
Submitted to:
QPL 2016

An operational resource theory of purity

Giulio Chiribella
giulio@cs.hku.hk

Department of Computer Science, University of Hong Kong, Hong Kong

Carlo Maria Scandolo
carlomaria.scandolo@cs.ox.ac.uk

Department of Computer Science, University of Oxford, Oxford, UK

A successful approach to the foundations of thermodynamics is to consider purity as a resource. Op-
erationally, this can be done in different ways, depending on which set of operations is regarded as
“free”, or easy to implement. In classical and quantum theory, all the reasonable choices of free op-
erations lead to the same ordering of states, characterised by the majorisation criterion. But what are
the roots of such an equivalence? In this paper we address the question in the framework of general
probabilistic theories. For arbitrary theories a notion of purity as a resource can be defined by choos-
ing random reversible channels as free operations. For theories satisfying the axioms of Causality,
Purity Preservation, Purification, Pure Sharpness, and one additional axiom, Permutability/Strong
Symmetry, we show that one can put forward two alternative notions of purity as a resource: one
where free operations are unital channels, and another where free operations are generated by re-
versible interactions with an environment in the invariant state. These axioms guarantee that all the
above resource theories are equivalent, i.e. they all lead to the same (pre)ordering relations between
states. For theories satisfying the five axioms we show that the notion of purity as a resource is
completely characterised by a majorisation criterion, in the very same way as it is in quantum theory.

1 Introduction

Thermodynamics is one of the most successful paradigms of physics, with applications ranging from
engineering to chemistry, up to computation and biology. In recent years, developments in the field
of nanotechnology have raised novel questions about what thermodynamic transformations are possible
far from the thermodynamic limit [20]. A promising way to address this new regime is to adopt the
approach of resource theories [28, 6]. Such an approach is not limited to quantum theory, but instead
it is a structural framework for capturing the notion of resource on operational grounds [18, 19]. The
idea is to regard a set of operation as “free”, and the ability to convert a state into another by means of
free operations as a criterion for resourcefulness. Given that most systems approach thermal equilibrium
spontaneously, it is natural to define equilibrium states as free states. For example, at low temperatures it
is natural to regard the microcanonical ensemble as the free state—for a quantum system with degenerate
Hamiltonian, this means that the equilibrium state is the maximally mixed state χ = 1

d I, where d is the
dimension of the system, and I is the identity matrix. Now, to define a resource theory, one has to specify
a set of free operations. But which operations? There are at least three natural choices:

1. the so-called noisy operations, generated by preparing the microcanonical state χ = 1
d I, performing

unitary operations, and discarding systems [27];

2. all the quantum operations that preserve the microcanonical state χ . These are a more general
class of channels, called unital channels [30, 33];
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3. random unitary (RU) channels [38, 39, 40] R (ρ) = ∑ j p jU jρU†
j , where

{
p j
}

is a probability
distribution, and U j is a unitary operator for every j.

Now, the important fact is that these three different choices of free operations induce the same notion of
resource—mathematically, the same preorder on the set of quantum states [21]. But is the equivalence
specific to quantum theory? To address this question, we explore different notions of purity in the realm
of general probabilistic theories (GPTs) [24, 5, 3, 8] (see also the contributed volume [14]). More specif-
ically, we consider theories that share some features with quantum theory, corresponding to the axioms
of Causality, Purity Preservation, Purification, and Pure Sharpness, previously adopted in our work [13].
These axioms guarantee that every state can be diagonalised, i.e. written as a convex combination of
perfectly distinguishable pure states. Then we add one last axiom, Strong Symmetry [4], stating that for
every two maximal sets of perfectly distinguishable pure states there exists a reversible channel connect-
ing them. In such a setting we consider the resource theory where free operations are random reversible
(RaRe) channels [12], and we study how majorisation characterises the preorder induced by these free
operations. In Ref. [13] we showed that Strong Symmetry is sufficient for the equivalence between the
majorisation preorder and the preorder defined by RaRe channels. Here we prove that Strong Symmetry
is also necessary for the validity of the majorisation criterion. Moreover, we show that, in the context of
our axioms, Strong Symmetry is fully equivalent to Hardy’s Permutability axiom [25, 26], which stipu-
lates that every permutation of a maximal set of perfectly distinguishable pure states can be implemented
by a reversible channel.

Finally, we analyse the other definitions of purity that can be given in GPTs and their relationship to
majorisation. More specifically, we give operational definitions of noisy operations and unital channels.
If Permutability/Strong Symmetry holds, all the three possible choices of free operations lead to the same
preorder on states. As a by-product, we establish inclusions between the three sets of free operations: a
RaRe channel is a noisy operation, and a noisy operation is a unital channel.

The paper is structured as follows. In section 2 we give a brief review of the framework to study
GPTs, and in section 3 we introduce the axioms and list their main consequences. In section 4 we give
three different definitions of resource theories of purity, and we establish some inclusions between their
sets of free operations. Finally in section 5 we study the role of majorisation in characterising the three
resource theories of purity. Conclusions are drawn in section 6.

2 Framework

We work in the variant of GPTs known as operational-probabilistic theories (OPTs) [8, 9, 25, 26, 7, 10],
which makes use of a graphical language borrowed from symmetric monoidal categories [1, 15, 16, 36,
17]. We will list here only the main features and notions of this formalism.

Physical processes can be combined in sequence or in parallel to build circuits, such as

ρ

A A A′ A ′ A′′ a

B B B′ b
.

Here, A, A′, etc. are systems, ρ is a bipartite state, A , A ′ and B are transformations, a and b are effects.
We denote by

• St(A) the set of states of system A;

• Eff (A) the set of effects on A;
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• Transf (A,B) the set of transformations from A to B, and by Transf (A) the set of transformations
from A to A;

• A⊗B the composition of systems A and B;

• A ⊗B the parallel composition (or tensor product) of the transformations A and B.

Every physical theory admits a particular system, the trivial system I (mathematically, the unit of the
tensor product), corresponding to the degrees of freedom ignored by the theory. States (resp. effects) are
transformations with the trivial system as input (resp. output). Circuits with no external wires, like the
one above, represent probabilities. We will often make use of the short-hand notation (a|ρ) to denote

(a|ρ) := ρ A a ,

and of the notation (a|C |ρ) to mean

(a|C |ρ) := ρ A C B a .

We identify the scalar (a|ρ) with a real number in the interval [0,1], representing the probability of a
joint occurrence of the state ρ and the effect a.

The fact that scalars are real numbers induces a notion of sum for transformations, so that the
sets St(A), Transf (A,B), and Eff (A) become spanning sets of real vector spaces. In this paper we
will restrict our attention to finite systems, i.e. systems for which the spanned vector spaces are finite-
dimensional. We will use the topology induced by probabilities, by which one has limn→+∞ Cn = C ,
where Cn,C ∈ Transf (A,B), if and only if

lim
n→+∞

(E|Cn⊗IR |ρ) = (E|C ⊗IR |ρ) ∀R,∀ρ ∈ St(A⊗R) ,∀E ∈ Eff (B⊗R) .

A test from A to B is a collection of transformations {Ci}i∈X from A to B, which can occur in an
experiment with outcomes in X. If A (resp. B) is the trivial system, the test is called a preparation-test
(resp. observation-test). If X contains a single outcome, we say that the test is deterministic. We will
refer to deterministic transformations as channels. A channel U from A to B is called reversible if there
exists a channel U −1 from B to A such that U −1U = IA and U U −1 = IB, where IS is the identity
channel on a system S. If there exists a reversible channel transforming A into B, we say that A and B are
operationally equivalent, denoted by A ' B. The composition of systems is required to be symmetric,
meaning that A⊗B' B⊗A.

A state χ ∈ St(A) is called invariant if U χ = χ , for every reversible channel U . In general, invariant
states may not exist.

We can define pure transformations based on the notion of coarse-graining, i.e. the operation of
joining two or more outcomes of a test into a single outcome. More precisely, a test {Ci}i∈X is a coarse-
graining of the test

{
D j
}

j∈Y
if there is a partition {Yi}i∈X of Y such that Ci = ∑ j∈Yi D j for every i ∈ X.

In this case, we say that
{
D j
}

j∈Y
is a refinement of {Ci}i∈X. The refinement of a given transformation

is defined via the refinement of a test: if
{
D j
}

j∈Y
is a refinement of {Ci}i∈X, then the transformations{

D j
}

j∈Yi
are a refinement of the transformation Ci. A transformation C ∈ Transf(A,B) is pure if it has

only trivial refinements, namely refinements
{
D j
}

of the form D j = p jC , where
{

p j
}

is a probability
distribution. Pure transformations are those for which the experimenter has maximal information about
the evolution of the system. We denote the set of pure states (resp. effects) of system A as PurSt(A)
(resp. PurEff (A)). As usual, non-pure states are called mixed.
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The pairing between states and effects leads naturally to a notion of norm. We define the norm of a
state ρ as ‖ρ‖ := supa∈Eff(A) (a|ρ). Similarly, the norm of an effect a is defined as ‖a‖ := supρ∈St(A) (a|ρ).
We will use a subscript 1 to denote the set of normalised (i.e. with unit norm) states and effects. For in-
stance the set of normalised states of A will be denoted by St1 (A), and so on.

Definition 1. Let ρ ∈ St1 (A). A normalised state σ is contained in ρ if we can write ρ = pσ +(1− p)τ ,
where p ∈ (0,1] and τ is another normalised state.

Definition 2. We say that two transformations A ,A ′ ∈ Transf (A,B) are equal upon input of the state
ρ ∈ St1 (A) if A σ = A ′σ for every state σ contained in ρ . In this case we will write A =ρ A ′.

3 Axioms and their consequences

Here we provide an overview of the axioms adopted in this paper.

Axiom 1 (Causality [8, 9]). For every preparation-test {ρi}i∈X, and for all observation-tests
{

a j
}

j∈Y

and {bk}k∈Z we have
∑
j∈Y

(a j|ρi) = ∑
k∈Z

(bk|ρi) ,

for all i ∈ X.

Causality is equivalent to the requirement that, for every system A, there exists a unique deterministic
effect uA on A (or simply u, when no ambiguity can arise) [8]. This implies that all observation-tests
{a}i∈X are normalised, namely ∑i∈X ai = u.

Thanks to the uniqueness of u, it is possible to define the marginal state of a bipartite state ρAB on
system A as

ρA A = ρAB

A

B u
.

In this case we will also write ρA := TrBρAB, calling uB as TrB; we will tend to keep the notation Tr in
formulas where the deterministic effect is directly applied to a state, e.g. Tr ρ := (u|ρ).

In a causal theory the norm of a state ρ takes the simpler expression ‖ρ‖ = Tr ρ , and all states are
proportional to normalised states [8]. A transformation A ∈ Transf (A,B) is a channel if and only if it
preserves the deterministic effect, that is uBA = uA.

Another consequence is that all the sets St(A), Transf (A,B), and Eff (A) are convex.
The second axiom is Purification, which characterises all physical theories admitting a level of de-

scription where all deterministic processes are pure and reversible. A pure state Ψ ∈ PurSt1 (A⊗B) is a
purification of a state ρ ∈ St1 (A) with purifying system B if ρ is the marginal on A of Ψ.

Axiom 2 (Purification [8, 9]). Every state has a purification, and two purifications of the same state with
the same purifying system differ by a reversible channel on the purifying system.

Ψ

A

B u
= Ψ′

A

B u
=⇒ Ψ′

A

B
= Ψ

A

B U B
,

where U is a reversible channel.

Purification enables us to link equality upon input (as in definition 2) to equality on purifications (cf.
theorem 7 of Ref. [8]).



G. Chiribella & C. M. Scandolo 5

Proposition 1. Let ρ be a state of system A and let Ψ ∈ St1 (A⊗B) be a purification of ρ . Then, for
every pair of transformations A and A ′, from A to C, if

Ψ

A A C

B
= Ψ

A A ′ C

B
,

then A =ρ A ′.
If system C is trivial, then one has the full equivalence: for every pair of effects a and a′

Ψ

A a
B

= Ψ

A a′

B

if and only if a =ρ a′.

We introduce the axiom of Purity Preservation, stating that information cannot be lost when compos-
ing transformations on which we have maximal information.

Axiom 3 (Purity Preservation [11]). Sequential and parallel compositions of pure transformations yield
pure transformations.

The final axiom is Pure Sharpness, which guarantees that every system possesses at least one ele-
mentary property, in the sense of Piron [35].

Axiom 4 (Pure Sharpness [13]). For every system A there exists at least one pure effect occurring with
unit probability on some state.

Combining the four axioms presented so far, one can obtain important strong structural results. The
first result is a duality between normalised pure states and normalised pure effects (see propositions 8
and 10 of Ref. [13]).

Proposition 2. There is a bijective correspondence between normalised pure states and normalised pure
effects. Specifically, if α ∈ PurSt1 (A), there exists a unique α† ∈ PurEff1 (A) such that

(
α†|α

)
= 1.

The four axioms also guarantee that every state of a non-trivial system can be diagonalised, i.e.
written as a convex combination of perfectly distinguishable pure states1 [13]. The probabilities arising
in the diagonalisation will be called the eigenvalues of the state.

We conclude our overview with two additional axioms that will be important later in the paper:

Axiom 5 (Permutability [25, 26]). Every permutation of a maximal2 set of perfectly distinguishable pure
states can be implemented by a reversible channel.

Axiom 6 (Strong Symmetry [4]). The group of reversible channels acts transitively on maximal sets of
perfectly distinguishable pure states.

Clearly Strong Symmetry implies Permutability. Quite remarkably, the converse is also true, pro-
vided that the four axioms discussed before are satisfied:

Proposition 3. In a theory satisfying Causality, Purity Preservation, Purification, and Pure Sharpness,
the following are equivalent.

1. The theory satisfies Strong Symmetry.

1The states {ρi}n
i=1 are perfectly distinguishable if there exists an observation-test {ai}n

i=1 such that
(
ai|ρ j

)
= δi j.

2A set of perfectly distinguishable states {ρi}n
i=1 is maximal if there is no other state ρn+1 such that the states {ρi}n+1

i=1 are
perfectly distinguishable.
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2. The theory satisfies Permutability.

Proof. Let us prove that Permutability implies Strong Symmetry. The first part of the proof is similar to
the one of theorem 30 of Ref. [25]. Consider two maximal sets of perfectly distinguishable pure states
{ϕi}n

i=1 and
{

ψ j
}m

j=1. Assuming Permutability, we will show that m = n and that there exists a reversible
channel U such that ϕi = U ψi, for all i = 1, . . . ,n. First of all, note that the states

{
ϕi⊗ψ j

}
are pure

(by Purity Preservation) and perfectly distinguishable. Indeed, if {ai}n
i=1 and

{
a′j
}m

j=1
are the perfectly

distinguishing tests for {ϕi}n
i=1 and

{
ψ j
}m

j=1 respectively, the effects
{

ai⊗a′j
}

make up a perfectly

distinguishing test for
{

ϕi⊗ψ j
}

. This is because ∑i, j ai⊗ a′j = u⊗ u, and this is a sufficient condition
for a set of effects to be an observation-test, thanks to Purification [9]. We can extend

{
ϕi⊗ψ j

}
to a

maximal set of perfectly distinguishable pure states for the composite system A⊗A. Then, Permutability
implies there exists a reversible channel U such that for all i = 1, . . . ,n [26]

ϕi A

U

A

ψ1 A A
=

ϕ1 A

ψi A
.

Applying the pure effect ϕ
†
1 to both sides of the equation we obtain

ϕi A P A = ψi A , (1)

with

A P A :=
A

U

A
ϕ

†
1

ψ1 A A
.

By construction, P is pure (by Purity Preservation) and occurs with probability 1 on all the states
{ϕi}n

i=1, consequently P is deterministic upon input of the state ρ = 1
n ∑

n
i=1 ϕi, that is uP =ρ u. Then,

proposition 1 implies that for every purification Ψ ∈ PurSt1 (A⊗B) of ρ , one has

Ψ

A P A u

B
= Ψ

A u
B

,

meaning that the pure states (P⊗IB)Ψ and Ψ have the same marginal on system B. Hence, the
uniqueness of purification implies that there exists a reversible transformation V such that

Ψ

A P A

B
= Ψ

A V A

B
,

namely, by proposition 1, P =ρ V . Combining this fact with Eq. (1), we obtain the condition V ϕi = ψi

for every i = 1, . . . ,n. This proves that the states {ϕi}n
i=1 can be reversibly transformed into (a subset of)

the states
{

ψ j
}m

j=1. Since both sets are maximal, we must have n = m.

Permutability/Strong Symmetry implies that the eigenvalues of states are independent of the chosen
diagonalisation [13]. Moreover, for every non-trivial system there exists a positive integer d ≥ 2, called
the dimension of the system, that fixes the cardinality of all maximal sets of perfectly distinguishable
pure states.

Another structural result that is crucial for our work is that invariant states are stable under tensor
product.
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Proposition 4. Let {αi}d
i=1 be any maximal set of perfectly distinguishable pure states in a theory satis-

fying Causality, Purity Preservation, Purification, Pure Sharpness, and Permutability/Strong Symmetry.
Then a state χ is invariant if and only if χ = 1

d ∑
d
i=1 αi. Moreover, the perfectly distinguishing test for

{αi}d
i=1 is

{
α

†
i

}d

i=1
.

As a consequence, we have the desired result.

Proposition 5. The invariant state of system A⊗B is the product of the invariant states of systems A
and B: χAB = χA⊗χB.

Proof. We know that χA = 1
dA

∑
dA
i=1 αi and χB = 1

dB
∑

dB
j=1 β j, where {αi}dA

i=1 and
{

β j
}dA

j=1 are maximal
sets of perfectly distinguishable pure states of systems A and B respectively. Let us consider the product
state χA⊗χB; it can be diagonalised as

χA⊗χB =
1

dAdB

dA

∑
i=1

dB

∑
j=1

αi⊗β j,

The perfectly distinguishing test is
{

α
†
i ⊗β

†
j

}
, so the set

{
αi⊗β j

}
is maximal, otherwise the perfectly

distinguishing test could not be made of all normalised pure effects, as it is straightforward to check. By
proposition 4,

1
dAdB

dA

∑
i=1

dB

∑
j=1

αi⊗β j = χAB = χA⊗χB.

This also implies that the dimension of a composite system is the product of the dimensions of the
components (Hardy’s information locality [25, 26]): dAB = dAdB.

The fact that invariant states are stable under tensor products is an essential condition for every
resource theory that regards invariant states as free. Indeed, a fundamental requirement in every resource
theory is that the product of two free states be a free state [18, 19].

4 Resource theories of purity

Here we present three possible definitions of a resource theory of purity, based on three different choices
of free operations.

4.1 Resource theory of random reversible channels

The most direct way of defining a resource theory of purity in general probabilistic theories is to set the
free operations to be random reversible channels [12]:

Definition 3. A random reversible (RaRe) channel, is a channel R of the form R = ∑i piUi, where {pi}
is a probability distribution, and Ui is a reversible channel for every i.

Using RaRe channels as free operations we can define a preorder between states [12]:

Definition 4. Let ρ and σ be normalised states. ρ is purer than σ if there exists a RaRe channel R such
that σ = Rρ . If ρ is purer than σ and σ is purer than ρ , we say that they are equally pure.
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The same preorder was independently proposed by Müller and Masanes in the context of communi-
cating spatial directions [34].

Note that the above resource theory of purity does not require any axioms at all—except, of course,
the axioms encapsulated in the definition of general probabilistic theories. Moreover, the notion of
purity as a resource does not rely on any pre-established notion of invariant state. Thanks to this fact,
the definition can be applied to scenarios where the invariant state does not exist (e.g. for certain infinite-
dimensional systems) and to settings where there exist more than a single invariant state [12].

In the following we will consider two alternative resource theories of purity, which build the free
operations from the invariant state. These resource theories require more structure than the theory of
RaRe channels. For example, in order to regard the invariant state as a free state, one needs to guarantee
that the product of two invariant states is itself invariant [18, 19]—a non-trivial property that may fail
in some theories. In order to guarantee the validity of this and other useful properties, in the following
we will always assume the axioms of Causality, Purity Preservation, Purification, Pure Sharpness, and
Permutability/Strong Symmetry.

4.2 The resource theory of unital channels

The broadest notion of free operations in a resource theory is the set of operations that preserve the free
states. Regarding invariant states as free states, it is natural to consider a resource theory where the free
operations are unital channels:
Definition 5. A channel D on system A is called unital if Dχ = χ , where χ is the invariant state of
system A.

Clearly, reversible channels and RaRe channels are examples of unital channels. However, the con-
verse is not true in general: for example, in quantum theory there exist unital channels that are not random
unitary [30].

4.3 The resource theory of noisy operations

Another way to construct a resource theory of purity is by assuming noisy operations as free [27, 21],
i.e. the operations generated by preparing invariant states, applying reversible channels, and discarding
some of the outputs:
Definition 6. A basic noisy operation N on system A is a channel that can be decomposed as

A N A =

A

U

A

χ E E u
, (2)

for some suitable system E and some reversible channel U . The set of noisy operations is the topological
closure of the set of basic noisy operations.

The closure is needed because basic noisy operations do not form a closed set [37].
With the above definition, one has the obvious inclusion

Proposition 6. Noisy operations are unital channels.

Proof. By definition, one has

N χA = TrEUAE (χA⊗χE) = TrE (χA⊗χE) = χA, (3)

where we have used the fact that χA⊗χE is the invariant state of system A⊗E (by proposition 5). Clearly,
every limit of operations satisfying Eq. (3) will also satisfy the same condition.
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It is known that in general noisy operations form in fact a strict subset of unital channels [22].
We will now prove that RaRe channels are a subset of noisy operations. To do that we use the notion

of controlled reversible channels, recently introduced by Lee and Selby [31]:
Definition 7. Consider a maximal set of perfectly distinguishable pure states {αi}d

i=1 of system A, and
a set of reversible transformations {Ui}, where the Ui’s need not be all distinct, on another system B. A
controlled reversible channel with control A and target B is a channel C ∈ Transf (A⊗B) such that

αi A

C

A

ρ B B
=

αi A

ρ B Ui
B

.

In Ref. [31] it was shown that for theories satisfying Causality, Purification, Strong Symmetry, ad-
mitting perfectly distinguishable pure states, and such that the product of pure states is pure, controlled
reversible channels are reversible on the combined system A⊗B. Now we can use them to show that
every RaRe channel is a noisy operation. The proof will be virtually the same as the one appeared in
Ref. [21], clearly adapted to our case though, but the mathematical argument will be made more precise
and rigorous.
Proposition 7. Every RaRe channel is a noisy operation.

Proof. Consider a RaRe channel R = ∑
m
i=1 piUi on system A, and take an ancillary system E with

dimension N. Let S =
{

ϕ j
}N

j=1 be a maximal set of perfectly distinguishable pure states of system E.
Now, consider m+1 disjoint subsets Si (for i = 1, . . . ,m+1) of S, such that |Si|= [piN] for i = 1, . . . ,m,
where [piN] is the integral part3 of piN, and S =

⋃m+1
i=1 Si. We wish to define a controlled reversible

channel C on A⊗E, with control E and target A, such that

C (ρ⊗ϕ j) =

{
Uiρ⊗ϕ j if ϕ j ∈ Si for all i = 1, . . . ,m
ρ⊗ϕ j if ϕ j ∈ Sm+1

, (4)

for all ρ ∈ St1 (A). Here the set of reversible channels applied to A is {Ui}m+1
i=1 , where we set Um+1 to

be the identity I . We know that C is a reversible channel on A⊗E [31], therefore we can define the
basic noisy operation

N ρ = TrEC (ρ⊗χE) ,

where C is given by Eq. (4), and χE is the invariant state of system E. By Eq. (4)

N ρ =
1
N

N

∑
j=1

TrEC (ρ⊗ϕ j) =
1
N

N

∑
j=1

TrE (Uiρ⊗ϕ j) =
1
N

m+1

∑
i=1
|Si|Uiρ.

This is a RaRe channel R ′ arising a mixture of m+ 1 reversible channels {Ui}m+1
i=1 with probability

distribution
{
|Si|
N

}
, which is not quite the original RaRe channel R. Now we will show that in the limit

of large N we get R. This would mean that R could be arbitrarily well approximated by basic noisy
operations, therefore it would be a noisy operation itself.

The first step is to prove that we can get rid of Um+1 = I . Recall that |Si| = [piN] for i = 1, . . . ,m,
consequently

N =
m

∑
i=1

[piN]+ |Sm+1| .

3Recall the integral part of a real number is defined as [x] := maxn∈Z {n≤ x}.



10 An operational resource theory of purity

By definition of integral part 0 ≤ piN− [piN] ≤ 1, so by summing over i, for i = 1, . . . ,m, we get 0 ≤
|Sm+1| ≤ m, which implies

0≤ |Sm+1|
N

≤ m
N
.

Therefore in the limit of N→+∞, the term |Sm+1|
N vanishes. Now we want to prove that for i = 1, . . . ,m,

the terms [piN]
N converge to pi in the limit of N→+∞. As piN−1≤ [piN]≤ piN, we have

pi−
1
N
≤ [piN]

N
≤ pi,

which proves that [piN]
N converges to pi when N→+∞. This concludes the proof.

Also in this case, the inclusion is strict: there exist noisy operations that are not RaRe channels [37].
In summary, we have the strict inclusions

RaRe⊂ noisy⊂ unital. (5)

5 The majorisation criterion

Let us recall the mathematical notion of majorisation:

Definition 8. Let x,y ∈ Rd . If x[i] denotes the i-th entry of the decreasing rearrangement of x, we say
that x is majorised by y (or that y majorises x) if

• ∑
k
i=1 x[i] ≤ ∑

k
i=1 y[i] for k = 1, . . . ,d−1

• ∑
d
i=1 x[i] = ∑

d
i=1 y[i].

Another useful characterisation of majorisation is in terms of doubly stochastic matrices: x � y if
and only if x = Dy, where D is a doubly stochastic matrix [23, 32].

For probabilistic theories where states can be diagonalised, majorisation allows one to define a pre-
order between states [13, 2, 29].

5.1 Majorisation and RaRe channels

In our previous work [13] we showed that, under the validity of the five axioms presented before, the
majorisation preorder is equivalent to the preorder induced by considering RaRe channels as free opera-
tions:

Theorem 1. Let ρ and σ be normalised states, and let p and q be the vectors of their eigenvalues
respectively. Then ρ can be converted into σ by a RaRe channel if and only if q� p.

See theorems 4 and 5 of Ref. [13] for the proof. It is worth clarifying the role of Permutability/Strong
Symmetry in the context of the other axioms:

Proposition 8. In a theory satisfying Causality, Purity Preservation, Purification, and Pure Sharpness,
the following are equivalent.

1. The theory satisfies Permutability/Strong Symmetry

2. The majorisation condition is sufficient for the convertibility of states under RaRe channels.
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Proof. We already know that 1 implies 2. Therefore, we need to show only the converse implication.
Suppose the majorisation condition is sufficient for RaRe convertibility. Then, consider two states ρ

and σ diagonalised as ρ = ∑
d
i=1 piαi, and σ = ∑

d
i=1 piα

′
i , with p1 ≥ p2 ≥ . . . ≥ pd > 0. Since the two

states have the same eigenvalues, the sufficiency of the majorisation condition (theorem 1) implies that
they are equally pure. In Ref. [12] we noted that if two states are equally pure, there exists a reversible
channel U , such that σ = U ρ , as already proved in Ref. [34]. Applying the effect α

′†
1 to both sides of

this equality, we obtain

p1 =
(

α
′†
1 |σ

)
= ∑

j
p j

(
α
′†
1

∣∣∣U ∣∣α j) = ∑
j

T1 j p j ≤ p1,

having used the fact that the transition matrix Ti j :=
(

α
′†
i

∣∣∣U ∣∣α j) is doubly stochastic (see lemma 4 of

Ref. [13]). The above condition is satisfied only if
(

α
′†
1

∣∣∣U |α1) = 1, that is, by proposition 2, only

if U α1 = α ′1. Now consider the states ρ1 = ∑
d
i=2 piαi, and σ1 = ∑

d
i=2 piα

′
i Repeating the previous

argument, this time for p2, now we can show the equality U α2 = α ′2. Iterating the procedure d times,
we finally obtain the desired equality U αi = α ′i for every i. Hence, every two maximal sets of perfectly
distinguishable pure states are connected by a reversible channel.

5.2 Majorisation and unital channels

Under the validity of our axioms, the preorder defined by unital channels coincides with the preorder
defined by RaRe channels:

Proposition 9. Let ρ and σ be two normalised states. ρ can be converted into σ by a RaRe channel if
and only if ρ can be converted into σ by a unital channel.

Proof. Necessity follows from the fact that RaRe channels are unital. Let us prove sufficiency. Let
ρ = ∑

d
j=1 p jα j and σ = ∑

d
j=1 q jα

′
j be diagonalisations of ρ and σ respectively. Suppose we know that

σ = Dρ , where D is a unital channel. Then

d

∑
j=1

q jα
′
j =

d

∑
j=1

p jDα j.

Let us apply α
′†
i to both sides, obtaining

qi =
d

∑
j=1

p j

(
α
′†
i

∣∣∣D ∣∣α j) .

This expression can be rewritten as qi = ∑
d
j=1 Di j p j, where Di j :=

(
α
′†
i

∣∣∣D ∣∣α j). Let us prove that the

Di j’s are the entries of a doubly stochastic matrix D. Clearly
(

α
′†
i

∣∣∣D ∣∣α j) ≥ 0 for all i, j ∈ {1, . . . ,d}

because
(

α
′†
i

∣∣∣D ∣∣α j) is a probability. Let us calculate ∑
d
i=1

(
α
′†
i

∣∣∣D ∣∣α j). We know that
{

α
′†
i

}d

i=1
is an

observation-test and therefore it is normalised to the deterministic effect u.

d

∑
i=1

(
α
′†
i

∣∣∣D ∣∣α j) = (u|D
∣∣α j) .
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Now, D is a channel, therefore uD = u by Causality, then
d

∑
i=1

(
α
′†
i

∣∣∣D ∣∣α j) = Tr α j = 1

because the states α j’s are normalised. Now let us calculate ∑
d
j=1

(
α
′†
i

∣∣∣D ∣∣α j). By proposition 4,

d

∑
j=1

(
α

†
i

∣∣∣D ∣∣α ′j)= d
(

α
†
i

∣∣∣D |χ) = d
(

α
†
i |χ
)
= d · 1

d
= 1,

where we have used the fact that unital channels leave χ invariant. Now if p is the vector of the eigen-
values of ρ , and q is the vector of the eigenvalues of σ , we have q = Dp, and therefore q� p because D
is doubly stochastic. By theorem 1 there exists a RaRe channel R such that σ = Rρ .

As a consequence, the majorisation criterion characterises both the preorder induced by RaRe chan-
nels and the preorder induced by all unital channels.

5.3 Equivalence of the three resource theories of purity

Summing up the previous results, we have shown that in a theory satisfying Causality, Purity Preserva-
tion, Purification, Pure Sharpness and Permutability/Strong Symmetry the three natural notions of purity
as a resource coincide. Specifically, we have the following:
Theorem 2. In a theory satisfying Causality, Purity Preservation, Purification, Pure Sharpness and
Permutability/Strong Symmetry, for all states ρ and σ the following are equivalent.

1. ρ can be transformed into σ by a RaRe channel.

2. ρ can be transformed into σ by a noisy operation.

3. ρ can be transformed into σ by a unital channel.

4. The eigenvalues of ρ majorise the eigenvalues of σ .

Proof. Straightforward from the inclusions (5) and proposition 9.

6 Conclusions

In this work we have explored different ways of defining a resource theory of purity in general proba-
bilistic theories. One definition adopts RaRe channels as free operations [12]. This definition has the
advantage that it can be given in every theory, without the need of imposing additional structure. How-
ever, the most interesting features arise in theories that satisfy non-trivial axioms. For example, axioms
like Purification and Purity Preservation imply a duality between the resource theory of purity and the re-
source theory of entanglement [12], and the further addition of Pure Sharpness guarantees that every state
can be diagonalised [13]. Within this axiomatic scheme, we have shown that the purity preorder coin-
cides with the majorisation preorder if and only if the theory satisfies the Strong Symmetry/Permutability
axiom. The reason of the slash is that, in the context of our axioms, Strong Symmetry and Permutability
are equivalent axioms. Specifically, Strong Symmetry/Permutability is inescapable if we want majorisa-
tion to be a sufficient criterion for the purity preorder. Furthermore, we have shown that the combination
of our axioms with Permutability/Strong Symmetry guarantees a sort of universality in the definition of
the purity preorder: when these axioms hold, the resource theories of purity defined via RaRe channels,
unital channels, and noisy operations are all equivalent to the majorisation preorder.
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