determinacy (1Q3)

88

Then s 2% &' in B. By Definition[6.2] there are three cases for (u,s’) < (u’,t):

Casel: s’ =t,u = v/, anot output.
Case2: u=1u',s <t anotinput. Hence, by hypothesis there is s” such that s < s’ 2% ¢,

’ inx

Case3: o=r1,u % o/, s ™% t. Hence, by hypothesis there is s” such that s —— s 2% ¢,

In each of the three cases, the diagram can be completed:

Case 1: Case 2: Case 3:
(u, s) —Ys (u, t) (u, s) —Ys (u, 8') (u, s) —Ys (u,s")
al la al ia i l
(W ys) e () () S ut) (") S ()
2. Suppose S: X —pY satisfies (OB1)—(0B3). For any sequence w = y1ys -+ - yn € Y™, we write s fmﬂ) t
if § 2, oMY, 2MYUny 4 (p > 0). Note that if w’ € Y* is a permutation of w, then s 222 ¢ iff

out w outw

s 2% ¢ by (0B1). Consider the relation R C |S| x |S; B| given by sR(t, w) iff s < t. Clearly, R relates
initial states. We show that R is a weak bisimulation. In one direction, suppose

s R (t,w)

!

s’

Two cases arise:

Case 1: « = oury for some y € w. By the definition of R, s =% 5" “™ { where w = yw'. By (0B3),

we have s’ = 5. Therefore s’ R{t,w’), and also (t,w) = (t,w').v’

Case2: « # outy forall y € w. From s ““% tand s = s/, we get s’ 2 t/ and t < ' by repeated
application of (0B2). Therefore s’ R(t', w) and (t,w) = (t',w) (notice the use of = here, which is necessary
in case « is an output action).v’

In the other direction, suppose
s R (t,w)

(' w'y.

We distinguish three cases for (¢, w) < (', w’), depending on which rule in Definition[6.2] was used.

out w

Casel: ¢t % ¢/, w = w and o not output. Then s 2% ¢ 2 ¢/, which implies s = s 22% ¢/ by
repeated application of (0B1), i.e. s = s'R{t, w).v’
Case2: t=1t,w = w and a not input. Since B has only input and output transitions, o must be out 3 for

some y € Y withw = yw'. Then s 2% o 225 ¢ je. s s'R{t,w'").v
Case3: t 2% ¢/, w ™% ' and @ = 7. In this case, w' = wy and s MWy XYy ¢/ hence
sR(t',w'y.v t

Remark 6.12. Theorem [6.10] generalizes to other notions of equivalence of processes, as long as they are
coarser than weak bisimulation. Indeed, if = is an equivalence of processes such that ~ C ==, then for any
agent S, there exists some out-buffered T with S = T iff there exists T’ satisfying (0B1)—(0B3) and S = T".
This is a trivial consequence of Theorem Similar remarks apply to the other results in this section and
in Section

89

6.2.2 In-buffered agents

The axioms for in-buffered agents are listed in Table[6.2] The main difference to the out-buffered case is the
property input-receptivity: an in-buffered agent can perform any input action at any time. This was illustrated
in Example [6.9] The input/output automata of Lynch and Stark [35] have this property, and so does Honda
and Tokoro’s original version of the asynchronous 7-calculus [26].

Remark. Somewhat surprisingly, the axioms in Table are not independent. In fact, (IB1) and (IB2) are
equivalent in the presence of (IB3) and (1B4). We present all four axioms in order to highlight the analogy to
the output case.

Theorem 6.13 (Characterization of in-buffered agents). An agent S is in-buffered if and only if S ~ T for
some T satisfying (1B1)—(1B4).

This is a consequence of the following proposition:
Proposition 6.14.
1. Every agent of the form B; S satisfies (1B1)—(1B4).
2. If S satisfies (1B1)—(1B4), then S =~ B; S.

Proof. The proof is much like the proof of Theorem [6.T1] We give the details of 2. to demonstrate how each
of the properties (IB1)—(IB4) is used.

2. Suppose S: X— pY satisfies (IB1)-(1B4). For any sequence w = x1z2 -+ -z, € X* we write s /m—w> t
if s 225072, 0 2% (n > 0). Again, notice that if w’ € X* is a permutation of w, then s ~~ ¢t iff
muw mw

s — t by (1B1). Consider the relation R C |B; S| x |S| given by (w, s) Rt iff s — t. R relates initial
states, and we show that it is a weak bisimulation. In one direction, suppose

(w,s) Rt

ia

t'.

Then s % ¢, hence (w, s) = (0,£) = (0, #'). But clearly (0, #')Rt'.
In the other direction, suppose
(w,s) Rt

"}

(w', s").
We distinguish the usual three cases by Definition [6.2}

Casel: s = s, w = w' and a not output. In this case, o = inx for some x € X with w’ = wz. By
definition of R, s —% ¢t =% ¢/ hence (W', s)Rt' v
Case2: s s/, w=w'and a notinput. To s = s’ and s ~—— ¢ repeatedly apply (IB2) to get t = ¢’ and
;W gy ! !
s' — t/, hence (w, Y Rt'.v
outx i inx

Case3: w — w', s 2% ¢ and o = 7. Then w = 2w’ and s = s 225 t. But by (IB3), s’ = s,
hence s’ ™ ¢, therefore (w', s') Rt.v’ d

6.2.3 Out-queued and in-queued agents

The results for buffers are easily adapted to queues. The relevant properties are given in Tables [6.3]and [6.4]
Notice that the conditions for commutativity and confluence differ from the respective rules in the buffered
case only in their side conditions. Different outputs (respectively, different inputs) no longer commute or
conflow. Output-determinacy is strengthened: from each state, there is at most one possible output transition.

90

Note that (IB1)—-(1B4) imply (1Q1)—(1Q4). This is due to the fact that every in-buffered agent is also in-
queued as a consequence of Lemma [6.5(3). On the other hand, no implication holds between (0Q1)—(0Q3)
and (0B 1)—(0B3), since out-bufferedness and out-queuedness are incomparable notions due to Lemmal6.5(4).

Just like in the buffered case, the axioms for input are not independent: we have (IQ1) <= (1Q2) in the
presence of the other axioms.

Theorem 6.15 (Characterization of in- and out-queued agents). An agent S is out-queued if and only if S ~ T
for some T satisfying (0Q1)—(0Q3). Moreover, S is in-queued if and only if S = T for some T satisfying
(1Q1)—1Q4). |

6.3 More agent constructors and asynchrony with feedback

6.3.1 Some operations on agents

In this section, we will introduce some operations on agents, such as renaming and hiding of actions, parallel
composition and feedback.

1. Domain extension. If S is an LTS of type A, and if A C A’, then S can also be regarded as an LTS of
type A’.

2. Domain restriction (hiding). If S is an LTS of type A, and if 7 € A’ C A, then S|4/ is defined to be
the LTS of type A’ which has the same states as S, and whose transitions are those of S restricted to
IS| x A" x |S].

3. Composition with functions. Let S: X—gY,and let f: X’ — X and g: Y — Y’ be functions. By
f38; g we denote the agent of type X'—pY” with the same states as S, and with input transitions
inx . infx . out gy . outy . « .
5 ——y.8;9 tif s ——>g ¢, output transitions s —r.g., ¢ if s —=g ¢, and with s — .5, ¢ iff
s S»g t when « is an internal action.

Domain extension, domain restriction and composition with functions are special cases of the following,
general renaming construct:

4. General renaming and hiding. Let S be an LTS of type A and let r C A x A’ be a relation such that
rra’ iff 7 = . Define S,, to be the LTS of type A’ that has the same states and initial state as S and
transitions s i>sr tiff s S5g ¢ for some ara’.

Let us now turn to various forms of parallel composition.

5. Parallel composition without interaction. Let S and T be LTSs of type A. Then S||T is the LTS of type
A with states |S| x | T| and initial state (sg, to), and whose transitions are given by the rules

o / a !
s —g S t—7pt
(s,t) i>SHT (s, t) (s,t) g)SHT (s,t') '

6. Symmetric monoidal structure. Let X @ X' be the disjoint union of sets. For S: X—pgY and
T: X'—gY’', define S® T: X & X'—pY @Y’ to be the agent S| T,, where r and ¢ are the
inclusions of X — Y, respectively X' —pY” into X & X'—gY @ Y’. Then @ defines a symmetric
monoidal structure on the categories Buf and Que. The tensor unit is given by the agent I of type () —)
with one state and no transitions.

The constructors we have considered so far, including sequential composition, are not sufficient to build
arbitrary networks. What is missing is the ability to construct loops. The next constructor allows the output
of an agent to be connected to its own input:

91

7. Self-composition (feedback). Let S: X—pY. Let O C Y x X be a set of pairs. Define S O O, the
self-composition of S along O, to be the LTS of type X — Y whose states are identical with those of
S, and whose transitions are given by the rules

s Bt Pt LN (y,z) € O
S i>soo t s l)soo t .

In the common case where S: X—pX and O = {(z,z) | v € X}, we will write S° instead of

SOO0.
We can use self-composition to define both sequential and parallel composition.

8. Sequential composition. The sequential composition of agents was defined in Definition [6.2] Alter-
natively, one can define it from the more primitive notions of direct sum, feedback and hiding: Let
S: X—pYandT: Y—pZ. ThenS®T: X @Y —pY & Z, and with AY = {(y,y) | y € Y}, one
gets S;T= ((SOT) OAY)|x—,2.

9. Parallel composition (with interaction). Let S, T: X — pX. The parallel composition S|T is defined
to be the agent (S||T)°.

Proposition 6.16. All of the agent constructors in this section respect weak bisimulation. For instance, if
S~ S and T ~ T, then S, = S/ and S|T ~ S'|T’, etc. O

6.3.2 Asynchrony with feedback

In concurrent process calculi such as CCS or the m-calculus, we do not think of channels as edges in a data
flow graph, but rather we think of a single global ether through which all messages travel. This idea is most
visible in the chemical semantics of these calculi [8]]. There the ether is modeled as a “chemical solution”,
which is a multiset of processes, some of which are transient messages. As a consequence, messages that
are emitted from a process are immediately available as input to all processes, including the sending process
itself. In our setting, this is best modeled by requiring that all processes are of type X —X for one fixed set
X, and by using self-composition to feed the output back to the input.

In the presence of feedback, out-bufferedness takes a slightly different form, which is expressed in the
following definition.

Definition. An agent S: X — p X is out-buffered with feedback if S ~ R° for some out-buffered agent R.

Example 6.17. The following agent S is out-buffered with feedback, but not out-buffered:

outx outx
o ———>0
S = inx inxT inx
e ——>0 —> 0,
outx out x

Remark. Recently, Amadio, Castellani and Sangiorgi [4] have given a definition of asynchronous bisimula-
tion, which accounts for the fact that an agent of type X — X might receive a message, and then immediately
send it again, without this interaction being observable on the outside. Feedback is concerned with the dual
phenomenon, namely a process that sends a message and then immediately receives it again.

Out-bufferedness with feedback is characterized up to weak bisimulation by the first-order axioms that are
listed in Table

Theorem 6.18 (Characterization of out-buffered agents with feedback). An agent S: X —p X is out-buffered
with feedback if and only if S =~ T for some agent T satisfying (FB1)—(FBS5).

Table 6.5: First-order axioms for out-buffered agents with feedback

out x / out x / outx ’ outx /

S§—>S S§—>3S§ S§—>S§ §—>S§
J/(X : al J/(X Otl :> Oéi \L(X

¢ s out x ¢ s s out x ¢

where o # out v and o # T

output-commutativity (FB1) output-confluence (FB2)
outx / outx / out T /
§——=>35 §—>5 §—>8
uurxl =5 =43" linm = \imm
s” t t
output-determinacy (FB3) feedback (FB4)
outx ’ out x ’ out x ’
—> S S ——> 8 S ——> S
T\L = r \L‘r or T\L
nx
s s ourx t s

output-tau (FBS)

Before we prove this theorem, we need two lemmas. The first one gives a useful consequence of the axioms
for out-bufferedness with or without feedback.

Lemma 6.19. Suppose an agent S satisfies either (OB1)—(0B3) or (FB1)—(FBS). Then it satisfies the follow-
ing property, which we call backwards output-determinacy:

/

s s
out.r\L i/out:c = S = s
t~t
Proof. The proof is straightforward. The relation R := {(s, s') | s ~ s" or (3t,t')s 255 t ~ t/ aouts s'}
is weak bisimulation that relates s and s'. d

The next lemma establishes a technical property needed in the proof of Theorem [6.18] Recall that an agent
T is ~-reduced if T = T /=~.

Lemma 6.20. Assume T is ~-reduced and satisfies (FB1)—(FBS). Define a subset A C {(s,t) | s = t} as
follows: (s,t) € Aiff for all sequences w € X*,

out w out w

Then the following hold:

outx

1. Whenever s = t 2% ' and s ™% s' 55 t/, then (s,t) € Aiff (s', ') € A.

outxr inx

2. Ifs = tand (s,t) & A, then s 555 t for some x € X.

93

t . tx t
Proof. 1. =: Assume (s,t) € Aand s’ 2 u. Then there are v and t” withu = vand t 25 s 2% o,
; outw

By (FB3), s’ = s”, hence s’ 2“5 v and u = v. This shows (s',t') € A.

out w out w

«: Conversely, assume (s, #') € A and s 2 u. We show that there exists v with u = v and t 2
v.

outx

Casel: z € w. We get s’ 22 o/ and u 2% o' by (FB2), and ¢/ 2% o/ and v/ I o' by the
assumption that (s', ') € A, thenu = v, 2T and also t 21 gy ZITs oy by (FB1). By Lemmal6.19}

V1 & V9, hence, since T is ~-reduced, v; = v9. We can take v = vy.

’
Case2: z € w. Let zw’ be a permutation of w that begins with x. By (FB1), s NP 2% 4, and
by (FB3), s’ = s”. Since (s,t') € A, one has v — v and ' 2%, for some v, hence t 2225 v and

out w

again by (FB3),{ —— v.

2. Assume s < ¢ and (s,t) ¢ A. By definition of A, there exists w € X* with s < u such that there
exists no v with t 22 v and u = v. Choose such a w of minimal length, and let w = w’z (note w

out w outx out w T . .
cannot be the empty sequence). Then s s’ u, t ', and " — t', and there is no v with
out x ; outx inT

t" 2% vand u = v. By (FBS), there is a transition u 2T ¥, From s 4%y o 2% 4 22 ¢/ and
(FB1), one gets s =% 2% ¢ 2%, ¢/ By Lemmal6.19] ¢” ~ t, hence ¢ = ¢ since T is ~-reduced.

outx inx

This shows s —— — ¢. O

Proof of Theorem|[6.18} Consider the following auxiliary operation on agents: For R: X— X, define R*
by

a out inx

s —Rrt s —R—R 1T
[} T

S —Re t S —Re t

In general, (—)° does not respect weak bisimulation. Notice that if R satisfies (OB1) or (IB1), then R® ~
R°.

=: Suppose S: X—pX is out-buffered with feedback. Then there is some R satisfying (OB1)—(0B3),
such that S ~ R°. It is straightforward to verify that R*® satisfies (FB1)—(FBS5), and we can take T = R® ~
R° ~ S.
<: Suppose T: X—pX satisfies (FB1)—~(FBS5). We will show T is out-buffered with feedback. Notice
that T/~ also satisfies (FB1)—(FB5), hence we can without loss of generality assume that T is ~-reduced.
Define a subset A C {(s,t) | s = t} as in Lemma[6.20] Let R: X— X be the agent obtained from T by
removing all transitions of the form s ~ ¢ where (s,t) ¢ A. More precisely, |R| = |T| and s g t iff
a#7and s S t,ora = 7and (s,t) € A. We claim that R satisfies (0B1)-(0B3). Indeed, (0B1) and
(0B2) follow from the respective properties of T in the case where o # 7. In the case where a = 7, (0OB1)
for R follows from (FB1) for T and Lemmal6.20[1,<); whereas (0B2) follows from the definition of A and
Lemma[6.20(1,=). Finally, (0B3) for R follows directly from (FB3) for T.

We now show that T = R*. The two agents have the same states. For transitions, first note that g C
— 7, and hence -re C —pe = —, with the latter equality holding because of (FB4). For the converse,
assume s —»p t. If a # 7 or (s,t) € A, then s >R t and we are done. Else a = 7 and (s, t) ¢ A, and by
Lemmal6.20(2), s 24T M+ holds in T, hence in R. This shows s —sge .

We have shown that T = R*® = R° for some R satisfying (0B1)—(0B3). Hence, T is out-buffered with
feedback, which finishes the proof of Theorem O

6.4 Example: Asynchronous CCS

In this section, we will show that an asynchronous version of Milner’s calculus of communicating systems
(CCS) [40,41] fits into the framework of out-buffered labeled transition systems with feedback.

Let X = {a,b,c, ...} be an infinite set of names, and let X = {a, b, ¢, ...} be a corresponding set of co-
names, such that X and X are disjoint and in one-to-one correspondence via (7). We also write @ = a. Names
correspond to input-actions, and co-names to output-actions. Let 7 ¢ X + X, and let Act = X + X + {7}

94

Table 6.6: Transitions rules for asynchronous CCS

“OTapSP e PSP 0S¢
SYync =
(sum) B - i ’ Fle = Pld
G+G &P ()APﬁP’ ad LUL
a res &
um'y —S =L PALDPAL
G+G &P (el P& P
« re a
(comp) —— i Plf] L% Py
PlQ = P'|Q rec) PP AY¥Pp
a rec o
(comp) — 2L Amr
PIQ % PlQ

be the set of actions. We use the letters «, 3, . .. for actions. We use the letter L for sets of names, and we
write L for {a | a € L}. We use the letter f for relabeling functions, which are functions f : X — X. Any
relabeling function extends to f : Act — Act by letting fa = fa and f1 = 7.

Let A, B, C, ... range over a fixed set of process constants. Asynchronous CCS processes P, (), ... and
guards G, H, ... are given by the following grammars:

P:=a0|PP|Q\L|Pf]|A|G
G:::a.P|T.P|G+H|0

Notice that the choice operator + is restricted to input- and 7-guarded processes. Output-guarded choice
is traditionally disallowed in asynchronous process calculi. This is in accordance with the results of this
chapter, since output-guarded choice violates the two asynchronous principles of output-determinacy and
output-confluence. For the m-calculus, Nestmann and Pierce [44] have recently shown that input-guarded
choice can be encoded from the other constructs; hence they include it in their version of the asynchronous
m-calculus, and we include it here for asynchronous CCS as well.

Assume a set of defining equations AdéfP, one for each process constant A. The operational semantics
of asynchronous CCS is given in terms of a labeled transition system Sccs = (S, Act, —), which is defined
in Table [6.6] The states are CCS processes. Notice that we have not specified a distinguished initial state;
this is more convenient in this context, and no harm is done. Also notice that there is no rule for 0. This is
because the process 0 is inert, i.e. there are no transitions 0 P

Lemma 6.21. If G = P for a guard G, then oo ¢ X, i.e. o is not an output action.
Proof. By induction on the derivation of G % P. O

To fit the labeled transition system Sccs into our framework of labe}ed transition systems with input and
output, we simply identify the set X of names with In X, and the set X of co-names with Out X. Then Sccs
is a labeled transition system of type X — X. Before we prove that this system is out-buffered with feedback,
observe that output-determinacy fails for Sccs:
a.0/a.0 —>0la
|
alo0,

and 0|a # a|0. The following lemma helps to remedy the situation:

95

Lemma 6.22. An agent S is out-buffered with feedback if it satisfies (FB1), (FB2), (FBS), (FB4) and the
following property (WEAK-FB3), which we call weak output-determinacy:

outy outy

/

S S
outyl = outyl

outy
1 1
S s ——

]

Proof. First notice that if S satisfies the hypothesis, then so does S/=z, hence one can without loss of gener-
ality assume that S is ~-reduced. Next, one shows backwards output-determinacy as in Lemma[6.19] For a
~-reduced process, backwards output-determinacy and (WEAK-FB3) already implies (FB3), and therefore S
is out-buffered with feedback by Theorem O

Theorem 6.23. The labeled transition system Sccs is out-buffered with feedback.

Proof. By Lemma|6.22] it suffices to show that Sccg satisfies the axioms (FB1), (FB2), (WEAK-FB3), (FBS),
and (FB4). Each of these is proved in a similar fashion. (FB1), (FB2), (WEAK-FB3) and (FB4) can be proved
independently, while (FB5) relies on (FB2) and (WEAK-FB3) as hypotheses. Since this is the most interesting
case, we show only the proof of (FBS). Suppose therefore that (FB2) and (WEAK-FB3) have already been
proved. We want to show

Pprtsq PltsqQq P-tsqQ
d =] l/
R R—tsg

We show this by induction on the derivation of P KN Q. We distinguish six cases based on the last rule in
that derivation. Remember that this last rule cannot have been (sum) or (sum’) by Lemma

(act): P =0.0 and Q = 0. This is impossible, since b.0 /> R.

(comp): P = P'|P" and Q = Q'|P”, where P’ LN Q'. Then P = R must have been inferred by one of the
rules (comp), (comp”) or (synch). Therefore, R = R’|R”, and one of the following holds:

T

Case 1: P’ L+ R and P = R”. By induction hypothesis on P’ = R’ and rb C% either there is
S’ with R/ —> S’ and Q' L> S’, in which case we can choose S = S’|P”; or else Q' — R/, and hence
Q Q/|P// _) R/|P// —

Case2: P'=R'and P" ~ R". Then one can choose S = Q'|R".
Case3: P’ % R'and P’ % R’. Incase o # b, we can use (FB2) to get R’ 2 8" and % 2 8, and
we let S = S’|R". In case a = b, we can use (WEAK-FB3) to get either R’ —> S’ and Q' — S’, and we

let again S = S’|R"; orelse R’ = ', and hence Q = Q’|P” b=a, Q'|R" =

(comp’): This case is symmetric to the previous one.

T

(res): P = P'\ Land Q = Q' \ L, where P’ LN Q' and b¢ L. Then R= R \ Land PP — R'. By
induction hypothes1s we get elther Q' 5 S and R’ L, S’ for some S, and we can let S = S’ \ L. Or
else we get Q' LA R’, hence QQ %R

(rel): P = P'[f] and Q = Q'[f], where P’ % Q" and b = fé. Then R = R'[f] and P’ > R’. By induction
hypothesis, we get elther Q' 5 S"and R' 5 S’ for some S’, and we can let S = S’[f]. Or else we get
Q"5 R, hence Q %R

(rec): P = A where A &l prand P’ % Q. Since A = R, we must also have P’ = R, and the claim follows
by induction hypothesis. a

96

Table 6.7: Transitions rules for the core join calculus

(str]) AI—NH,P|Q — Al—NH,P,Q

(str2) AbyI,defRyA...AR,inP — ARy, ...,R,FnIP

where N' = N +dn(Ry,...,Rn)

(_]OZ’I“L) AFN H,I1<g1>,...,$n<7jn> — AFN H, [gl/ﬁl,...,gjn/@n]P

where (z1(01)] ... |xn(0,) > P) € A

6.5 Example: The core join calculus

The join calculus was introduced by Fournet and Gonthier in [[17] and further developed in [18]]. It is a
concurrent, message passing calculus like the 7m-calculus. However, the reaction rule is simpler and closer
to the semantics of a chemical abstract machine. Moreover, the scoping rules of the join calculus are such
that locality can be easily modeled. The full join calculus deals with a distributed system of locations, and it
contains features that deal with such issues as migration and failure. Here, we will only be concerned with
the core join calculus, which is the fragment of the join calculus that pertains to a single location.

Let N be a countable set of names. We use x, y, . .. to denote names, and Z, 7, . . . to denote sequences
of names. Core join calculus processes P, (), ... andrule R, S, ... are given by the following grammars:

Pu=a2(j) | PIQ | def Ry A...ARpin P Ru=ay(1)]...|2,(0n) > P

A process of the form z(?) is called a message. In the rule R = x1(91)]| . .. |z, (0,) > P, the names o1 . . . Uy,
are bound, and they are assumed to be distinct. The names x; ...z, are called the defined names of R,
denoted dn(R). Finally, all of the defined names of Ry, ..., R, are bound in the process def Ry A ... A
R,, in P. For a more comprehensive treatment, see [17} [18]].

The semantics of the core join calculus is given in the style of a chemical abstract machine. A state
A Fy IIis a multiset A of rules together with a multiset IT of processes. N is a set of names, such that
Jfn(ATI) C N. We identify states up to a-equivalence, i.e. up to renaming of bound variables. The transitions
of this machine follow a simple idea: the processes on the right hand side evolve according to the rules on the
left-hand side. There are two kinds of transitions: structural transitions, denoted —, and reactions, denoted
. The transition rules are shown in Table The rule (join) is of course only applicable is the length of y;
and 9, are the same, for all 7. Note that in the rule (str2), the sets NV and dn(R;, ..., R,,) must be disjoint;
this may necessitate renaming some bound variables indef R; A ... A R, in P.

Remark. In the original formulation of the join-calculus [17, [18]], the structural rules are assumed to be
reversible. We adopt a different convention here. Especially the inverse of rule str2 causes problems in our
setting, as it allows a state under certain conditions to rename its free names.

To make make the join calculus into a labeled transition system with input and output, let X = {z(J) | = €
N, § € N*} be the set of messages. We add input and output transitions:

(in) AFyT 2505 A by L 2(f)
(out) AbyILaz(j) 229 ApyI

Further, we let = = — U —. With these definitions, the join calculus defines a labeled transition system
Sjoin c X—X.

Theorem 6.24. The labeled transition system Sion defined by the core join calculus is out-buffered with
feedback.

97

Table 6.8: Second-order axioms for out-buffered agents

outy outy outy outy
s~ t s ~~t s~ t s ~ t outy outy
s ~- 1 s ~~t
o 7, de ﬂ =l de
m”y outy Uuly\U/ = outy\U/ ‘U’T
s s’ - s -t o o o~ ¢
where « # out y where « # outy -
- (OB3%*)
(OB1%*) (OB2*)
outy T outy
outy out s —>t = S :>’V> t
s>t = s 2t
where s reachable

(OB4*) 055

6.6 Other characterizations of asynchrony

In Sections and[6.3] we have characterized notions of asynchrony by first-order axioms up to weak bisim-
ulation. It is possible to remove the words “up to weak bisimulation”, i.e. to characterize asynchrony directly.
This happens at the cost of introducing second-order axioms. The shift to second-order seems to be inevitable,
since weak bisimulation itself is a second-order notion.

6.6.1 Out-buffered agents

Consider the two different output transitions in

The transition s % v has the implicit effect of disabling the action inx. The transition ¢ Y5 u has
no such side effect. Roughly, out-bufferedness is characterized by the fact that every output transition RN

outy

factors into a silent part = and a part ~~ without side effects.

The second-order axioms for out-buffered agents are given in Table[6.8] A state s in an LTS S is reachable
if there exist transitions so — ... — s from the initial state so. If S ~ T, then for every reachable s € S,
there is reachable ¢ € T with s ~ ¢.

out
Theorem 6.25. An agent S: X—pgY is out-buffered if and only if there exists a binary relation (Au’;/ -

IS| x [S| for eachy € Y, satisfying (OB1*)—(OB5*).

Proof. =: Suppose S is out-buffered. By Theorem [6.10] S ~ T for some T satisfying (0B1)-(0B3). For

€ |T| with s = s 2% ¢/

~ t. It is easy to verify that ’\'>
satisfies (OB1*)—(0B5%).

<: Suppose S satisfies (0OB1*)—(0B5*). Notice that if a relation %;y satisfies (OB 1*)—(0B5%*), then so does

outy
/2 o & o ~. Hence assume without loss of generallty that N> is invariant under weak bisimulation. For any
out yiout yo out y
sequence w = Y1Ys - - - Yn € Y ¥, write s “’> tifs =~ ~~ ... =~ =~ t. Note that 1n the case n = 0 this

means s = t. Consider the relation R C |S| x |S; B| defined by R = {(s, (t,w)) | s Y tand t reachable}.

98

Clearly, R relates initial states: sqR({sq, #). We show that R is a weak bisimulation. Suppose

s R (t,w)

“|

s,

where w = y1 - - - Yn.-

Case 1: «is outy; for some 1 < 7 < n. Take the minimal such 7. Then

out yi outy;—1 outy; out yi41 outyy
S - e - ° o o - e - ° ~ t
outy; \L out UL\H/ T\U/ T\H/ TM,
, out Y1 outy; —1 outy; 41 out Yn, f
s A . A e A e A - A e ~ ot

by (0B1*) and (OB3*). With w’ = y; - -y;_1Yi+1 - - - Yn We hence have s'R(t',w’), and also (¢, w) 2
{t' w).v
out w

Case2: « # outy; foralli. From s = s’ and s =~ t, by repeated application of (OB3*), we get s’ [
and t = ¢/ for some ¢/, hence s’ R(t', w) and (t, w) = (t',w).v’

Now suppose
s R (t,w)
i/a
', w'.
We distinguish three cases for (¢, w) < (', w’) by Definition[6.2}
Casel: t % ¢, w = w' and « not output. Then s [N implies s = s’ oy by repeated
application of (OB2%), i.e. s = s’ R(t',w).v’

Case2: t=+¢,w = w and o not input. If w = yy - - - yn, then o = outy; for some 1 < ¢ < n. Let: be
the minimal such index. Then

out y1 outy;—1 outy; outyi4+1 out Yn
S R - R e > e X - > e =
”my\u/ uuty\u/

, out y1 outy;—1

S A= s e X e
by (0B4*) and (OB2*), hence s 2 s'R{t,w'y.v
Case3: ¢t 2% ¢/ w ™Y ' and @ = 7. Then w' = wy. By (OB5*), since ¢ is reachable, there is "

. outy out w L. . out w outy

with ¢t = ¢” ~~ t/. Then s =~ t and repeated application of (OB2%) give s = s’ ~> t" =~ t/, hence
sR{t', w'").v O

t
Remark. Notice that Principle can be applied to obtain a unique maximal relation (g';j, for every y,
satisfying (OB1%*)—(0B4%*). Thus, S is out-buffered if this unique relation also satisfies (OB5*). Notice in

particular how (OB 1%) and (OB2*) resemble the definition of weak bisimulation; one may think of the relation
out Yy .. .
~> as a weak bisimulation up to a suspended output.

6.6.2 In-buffered agents

The second-order axioms for in-buffered agents are given in Table This is similar to the axioms for
out-buffered agents, but notice that there is no analogue to (0B2*). This reflects the fact that unlike output
transitions, input transitions can enable, but not disable other transitions.

99

Second-order axioms for in-buffered agents

Table 6.9:
inx inx ng;t = s2E ¢ at
s~~~ s~ t inx ; inx ¢
O{‘U’ = ozU/ e} 8§~ - 5~ (IB3%*)
’) jnz inmﬂ’ mrU/ ‘UT inx
§ s -t s s o~ s = s~
where a # inx (1527 where s reachable
Table 6.10: Second-order axioms for out-queued agents
outy outy outy
S R s t s~ s At
@ = a =
\U; U; outy \U/ \U/ \U/ outy U;
K s s At
where « not output where o not output
(0Q1*) (0Q2%)
outy outy
s Rt s A1 ont]
outz\u/ =Yy=z and outz\u/ ‘U’T st = S g% t
s s~ t (0Q4%*)
(0Q3*)
LN S G
where s reachable
(0Q5%)
Table 6.11: Second-order axioms for in-queued agents
inx inz ot o s My
s A=t s At fyg; " fz\n;; ¢
5~ s ~
= 1Q3*
Q\U’ ‘U’ ‘U’ in I‘U’ = in I‘U’ \U/T ()
’ inx ’ inx
B s -t s s o~ t s = s~»5
where a not input where s reachable
o (1Q2*)
(1Q1*) (1Q4%)

100

Theorem 6.26. An agent S: X —pgY is in-buffered if and only if there exists a binary relation N for each
r € X, satisfying (1B1*)—(1B4*).

Proof. =: As in the proof of Theorem [6.25]

inw
<: Suppose S satisfies (IB1*)—(1B4*). Again, we can without loss of generality assume that ~> is invariant
.. . . nw inxiinxo inxy
under weak bisimulation. For any sequence w = z1xo---x, € X*, write s =~ tif s N R e At

(n > 0). Consider the relation R C |B; S| x |S| defined by R = {((w, s),t) | s NS t and ¢ reachable}.
Notice that R relates initial states: ({}, so) Rso. To see that R is a weak bisimulation, suppose

(w,s) Rt

o

t/

inw i
where w = x - - - 2,,. From s ~~ t, with (1B3*) and weak bisimulation we get s = s’ ~ t, hence s’ = 5"
for some s” = t’. Consequently (w, s) = (0, s') = (0}, s"") Rt’. Conversely, suppose

(w,s) Rt

Again, we distinguish three cases:

Casel: s =5, w < w and o not output. Then a@ = inx and w’ = wzx for some x € X. By (IB4*),
inx in o inx inw inx
t ~~ t” for some ¢, and by (IB3%), t == t' ~ t, hence also t ~~ t/, and we get s ~~ t ~~ t', i.e.
inx

(w',s)Rt' and t = t'.v/
Case2: s = s, w = w' and o not input. From s et by repeated application of (IB1%), we get t = ¢/
and s' /- t', ie. (w,s")Rt' .v

out x inx .
Case3: w—uw',s —= s anda=7.Ifw = 21292, then £ must be z; for some 1 < 7 < n. Let

such 7 be minimal and construct

inxy inx;_1 inx; inwiy1 inTy
S R - AR e > e R .- R e ~ ¢
in;vi/ in:v\u/ T\U/ T\M« TU/
, inmy inx;_1 nTit1 inTy,)
S A= s R e e R e R e &t
by (1B1%*) and (1B2*). This shows (s’, w’) Rt'.v’ O

6.6.3 Out-queued and in-queued agents

The second-order axioms for out- and in-queued agents are given in Tables[6.10]and[6.T1] respectively. Notice
that the only difference to the buffered case are the side conditions.

Theorem 6.27. An agent S: X — Y is out-queued if and only if there are relations éﬁféﬁ satisfying (0Q1*)—
(0Q5%*). S is in-queued if and only if there are relations N satisfying (1Q1%)—(1Q4%*). O

101

102

Bibliography

[1] S. Abramsky. Interaction categories and communicating sequential processes. In A. W. Roscoe, editor,
A Classical Mind: Essays in honour of C. A. R. Hoare, pages 1-16. Prentice Hall International, 1994.

[2] S. Abramsky, S. Gay, and R. Nagarajan. Interaction categories and typed concurrent programming. In
Proceedings of the 1994 Marktoberdorf Summer School. Springer, 1994.

[3] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum,
editors, Handbook of Logic in Computer Science, volume 3, pages 1-168. Clarendon Press, 1994.

[4] R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchronous m-calculus. In
Proc. CONCUR 96, Springer LNCS 1119, pages 147-162, 1996.

[5] H. P. Barendregt. The Lambda Calculus, its Syntax and Semantics. North-Holland, 2nd edition, 1984.
[6] M. A. Bednarczyk. Categories of asynchronous systems. PhD thesis, University of Sussex, 1988.

[71 G. Berry. Stable models of typed A-calculi. In Proceedings of the 5th International Colloquium on
Automata, Languages and Programming, Springer LNCS 62, pages 72—-89, 1978.

[8] G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer Science, 96:217-248,
1992.

[9] G. Boudol. Asynchrony and the m-calculus. Technical Report 1702, INRIA, Sophia-Antipolis, 1992.

[10] K.B.Bruce and A. R. Meyer. The semantics of second-order polymorphic lambda calculus. In G. Kahn,
D. B. MacQueen, and G. Plotkin, editors, Proc. Conf. on Semantics of Data Types, Sophia-Antipolis,
1984, Springer LNCS 173, pages 131-144, 1984.

[11] S. Bulman-Fleming and W. Taylor. Union-indecomposable varieties. Colloquium Mathematicum,
35:189-199, 1976.

[12] A. Church andJ. B. Rosser. Some properties of conversion. Transactions of the American Mathematical
Society, 39:472-482, 1936.

[13] P. M. Cohn. Universal Algebra, Revised Edition. D. Reidel Publishing, Holland, 1981.

[14] D. Cubri¢. Embedding of a free cartesian closed category into the category of sets. Journal of Pure and
Applied Algebra, 1995.

[15] D. Cubrié¢. On the semantics of the universal quantifier. Annals of Pure and Applied Logic, 1997. To
appear.

[16] P. Di Gianantonio, F. Honsell, S. Liani, and G. D. Plotkin. Countable non-determinism and uncountable
limits. In Proceedings of CONCUR ’94, Springer LNCS 836, 1994. See also: Uncountable limits and
the Lambda Calculus, Nordic Journal of Computing 2, 1995.

103

[17] C. Fournet and G. Gonthier. The reflexive cham and the join-calculus. In POPL ’96: Proceedings of
the 23rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 1996.

[18] C. Fournet, G. Gonthier, J.-J. Levy, L. Maranget, and D. Remy. A calculus of mobile agents. In
Proceedings of CONCUR ’96, Springer LNCS 1119, pages 406421, 1996.

[19] P.J. Freyd. Combinators. In Proc. Mathematical Applications to Computer Science. American Mathe-
matical Society, 1989.

[20] P.J. Freyd and A. Scedrov. Categories, Allegories. North-Holland, 1989.

[21] H. Friedman. Equality between functionals. In R. Parikh, editor, Proceedings of the Logic Collo-
quium ’73, Springer Lecture Notes in Mathematics 453, pages 22-37, 1975.

[22] J.-Y. Girard. Une extension de I’interpretation de Godel a 1’analyse, et son application a I’elimination
des coupures dans I’analyse et la théorie des types. In J. E. Fenstad, editor, Proceedings of the Second
Scandinavian Logic Symposium, pages 63-92. North-Holland, 1971.

[23] J.-Y. Girard. The system F’ of variable types, fifteen years later. Theoretical Computer Science, 45:159—
192, 1986.

[24] G. Gritzer. Universal Algebra. D. Van Nostrand, 1968.
[25] J. Hagemann and A. Mitschke. On n-permutable congruences. Algebra Universalis, 3:8-12, 1973.

[26] K. Honda and M. Tokoro. An object calculus for asynchronous communication. In Proc. ECOOP 91,
Geneve, 1991.

[27] F. Honsell and S. Ronchi Della Rocca. An approximation theorem for topological lambda models and
the topological incompleteness of lambda calculus. Journal of Computer and System Sciences, 45(1),
1992.

[28] G. Huet, editor. Logical Foundations of Functional Programming. Addison-Wesley, 1990.

[29] M. Hyland. A syntactic characterization of the equality in some models for the lambda calculus. J.
London Math. Soc., 12:361-370, 1976.

[30] B. Jacobs, I. Margaria, and M. Zacchi. Filter models with polymorphic types. Theoretical Computer
Science, 95:143-158, 1992.

[31] C. P.J. Koymans. Models of the lambda calculus. Information and Control, 52:306-332, 1982.
[32] J.-L. Krivine. Lambda-calculus, types and models. Masson, 1993.

[33] J. Lambek. From A-calculus to cartesian closed categories. In J. P. Seldin and J. R. Hindley, editors,
To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 375-402.
Academic Press, London, New York, 1980.

[34] J. Lambek and P. J. Scott. An Introduction to Higher Order Categorical Logic. Cambridge Studies in
Advanced Mathematics 7. Cambridge University Press, New York, 1986.

[35] N. A. Lynch and E. W. Stark. A proof of the Kahn principle for input/output automata. Information and
Computation, 82:81-92, 1989.

[36] S. MacLane. Categories for the Working Mathematician. Springer GTM 5. 1971.
[37] A.I. Malcev. K obscei teorii algebraiceskih sistem. Mat. Sb. N. S. 35 (77), pages 3-20, 1954.
[38] A.R. Meyer. What is a model of the lambda calculus? Information and Control, 52:87-122, 1982.

104

[39] A.R. Meyer, J. C. Mitchell, E. Moggi, and R. Statman. Empty types in polymorphic lambda calculus.
In Proceedings of the 14th ACM Symposium on Principles of Programming Languages, pages 253-262,
1987. Reprinted in [28].

[40] R. Milner. A Calculus of Communicationg Systems. Springer LNCS 92. 1980.

[41] R. Milner. Operational and algebraic semantics of concurrent processes. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B. Elsevier, 1990.

[42] J. C. Mitchell and E. Moggi. Kripke-style models for typed lambda calculus. Annals of Pure and
Applied Logic, 51:99-124, 1991.

[43] J. Myhill and R. Flagg. A type-free system extending (ZFC). Annals of Pure and Applied Logic 43,
pages 79-97, 1989.

[44] U. Nestmann and B. C. Pierce. Decoding choice encodings. In Proceedings of CONCUR ’96, Springer
LNCS 1119, pages 179-194, 1996.

[45] C. Palamidessi. Comparing the expressive power of the synchronous and the asynchronous 7-calculus.
In POPL ’97: Proceedings of the 24th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (Paris), 1997.

[46] G.D. Plotkin. The A-calculus is w-incomplete. The Journal of Symbolic Logic, 39:313-317, 1974.
[47] G. D. Plotkin. Domains. Department of Computer Science, University of Edinburgh, 1983.

[48] G. D. Plotkin. Set-theoretical and other models of the lambda-calculus. Theoretical Computer Science,
121:351-409, 1993.

[49] G.D. Plotkin. A semantics for static type inference. Information and Computation, 109:256-299, 1994.
[50] G.D. Plotkin. On a question of H. Friedman. Information and Computation, 126(1):74-77, 1996.

[51] J. C. Reynolds. Towards a theory of type structure. In Proceedings, Colloque sur la Programmation,
Springer LNCS 19, pages 408—425, 1974.

[52] J. C. Reynolds. Polymorphism is not set-theoretic. In International Symposium on Semantics of Data
Types, Springer LNCS 173, pages 145-156, 1984.

[53] D. S. Scott. Continuous lattices, toposes, algebraic geometry and logic. In F. W. Lawvere, editor, Proc.
1971 Dalhousie Conference, Springer Lecture Notes in Mathematics 274, pages 97-136, 1972.

[54] D. S. Scott. Relating theories of the A-calculus. In To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism, pages 403—450. Academic Press, London, New York, 1980.

[55] R. A. G. Seely. Hyperdoctrines, natural deduction and the Beck condition. Zeitschrift fiir mathematische
Logik und Grundlagen der Mathematik, 29:505-542, 1983.

[56] R. A. G. Seely. Categorical semantics for higher order polymorphic lambda calculus. The Journal of
Symbolic Logic, 52(4), Dec. 1987.

[57] P. Selinger. Order-incompleteness and finite lambda models. Extended abstract. In Proceedings of the
Eleventh Annual IEEE Symposium on Logic in Computer Science, pages 432-439, 1996.

[58] P. Selinger. First-order axioms for asynchrony. In Proceedings of CONCUR 97, Springer LNCS, 1997.
To appear.

[59] M. W. Shields. Concurrent machines. Theoretical Computer Science, 28:449-465, 1985.

105

[60] A. K. Simpson. Categorical completeness results for the simply-typed lambda-calculus. In Proc.
TLCA ’95, Springer LNCS 902, pages 414427, 1995.

[61] M. B. Smyth and G. D. Plotkin. The category-theoretic solution of recursive domain equations. SIAM
Journal on Computing, 11(4):761-783, 1982.

[62] C. Strachey. Fundamental concepts in programming languages. Unpublished lecture notes, International
Summer School in Computer Programming, Copenhagen, Aug. 1967.

[63] W. Taylor. Structures incompatible with varieties, Abstract 74T-A224. Notices of the American Mathe-
matical Society, 21:A-529, 1974.

[64] C. P. Wadsworth. The relation between computational and denotational properties for Scott’s D -
models of the lambda-calculus. SIAM Journal on Computing, 5:488-521, 1976.

106

Index

absolute interpretation

in an algebra, 24}

of the lambda calculus, 24]
absolutely unorderable algebra, [37]
action, [82]

in CCS, 03]

input and output, [83]

internal, [83]

silent or unobservable, §2]
adjunction, [7]
agent, [83]

buffer 3, [83]

buffered, B3]

composition with function, [91]

domain extension and restriction, |Zf|

feedback, [02]

hiding, [91]

in-buffered, [83]

in-queued, [83]

input and output action, 83]

internal action, [83]

isomorphism of, [84]

operations on, [91]

out-buffered, [§3]

out-buffered with feedback, [92]

out-queued, B3]

output action, [83]

parallel composition

with interaction, [92]
without interaction, [97]

queue Q,[83]

queued, [83]

renaming, 01]

self-composition, [92]

sequential composition, 83|

silent action, [82]

symmetric monoidal structure, |Zf|
algebra, [[3]

dcpo-algebra, [16] 39

free, [14]

ordered, [T3] [38]

polynomial, [T3]

quotient, [T3]

term algebra, [[3]
algebraic signature, [13]
algebraic variety, [T4]

of combinatory algebras, 20|

of lambda algebras, 22]
V-diagram,
a-equivalence, [I§]
antisymmetry, [10]
applicative structure, [20]

extensional, 28]

order-extensional, [47]

ordered, 3]

partial, 9]

unorderable, [34]
arity, [T3]

asynchronous CCS, [04]

asynchrony, [8T} [83]

backwards output-determinacy, [03]

base category, [70]
Beck-Chevalley condition, [71]
Berry order, [T]

B-conversion, [I§]
[B-reduction,

bilimit, [T

binary product, [§]
bisimulation

strong, [82]
weak, [82]

bound name, in join calculus, [07]

bound variable, in lambda calculus, [T8] [62] [76]

bound, upper and lower, [10]
bounded complete cpo, [T1]
bounded tree,

buffer B, [83]

buffered agent, [83]

calculus of communicating systems, [04]
cartesian-closed category, see ccc
categorical model

of conversion, 28]

of reduction, 46|
categories

107

equivalence of, [7]
category, 3]
cartesian-closed, see ccc
cocomplete, [3]
complete, [§]
discrete, [3]
dominated by a poset, [6T]
dual,]
functor category,[7]
of complete partial orders CPO, [TT]
of directed complete partial orders DCPO, 1]
of non-empty sets .7,
of presheaves . cr
of presheaves over a poset .,
of sets ., 3]
PL -category,
small, 3] N
standard structure D,
cee,[]
associated to a theory, [63]
congruence, [56]
free, [63)]
representation, 9]
Henkin representation, [56]
special, [60] [68]
CCs, P4
chain, [T1]
channel
asynchronous, [81] B3]
synchronous, [8T]
Church numerals, [T9]
Church-Rosser property, |E|
closed combinatory term, [20]
closed lambda term, [T§]
closed term algebra, [20} [34]
co-name, in CCS, 94
co-unit of adjunction,
cocomplete category, |§|
cocone, [§]
codomain of a morphism, [3]
colimit, [§]
collectively monic, [6]
combinator, 20]
combinatory algebra, 20]
homomorphism of, [20]
unorderable, 34
valuation in, 20]
combinatory completeness, [21]
combinatory logic, [20]
derived lambda abstractor, @
combinatory term, [20]
communication

asynchronous, [8T} [83]

synchronous, 8]
commutativity
input, [38]
output,
compatible elements, [10] 36] E8]
compatible relation, [I3]
preorder, [34] [37]
complete category, [§]
complete lattice, [I0]
complete partial order, [T1]
bounded complete, [T1]
meet cpo, [IT]
composition, 3]
agent and function, [91]
parallel
with interaction, [92]
without interaction, [91]
sequential, [83] ©2]
cone,
collectively monic, [6]
limiting, [§]
confluence
Church-Rosser, [19]
input, [38]
output,
congruence
on algebra, [[3]

on ccc,[56]
on PL-category, [72]

consistency
of the lambda calculus, 20|
of the Mal'cev axioms, 0]
constant, [T§]
individual, [62 [79]
process, 93]
type, [62]
continuity
w-continuity, [T1]
Scott-continuity, [TT]
continuous functor, [12]
locally, [12]
continuously complete model, 36|
contravariant functor, |§|
conversion, [I§]
categorical model of, 28]
syntactical model of, 46|
core join calculus,
core of an extended theory, [68]
covariant functor,]

cover, 58]
split,[58]

108

cpo, 1]
bounded complete, [T1]
meet cpo, [T1]
Curry algebra, 28|
Curry axioms for lambda algebras, 22]

currying, [9]

Doo-model,[13] 52]
depo, [T1]
dcpo-algebra, [T6] 39]
dcpo-variety, [16] [39]
defined name, in join calculus, |§_7|
derived lambda abstractor, 21]
determinacy

input, [8]

output, [&7]

backwards, 03]
weak, [06]

diagonal axiom, 40|
diagram,

V-diagram,

binary product, [§]

exponential, [9]

limit of, 3]

partial V-diagram,

partial exponential, [57]

product, [§]
diamond property, [T9]
directed complete partial order, [TT]
directed equality, [49]
directed poset, [T1]
discrete category, [3]
discrete preorder, [34]
domain, [T]]
domain equations, [IT]
domain extension and restriction, 01]
domain of a morphism, [3]
dominated category, [61]
downdeal, [T0]
downward closed set, [10]
dual category, [3]

dummy functor, [71] [72]

embedding
Henkin,
Henkin-PL,[73|
of categories, [7]
Yoneda,[9]
embedding-projection pair, [I2]
emptiness assertion,

empty types, [66] [67]

epic, [6]

split, [f]

epimorphism, [§]

equalizer, [§]

equation
defining CCS process, 93]
extended, [68]
in algebra, [T4]
inequation, [T3]

of polymorphic lambda calculus, [76]
of simply-typed lambda calculus, [62]

equivalence of categories,
n-conversion, [T§]
n-reduction, [T9]

expanding sequence, [12]
exponential diagram, [9]
extended equation, [68]
extended theory, [68]

core of, [68]
principal, [68]
extensionality, 28]
order,
strong, 4§
weak, 27]

faithful functor,

faithful subcategory,[7]

feedback, 02

fiber, [70]

finitely separable lambda algebra, [34]
flat poset, [10]

free

algebra, [T4]

ccc,

dcpo-algebra, [T6]
ordered algebra, [16] B§|
variable, [T8] [62}

full functor, [7]
full subcategory, [7]
function
continuous, [TT]
monotone, [T0]
stable, [T1]
function symbol, [T3]
functor, [6]
adjoint,[7]
cce-representation, 9]
continuous, [12]
contravariant, [6]
covariant, [6]
embedding, [7]
faithful,
full,

109

Henkin representation, [56]
Henkin-PL -representation, @
inclusion, [7]
kernel, [56]
left-full, [61]
locally continuous, [12]
PL -representation, [71]
representable, [7]
Yoneda,[9]

functor category,

generalized Mal'cev operators, 38|
greatest lower bound, [T0]
guard in CCS,[93]

height of a bounded tree, 48]
Henkin natural transformation,
Henkin representation, [56]

in ., 60|

in.7F

in.t,
Henkin-PL-embedding, [73]
Henkin-PL -representation,

in.ZP,

in .7,
hiding, [01]
hom-set, [3]

homomorphism, [[3]

ideal completion, [39]
ideal in a poset, [39]
identity morphism, [3]
in-buffered agent, [83]
first-order axioms for, [88]
second-order axioms for, [T00]
in-queued agent, [83]
first-order axioms for,
second-order axioms for, [T00]
inclusion functor,
indeterminate, [T3]
indiscrete preorder, 34]
individual constant, [62] [76]
individual variable, [76]
inequation, [T3]
infimum, [T0]

initial state of labeled transition system, [82]

input actions, [83]
input and output

labeled transition system with, see agent

input-commutativity, [38]
input-confluence, 88|
input-determinacy, [88]

input-receptivity, [8§]
internal actions, [83]
interpretation

in cec, [63]
non-strict, [63]

in PL-category, [77]
non-strict, [79]

inverse, [6]

iso, [6]

isomorphism, [6]

natural,
of labeled transition systems, 84]

join and meet, [T0]
join calculus, [97]

kernel

of a functor, 56]

of a Henkin representation, |3_3|

of a Henkin-PL -representation, @
of a homomorphism, T3]

of a PL-representation, [72]

Kleene equality, [50]
Kripke lambda model

polymorphic,
simply-typed, [70]

labeled transition system, [82]

with input and output, see agent

lambda algebra, [22]

and reflexive ccc models, 29
finitely separable, [34]
homomorphism of, 22]
soundness and completeness, [26]
soundness of (&)-rule,

lambda calculus

absolute interpretation, [24]
closed term algebra, 20]
consistency, 20|
conversion, [I§]

local interpretation, [21]
model, see model

open term algebra, 20]
polymorphic, [76]
reduction, [T9]
simply-typed, [62]
untyped, [T8]

lambda conversion, [T§]

categorical model of, 28]
syntactical model of, 6]

lambda model, 27]
lambda reduction, [T9]

lambda term
boolean, [19]
Church numeral, [T9]
closed, [T§]
normal form of, [T9]

raw, [18] [62} [76]

substitution of, [T§]

untyped, [T§]
lambda theories

category of, [26]
lambda theory, [T8]

A58

ABn,[T8]

pure, [T8] [62]
lambda-order, [41]
lambda-preorder, 1]

lattice, [T0]

complete, [T0]
least upper bound, [T0]

left-full functor, [61]
lift of a model of reduction, 52]
limit, [
limit-colimit coincidence, [12]
limiting cone, [§]
limiting morphism, [§]
linear order, [TT]
local interpretation
failure of rule (§),
of combinatory logic, [20]
of the lambda calculus, 2]
locally continuous functor, [12]
locally well-pointed object, [30]
lower bound, [T0]
LTS, see labeled transition system

Mal'cev axioms, [38]
Mal'cev operator, 38|
Mal'cev variety, [38]
map, see function
maximum and minimum, [T0]
meet and join, [T0]
meet cpo, [T1]
message, in join calculus, |§_7|
Meyer-Scott axiom, [27]
minimum and maximum, [T0]
model
continuously complete, [36]
D.,[[3
finitely separable, [34]
Kripke, [70]
non-strict, [63}

of lambda conversion

categorical, 28]
syntactical, [46]
of lambda reduction
categorical, 46|
syntactical, [43]
of polymorphic lambda calculus, [77] [79]
of simply-typed lambda calculus, [63] [63]
partial, 9]
reflexive ccc model, 28]
set-theoretic, [66]
standard models of polymorphism, 80|
strict, [63] [77]
topological, [36]
tree model, [4§]
with empty types, [66] [67] [80]
with non-empty types, [67} [80]
monic, [6]
collective, [f]
cone, [6]
split, [6]
monomorphism, [6]
monotone function, [T0]
morphism, 3]
colimiting, §]
cover, 58]
currying, [9]
epic, [6]
identity, 3]
inverse, [6]
iso, [6]
limiting, [§]
monic, [6]
pairing, [9]
projection, §]
uncurrying, 9]

n-permutability, [38]
name
defined, [07]
free and bound,
in CCS,[04
in join calculus, [97]
natural isomorphism, [7]
natural transformation, [7]
Henkin, [72]
(non-empty) rule, [66]
non-empty types, [67} [80]
non-strict interpretation
of polymorphic lambda calculus, [79]
of simply-typed lambda calculus, [63]
normal form, [T9]

111

object in category, 3]
w-chain,
w-complete poset, see cpo
w-continuity, [T1]
open term algebra, 20} [34]
operation in algebra, [T4]
order, [T0]

Berry, T1]

complete, see cpo
directed, [T1]
directed complete, [TT]
linear, [TT]
w-complete, see cpo
partial, [TO|
pointwise, [10]
preorder, [T0]
stable, [T1]
order-extensionality, @
ordered algebra, [T3] 38|
ordered applicative structure, [43]
order-extensional,
strongly extensional, 48]
ordered variety, T3] 38|
out-buffered agent, [83]
first-order axioms for, [87]
second-order axioms for, [98]
with feedback, [02]
first-order axioms for, 03|
out-queued agent, [83]
first-order axioms for,
second-order axioms for,[T00]
output actions, 83|
output-commutativity, [87]
output-confluence, [87]
output-determinacy, [87]
backwards, [93)

weak, [06]

pairing, 0]
parallel composition
with interaction, [92]
without interaction, [01]
partial V-diagram,
partial applicative structure, 49|
partial exponential diagram, [57]
partial initial object, [5§]
partial model, [49]
partial order, see order
complete, see cpo
directed complete, [T1]
partial syntactical lambda model, [49]

PL -category,

base, [70]

congruence, [72]
fiber, [70]
representation of,
Henkin-PL -representation,
pointed poset, [I0]
pointwise order, [T0]
polymorphic Kripke model,
polymorphic lambda calculus, [76]
polymorphic signature,
polynomial, [T3]
polynomial algebra, [I3]
poset, see order
directed, [T1]
directed complete, [T1]
flat,[T0]
linearly ordered, [IT]
w-complete, see cpo
pointed, [T0]
pre-structure,

preorder, [T0]
discrete, [34]

indiscrete, 34

symmetric, [34]

trivial, [34]
presheaf, [9] [61]

principal extended theory, [68]
process

in CCS, 03]

in join calculus, [07]
process constant in CCS, [93]
product, [§]

binary, [§]

of categories, 3]
projection morphism, [§]
projection-embedding pair, [T2]
pullback, [§]
pure lambda theory, [T8]

polymorphic, [76]

simply-typed, [62]

queue Q,[83]

queued agent, [83]
quotient algebra, [T3|

raw lambda term, [T§]
polymorphic, [76]
simply-typed, [62]

reachable state, 0]

reaction in join calculus,

receptivity, [8§]

redex, [T9]

112

~-reduced agent, 82]
~-reduced agent, [82] 03]
reduction, [T9]

categorical model of, [46]

syntactical model of, 3]
reflexive ccc model, 28] B3]

and lambda algebras, 29|
reflexive object, [2§]
reflexivity, [T0]
relabeling function in CCS, [93]
relation

compatible, [T3]

congruence, [I3]
representable functor, |Z]
representation

Henkin-PL,

of ccc’s, 9]

of PL-categories, [71]

rule (non-empty), 66|
rule, in join calculus,

Scott-continuity, [TT]
self-composition of agent,[92]
separable subset of lambda algebra, [34]
sequence, expanding, [12]
sequential composition, [83] [92]
set-theoretic model
of polymorphism,
of simply-typed lambda calculus, [66]
with empty types, [66]
with non-empty types, [67}
Y-algebra, [[3]
¥-term, [T3]
signature
algebraic, [13]
polymorphic,
simply-typed, [62]
silent action, [§2]
simple type, [62]
simply-typed lambda calculus, [62]
simply-typed signature, [62]
small category, [3]
source of a morphism, |§|
special ccc, [60] [68]
split cover, [5§]
split epic, [6]
split monic, 6]
stable function, [T1]
stable order, [T1]
standard model,
standard structure,
standard term algebra, 20} [34]

state
in join calculus, [97]
initial, [82]
of labeled transition system, [82]
reachable, 0]
strict interpretation
of polymorphic lambda calculus, [77]
of simply-typed lambda calculus, [63]
strong bisimulation, [82]
strong extensionality, 48]
structural transition in join calculus,
subalgebra, [[3]
subcategory, [7]
faithful, [7]
full,
substitution, [T§]
supremum, [T0]
symmetric preorder, 34]
synchrony, [BT]
syntactical model
of conversion, 6]
of reduction, {3

T-algebra, [T4]
target of a morphism, 3]
term
combinatory, 20|
lambda, [T§]
Y-term, [13]
term algebra, [I3]
open and closed, 20} 34]
terminal object, [§]
terminator, [§]
theory
extended, [68]
of combinatory logic, [20]
polymorphic, [76]
simply-typed, [62]
untyped, [T§]
topological completeness problem, [36]
topological model, 36|
transition relation, [82]
in join calculus, [97]
transition system, see labeled transition system
transitivity, [T0]
translation of lambda theories, 26]
tree, (48]
bounded, @8]
tree model, [4§]
trivial preorder, [34]
type

constant, [62]

113

of a labeled transition system, [82]
polymorphic, [76]
simple, [62]
variable,
type assignment
polymorphic, [76]
simply-typed, [62]
typed lambda calculus, [62] [76
typing judgment
polymorphic,
simply-typed, [62]

un-\-orderable, [fT]
un-A-preorderable, [41]
un-preorderable, AT]
uncurrying, 9]
unit of adjunction, [7]
unobservable action, [82]
unorderable
absolutely,
combinatory algebra, [34] A1]
T-algebra, [37]
untyped lambda calculus, [T§]
updeal, [T0]
upper bound, [T0]

valid typing judgment
polymorphic,
simply-typed, [62]
valuation
in algebra, [T4]
in applicative structure, [20]
in ordered applicative structure, [43]

variable, [T4}[T8] [62]
free and bound, [T8} [62] [76]
individual, [76]
type,[76]
variety
algebraic, [T4]
depo, [16] [39]
ordered, [T3] [38]

weak bisimulation, [82]
weak extensionality, 27]
weak output-determinacy, [06]

well-pointed object, [30} [57]

locally, 30]
well-supported object, [5§]

Yoneda embedding, [9]

0-fiber, [71]

114

	Introduction
	Preliminaries
	Basic category theory
	Categories
	Functors
	Natural transformations
	Adjunctions
	Limits and colimits
	Cartesian-closed categories

	Basic domain theory
	Preorders and posets
	Complete partial orders
	Bounded complete partial orders
	Stability
	Domain equations
	The D_infinity-construction

	Basic universal algebra
	Sigma-algebras
	Term algebras
	Algebraic varieties
	Indeterminates
	Ordered algebras
	Dcpo-algebras

	The Lambda Calculus is Algebraic
	The lambda calculus
	Lambda conversion
	Lambda reduction and consistency

	Combinatory models of the lambda calculus
	Combinatory algebras and combinatory logic
	The derived lambda abstractor
	The local interpretation of lambda terms
	Lambda algebras

	Lambda algebras and indeterminates
	A characterization of A[x] for lambda algebras
	The absolute interpretation
	Soundness and completeness for lambda algebras

	Lambda theories and lambda algebras form equivalent categories
	Lambda models
	Models of the lambda-beta-eta-calculus
	Curry algebras
	Extensional models

	Lambda algebras and categorical models
	Reflexive ccc models
	Reflexive ccc models and lambda algebras

	Unorderability
	Lambda terms cannot be ordered
	Plotkin's unorderable algebra: Separability
	The standard term algebras are unorderable

	The Topological Completeness Problem
	A characterization of absolutely unorderable algebras
	Absolutely unorderable algebras and generalized Mal'cev operators
	An application to ordered algebras and dcpo-algebras

	Absolutely unorderable combinatory algebras
	Relating different notions of unorderability
	Local notions
	Absolute notions

	Finite Lambda Models
	Models of reduction
	Syntactical models of reduction
	Categorical models of reduction
	Models of beta-eta-reduction: Order-extensionality

	Tree models
	Recapturing convertibility
	A method for constructing models

	Partial models
	Examples
	A class of finite models to distinguish the terms Omega_n
	A non-trivial 3-element model

	Completeness
	Relating models of reduction to D_infinity-models

	Henkin Representations, Polymorphism, and Empty Types
	Henkin representations of cartesian-closed categories
	Henkin representations
	Henkin representations and well-pointed ccc's
	Freely adjoining arrows to a ccc
	Henkin representation theorems

	The interpretation of the simply-typed lambda calculus
	The simply-typed lambda calculus
	Strict interpretation in a cartesian-closed category
	The cartesian-closed category associated to a theory
	Henkin representations of a free ccc
	The non-strict interpretation of the simply-typed lambda calculus

	From Henkin representation theorems to completeness theorems
	The problem with empty types
	A categorical analysis of the rule (non-empty)
	Set-theoretic models with non-empty types
	Set-theoretic models with empty types
	Kripke lambda models
	A remark on the principal model property

	Henkin representations of PL-categories
	PL-categories
	Henkin-PL-representations
	Standard structures
	Freely adjoining arrows to the base of a PL-category
	Henkin-PL-representation theorems

	The interpretation of the polymorphic lambda calculus
	The polymorphic lambda calculus
	Strict interpretation in a PL-category
	The PL-category associated to a theory
	The non-strict interpretation of the polymorphic lambda calculus

	From Henkin-PL-representation theorems to polymorphic completeness theorems
	Set-theoretic models with non-empty types
	Polymorphic Kripke models

	First-Order Axioms for Asynchrony
	An elementary definition of asynchrony
	Labeled transition systems and bisimulation
	Input, output and sequential composition
	Buffers and queues
	Notions of asynchrony
	Examples

	First-order axioms for asynchrony
	Out-buffered agents
	In-buffered agents
	Out-queued and in-queued agents

	More agent constructors and asynchrony with feedback
	Some operations on agents
	Asynchrony with feedback

	Example: Asynchronous CCS
	Example: The core join calculus
	Other characterizations of asynchrony
	Out-buffered agents
	In-buffered agents
	Out-queued and in-queued agents

