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Higher categories and directed spaces

Traditionally: presentation of an algebraic theory = generators
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Higher-dimensional rewriting: everything is a generator (in
different dimensions)

Computads [polygraphs in HDR]: define higher-dimensional theory
by progressively attaching cells of increasing dimension
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Higher categories and directed spaces

This is like a combinatorial “directed space” (cell complex)...

So why not compose theories like topological spaces?

Crans-Gray tensor product: an asymmetric tensor product ⊗ of
strict higher categories, that restricts to computads

Corresponds to the usual product of topological spaces,
through geometric realisation

(Also: disjoint unions, quotients, ...)
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Topology of bialgebras

“Monoidal” theories (only 1 colour) are naturally pointed spaces

Smash product X ∧ Y : quotient out X ⊗ {∗Y } and {∗X} ⊗ Y
in X ⊗ Y

Graphically, at the lowest-dimensional level, erase everything but
the intersections of diagrams coming from X and diagrams coming
from Y .

We consider the smash product M ∧M.
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A compositional approach to higher algebraic theories,
importing tools from algebraic topology
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