
Submitted to:
PQL 2016

c© M. Ozawa
This work is licensed under the
Creative Commons Attribution License.

Operational meanings of orders of observables defined
through quantum set theories with different conditionals

Masanao Ozawa∗

Graduate School of Information Science, Nagoya University
Nagoya, Japan

ozawa@is.nagoya-u.ac.jp

In quantum logic there is well-known arbitrariness in choosing a binary operation for conditional.
Currently, we have at least three candidates, called the Sasaki conditional, the contrapositive Sasaki
conditional, and the relevance conditional. A fundamental problem is to show how the form of the
conditional follows from an analysis of operational concepts in quantum theory. Here, we attempt
such an analysis through quantum set theory (QST). In this paper, we develop quantum set theory
based on quantum logics with those three conditionals, each of which defines different quantum
logical truth value assignment. We show that those three models satisfy the transfer principle of
the same form to determine the quantum logical truth values of theorems of the ZFC set theory.
We also show that the reals in the model and the truth values of their equality are the same for those
models. Interestingly, however, the order relation between quantum reals significantly depends on the
underlying conditionals. We characterize the operational meanings of those order relations in terms
of joint probability obtained by the successive projective measurements of arbitrary two observables.
Those characterizations clearly show their individual features and will play a fundamental role in
future applications to quantum physics.

1 Introduction

Quantum set theory crosses over two different fields of mathematics, namely, foundations of mathematics
and foundations of quantum mechanics, and originated from the methods of forcing introduced by Cohen
[5, 6] for the independence proof of the continuum hypothesis and quantum logic introduced by Birkhoff
and von Neumann [2]. After Cohen’s work, the forcing subsequently became a central method in set
theory and also incorporated with various notions in mathematics, in particular, the notion of sheaves
[8] and notions of sets in nonstandard logics such as Boolean-valued set theory [1], by which Scott
and Solovay [22] reformulated the method of forcing, topos [12], and intuitionistic set theory [9]. As
a successor of those attempts, quantum set theory, a set theory based on the Birkhoff-von Neumann
quantum logic, was introduced by Takeuti [23], who established the one-to-one correspondence between
reals in the model (quantum reals) and quantum observables. Quantum set theory was recently developed
by the present author [18, 19] to obtain the transfer principle to determine quantum truth values of
theorems of the ZFC set theory, and clarify the operational meaning of the equality between quantum
reals, which extends the probabilistic interpretation of quantum theory,

In quantum logic there is well-known arbitrariness in choosing a binary operation for conditional.
Hardegree [11] defined a material conditional on an orthomodular lattice as a polynomially definable bi-
nary operation satisfying three fundamental requirements, and showed that there are exactly three binary
operations satisfying those conditions: the Sasaki conditional, the contrapositive Sasaki conditional, and
the relevance conditional. Naturally, a fundamental problem is to show how the form of the conditional
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2 Quantum set theory

follows from an analysis of the operational concept in quantum theory testable by experiments. Here, we
attempt such an analysis through quantum set theory. In quantum set theory (QST), the quantum logical
truth values of two atomic formulas, equality and membership relations, depend crucially on the choice
of conditional. In the previous investigations, we have adopted only the Sasaki conditional, proved the
transfer principle to determine quantum truth values of theorems of the ZFC set theory, established the
one-to-one correspondence between reals in the model, or “quantum reals”, and quantum observables,
and clarified the operational meaning of the equality between quantum reals. In this paper, we study QST
based on the above three material conditional together. We construct the universal QST model based on
the logic of the projection lattice of a von Neumann algebra with each conditional. Then, we show that
this new model satisfies the transfer principle of the same form as the old model based on the Sasaki
conditional. We also show that the reals in the model and the truth values of their equality are the same
for those three models. Up to this point, those models behave indistinguishably. However, we reveal that
the order relation between quantum reals depend crucially on the underlying conditionals. We character-
ize the operational meanings of those order relations, which turn out closely related to the spectral order
introduced by Olson [16] playing a significant role in the topos approach to quantum theory [7], in terms
of joint probability of the outcomes of the successive projective measurements of two observables. Those
characterizations clarify their individual features and will play a fundamental role in future applications
to quantum physics.

2 Preliminaries

2.1 Complete orthomodular lattices

A complete orthomodular lattice is a complete lattice Q with an orthocomplementation, a unary opera-
tion ⊥ on Q satisfying (C1) if P ≤ Q then Q⊥ ≤ P⊥, (C2) P⊥⊥ = P, (C3) P∨P⊥ = 1 and P∧P⊥ = 0,
where 0 =

∧
Q and 1 =

∨
Q, that satisfies the orthomodular law (OM) if P ≤ Q then P∨ (P⊥∧Q) = Q.

In this paper, any complete orthomodular lattice is called a logic. A non-empty subset of a logic Q is
called a subalgebra iff it is closed under ∧, ∨, and ⊥. A subalgebra A of Q is said to be complete iff it
has the supremum and the infimum in Q of an arbitrary subset of A . We refer the reader to Kalmbach
[13] for a standard text on orthomodular lattices.

We say that P and Q in a logic Q commute, in symbols P |
◦ Q, iff P = (P∧Q)∨ (P∧Q⊥). A logic

Q is a Boolean algebra if and only if P |
◦ Q for all P,Q ∈ Q [13, pp. 24–25]. For any subset A ⊆ Q, we

denote by A ! the commutant of A in Q [13, p. 23], i.e.,

A ! = {P ∈ Q | P |
◦ Q for all Q ∈ A }.

Then, A ! is a complete subalgebra of Q. A sublogic of Q is a subset A of Q satisfying A = A !!. For
any subset A ⊆ Q, the smallest logic including A is A !! called the sublogic generated by A . Then, it
is easy to see that a subset A is a Boolean sublogic, or equivalently a distributive sublogic, if and only if
A = A !! ⊆ A !.

2.2 Logic on Hilbert spaces

Let H be a Hilbert space. For any subset S ⊆ H , we denote by S⊥ the orthogonal complement of
S. Then, S⊥⊥ is the closed linear span of S. Let C (H ) be the set of all closed linear subspaces in
H . With the set inclusion ordering, the set C (H ) is a complete lattice. The operation M 7→ M⊥ is an
orthocomplementation on the lattice C (H ), with which C (H ) is a logic.
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Denote by B(H ) the algebra of bounded linear operators on H and Q(H ) the set of projections
on H . We define the operator ordering on B(H ) by A ≤ B iff (ψ,Aψ) ≤ (ψ,Bψ) for all ψ ∈ H . For
any A ∈B(H ), denote by R(A)∈C (H ) the closure of the range of A, i.e., R(A) = (AH )⊥⊥. For any
M ∈ C (H ), denote by P(M) ∈ Q(H ) the projection operator of H onto M. Then, RP(M) = M for
all M ∈ C (H ) and PR(P) = P for all P ∈ Q(H ), and we have P ≤ Q if and only if R(P) ⊆ R(Q)
for all P,Q ∈ Q(H ), so that Q(H ) with the operator ordering is also a logic isomorphic to C (H ).
Any sublogic of Q(H ) will be called a logic on H . The lattice operations are characterized by P∧Q =
weak-limn→∞(PQ)n, P⊥ = 1−P for all P,Q ∈ Q(H ).

Let A ⊆B(H ). We denote by A ′ the commutant of A in B(H ). A self-adjoint subalgebra M of
B(H ) is called a von Neumann algebra on H iff M ′′ = M . For any self-adjoint subset A ⊆ B(H ),
A ′′ is the von Neumann algebra generated by A . We denote by P(M ) the set of projections in a von
Neumann algebra M . For any P,Q ∈ Q(H ), we have P |

◦ Q iff [P,Q] = 0, where [P,Q] = PQ−QP.
For any subset A ⊆ Q(H ), we denote by A ! the commutant of A in Q(H ). For any subset A ⊆
Q(H ), the smallest logic including A is the logic A !! called the logic generated by A . Then, a subset
Q ⊆ Q(H ) is a logic on H if and only if Q = P(M ) for some von Neumann algebra M on H [18,
Proposition 2.1].

2.3 Commutators

Marsden [14] has introduced the commutator ⊥⊥(P,Q) of two elements P and Q of a logic Q by

⊥⊥(P,Q) = (P∧Q)∨ (P∧Q⊥)∨ (P⊥∧Q)∨ (P⊥∧Q⊥).

Bruns and Kalmbach [3] have generalized this notion to finite subsets of Q by

⊥⊥(F ) =
∨

α:F→{id,⊥}

∧
P∈F

Pα(P)

for all F ∈ Pω(Q), where Pω(Q) stands for the set of finite subsets of Q, and {id,⊥} stands for the
set consisting of the identity operation id and the orthocomplementation ⊥. Generalizing this notion to
arbitrary subsets A of Q, Takeuti [23] defined ⊥⊥(A ) by

⊥⊥(A ) =
∨
{E ∈ A ! | P1 ∧E |

◦ P2 ∧E for all P1,P2 ∈ A },

of any A ∈ P(Q), where P(Q) stands for the power set of Q. Takeuti’s definition has been reformu-
lated in several more convenient forms [21, 4, 19].

We have the following characterizations of commutators in logics on Hilbert spaces [18, Theorems
2.5, 2.6, Proposition 2.2].
Theorem 2.1. Let Q be a logic on H and let A ⊆ Q. Then, we have the following relations.

(i) ⊥⊥(A ) = P{ψ ∈ H | [P1,P2]P3ψ = 0 for all P1,P2,P3 ∈ A }.
(ii) ⊥⊥(A ) = P{ψ ∈ H | [A,B]ψ = 0 for all A,B ∈ A ′′}.

3 Conditionals

In classical logic, the conditional operation → is defined by negation ⊥ and disjunction ∨ as P → Q =
P⊥ ∨Q. In quantum logic there is a well-known arbitrariness in choosing a binary operation for con-
ditional. Hardegree [11] defined a material conditional on an orthomodular lattice Q as a polynomially
definable binary operation → on Q satisfying the following “minimum implicative conditions”:
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(LB) If P |
◦ Q, then P → Q = P⊥∨Q for all P,Q ∈ Q.

(E) P → Q = 1 if and only if P ≤ Q.
(MP) (modus ponens) P∧ (P → Q) ≤ Q.
(MT) (modus tollens) Q⊥∧ (P → Q) ≤ P⊥.

Then, he proved that there are exactly three material conditionals:

(S) (Sasaki conditional) P → SQ := P⊥∨ (P∧Q),
(C) (Contrapositive Sasaki conditional) P → CQ := (P∨Q)⊥∨Q,
(R) (Relevance conditional) P → RQ := (P∧Q)∨ (P⊥∧Q)∨ (P⊥∧Q⊥).

We shall denote by → j with j = S,C,R any one of the above material conditionals. Once the condi-
tional → j is specified, the logical equivalence ↔ j is defined by

P ↔ j Q := (P → j Q)∧ (Q → j P).

Then, it is easy to see that we have

P ↔S Q = P ↔C Q = P ↔R Q = (P∧Q)∨ (P⊥∧Q⊥).

Thus, we write ↔ for ↔ j for all j == S,C,R.
In the previous investigations [23, 18, 19] on quantum set theory only the Sasaki arrow was adopted

as the conditional. In this paper, we develop a quantum set theory based on the above three conditionals
together and show that they equally ensure the transfer principle for quantum set theory. We shall also
show that the notions of equality defined through those three are the same, but that the order relations
defined through them are different.

We have the following characterizations of conditionals in logics on Hilbert spaces.

Theorem 3.1. Let Q be a logic on H and let A ⊆ Q. Then, we have the following relations.

(i) P→SQ = P{ψ ∈ H | Q⊥Pψ = 0}.
(ii) P→CQ = P{ψ ∈ H | PQ⊥ψ = 0}.

(iii) P→RQ = P{ψ ∈ H | Q⊥Pψ = PQ⊥ψ = 0}.

4 Quantum set theory

We denote by V the universe of the Zermelo-Fraenkel set theory with the axiom of choice (ZFC). Let
L (∈) be the language for first-order theory with equality having a binary relation symbol ∈, bounded
quantifier symbols ∀x ∈ y, ∃x ∈ y, and no constant symbols. For any class U , the language L (∈,U) is
the one obtained by adding a name for each element of U .

Let Q be a logic on H . For each ordinal α , let

V (Q)
α = {u| u : dom(u) → Q and (∃β < α)dom(u) ⊆V (Q)

β }.

The Q-valued universe V (L ) is defined by

V (L ) =
∪

α∈On
V (Q)

α ,
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where On is the class of all ordinals. For every u ∈V (Q), the rank of u, denoted by rank(u), is defined as
the least α such that u ∈V (Q)

α+1. It is easy to see that if u ∈ dom(v) then rank(u) < rank(v).
In what follows → j generally denotes one of the Sasaki conditional →S, the contrapositive Sasaki

conditional →C, and the relevance conditional →R. For any u,v ∈ V (L ), the Q-valued truth values of
atomic formulas u = v and u ∈ v are assigned by the following rules recursive in rank.

(i) [[u = v]] j,Q =
∧

u′∈D(u)(u(u′) → j [[u′ ∈ v]] j,Q)∧
∧

v′∈D(v)(v(v′) → j [[v′ ∈ u]] j,Q).
(ii) [[u ∈ v]] j,Q =

∨
v′∈D(v)(v(v′)∧ [[u = v′]] j,Q).

To each statement φ of L (∈,V (L )) we assign the Q-valued truth value [[φ ]] j,Q by the following
rules.

(iii) [[¬φ ]] j,Q = [[φ ]]⊥j,Q.
(iv) [[φ1 ∧φ2]] j,Q = [[φ1]] j,Q ∧ [[φ2]] j,Q.
(v) [[φ1 ∨φ2]] j,Q = [[φ1]] j,Q ∨ [[φ2]] j,Q.

(vi) [[φ1 → φ2]] j,Q = [[φ1]] j,Q → j [[φ2]] j,Q.
(vii) [[φ1 ↔ φ2]] j,Q = [[φ1]] j,Q ↔ [[φ2]] j,Q.

(viii) [[(∀x ∈ u)φ(x)]] j,Q =
∧

u′∈dom(u)(u(u′) → j [[φ(u′)]] j,Q).

(ix) [[(∃x ∈ u)φ(x)]] j,Q =
∨

u′∈dom(u)(u(u′)∧ [[φ(u′)]] j,Q).

(x) [[(∀x)φ(x)]] j,Q =
∧

u∈V (L ) [[φ(u)]] j,Q.
(xi) [[(∃x)φ(x)]] j,Q =

∨
u∈V (L ) [[φ(u)]] j,Q.

A formula in L (∈) is called a ∆0-formula if it has no unbounded quantifiers ∀x or ∃x. The following
theorem holds.

Theorem 4.1 (∆0-Absoluteness Principle). For any ∆0-formula φ(x1, . . .,xn) of L (∈) and u1, . . .,un ∈
V (Q), we have

[[φ(u1, . . . ,un)]] j,Q = [[φ(u1, . . . ,un)]] j,Q(H ).

Henceforth, for any ∆0-formula φ(x1, . . .,xn) and u1, . . . ,un ∈V (Q), we abbreviate [[φ(u1, . . . ,un)]] j =
[[φ(u1, . . . ,un)]] j,Q, which is the common Q-valued truth value in all V (L ) such that u1, . . . ,un ∈V (L ).

The universe V can be embedded in V (Q) by the following operation ∨ : v 7→ v̌ defined by the ∈-
recursion: for each v ∈V , v̌ = {ǔ| u ∈ v}×{1}. Then we have the following.

Theorem 4.2 (∆0-Elementary Equivalence Principle). For any ∆0-formula φ(x1, . . .,xn) of L (∈) and
u1, . . .,un ∈V , we have 〈V,∈〉 |= φ(u1, . . .,un) if and only if [[φ(ǔ1, . . . , ǔn)]] j = 1.

5 Transfer Principle in Quantum Set Theory

The results in this section have been obtained for j = S in Ref. [18]. Here, we generalize them to the
case j = C,R. For u ∈V (Q), we define the support of u, denoted by L(u), by transfinite recursion on the
rank of u by the relation

L(u) =
∪

x∈dom(u)

L(x)∪{u(x) | x ∈ dom(u)}.

For A ⊆ V (Q) we write L(A ) =
∪

u∈A L(u) and for u1, . . . ,un ∈ V (Q) we write L(u1, . . . ,un) =
L({u1, . . . ,un}). Let A ⊆V (Q). The commutator of A , denoted by ∨(A ), is defined by

∨(A ) = ⊥⊥(L(A )).



6 Quantum set theory

For any u1, . . . ,un ∈V (Q), we write ∨(u1, . . . ,un) = ∨({u1, . . . ,un}).
Let u∈V (Q) and p∈Q. The restriction u|p of u to p is defined by the following transfinite recursion:

dom(u|p) = {x|p | x ∈ dom(u)},
u|p(x|p) = u(x)∧ p

for any x ∈ dom(u). By induction, it is easy to see that if q, p ∈ Q, then (u|p)|q = u|p∧q for all u ∈V (Q).
We have the following theorem.

Theorem 5.1 (∆0-Restriction Principle). For any ∆0-formula φ(x1, . . .,xn) in L(∈) and u1, . . .,un ∈V (Q),
if p ∈ L(u1, . . . ,un)!, then [[φ(u1, . . . ,un)]] j ∧ p = [[φ(u1|p, . . . ,un|p)]] j ∧ p.

Then, for bounded theorems of ZFC we obtain the following transfer principle for any material con-
ditionals → j, which is of the same form as Theorem 4.6 of Ref. [18] obtained for the Sasaki conditional
→S.

Theorem 5.2 (∆0-ZFC Transfer Principle). For any ∆0-formula φ(x1, . . .,xn) of L (∈) and u1, . . .,un ∈
V (Q), if φ(x1, . . .,xn) is provable in ZFC, then we have

∨(u1, . . . ,un) ≤ [[φ(u1, . . . ,un)]] j.

6 Real numbers in quantum set theory

Let Q be the set of rational numbers in V . We define the set of rational numbers in the model V (Q) to be
Q̌. We define a real number in the model by a Dedekind cut of the rational numbers. More precisely, we
identify a real number with the upper segment of a Dedekind cut assuming that the lower segment has
no end point. Therefore, the formal definition of the predicate R(x), “x is a real number,” is expressed by

R(x) := ∀y ∈ x(y ∈ Q̌)∧∃y ∈ Q̌(y ∈ x)∧∃y ∈ Q̌(y 6∈ x)
∧∀y ∈ Q̌(y ∈ x ↔∀z ∈ Q̌(y < z → z ∈ x)). (1)

We define R(Q)
j for j = S,C,R to be the interpretation of the set R of real numbers in V (Q) under the

j-conditional as follows.

R(Q)
j = {u ∈V (Q)| D(u) = D(Q̌) and [[R(u)]] j = 1}.

The set R j,Q of real numbers in V (Q) under the j-conditional is defined by

R j,Q = R(Q)
j ×{1}. (2)

Proposition 6.1. (i) For any u ∈V (Q) with dom(u) = dom(Q̌), we have

[[R(u)]] j =
∨

y∈Q
u(y̌)∧

(∧
y∈Q

u(y̌)

)⊥

∧
∧

y∈Q

(
u(y̌) ↔

∧
y<z

u(ž)

)
.

(ii) RS,Q = RC,Q = RR,Q.
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From the above, in what follows we will write R(Q) = R(Q)
j and RQ = R j,Q.

Let M be a von Neumann algebra on a Hilbert space H and let Q = P(M ). A closed operator A
(densely defined) on H is said to be affiliated with M , in symbols Aη M , iff U∗AU = A for any unitary
operator U ∈ M ′. Let A be a self-adjoint operator (densely defined) on H and let A =

∫
R λ dEA(λ )

be its spectral decomposition, where {EA(λ )}λ∈R is the resolution of identity belonging to A [15, p.
119]. It is well-known that Aη M if and only if EA(λ ) ∈ Q for every λ ∈ R. Denote by M SA the set
of self-adjoint operators affiliated with M . Two self-adjoint operators A and B are said to commute, in
symbols A |

◦ B, iff EA(λ ) |
◦ EB(λ ′) for every pair λ ,λ ′ of reals.

For any u ∈ R(Q) and λ ∈ R, we define Eu(λ ) by

Eu(λ ) =
∧

λ<r∈Q
u(ř). (3)

Then, it can be shown that {Eu(λ )}λ∈R is a resolution of identity in Q and hence by the spectral theorem
there is a self-ajoint operator ûη M uniquely satisfying û =

∫
R λ dEu(λ ). On the other hand, let Aη M

be a self-ajoint operator. We define Ã ∈V (Q) by

Ã = {(ř,EA(r)) | r ∈ Q}. (4)

Then, dom(Ã) = dom(Q̌) and Ã(ř) = EA(r) for all r ∈ Q. It is easy to see that Ã ∈ R(Q) and we have
(û)̃ = u for all u ∈ R(Q) and (Ã)̂ = A for all A ∈ M SA. Therefore, the correspondence between R(Q) and
M SA is a one-to-one correspondence. We call the above correspondence the Takeuti correspondence.
Now, we have the following.

Theorem 6.2. Let Q be a logic on H . The relations

(i) EA(λ ) =
∧

λ<r∈Q
u(ř) for all λ ∈ Q,

(ii) u(ř) = EA(r) for all r ∈ Q,

for all u = Ã ∈ R(Q) and A = û ∈ M SA sets up a one-to-one correspondence between R(Q) and M SA.

For any r ∈ R, we shall write r̃ = (r1) ,̃ where r1 is the scalar operator on H . Then, we have
dom(r̃) = dom(Q̌) and r̃(ť) = [[ř ≤ ť]] j, so that we have L(r̃) = {0,1}. Denote by B(Rn) the σ -filed
of Borel subsets of Rn and B(Rn) the space of bounded Borel functions on Rn. For any f ∈ B(R), the
bounded self-adjoint operator f (X) ∈ M is defined by f (X) =

∫
R f (λ )dEX(λ ). For any Borel subset

∆ in R, we denote by EX(∆) the spectral projection corresponding to ∆ ∈ B(R), i.e., EX(∆) = χ∆(X),
where χ∆ is the characteristic function of ∆. Then, we have EX(λ ) = EX((−∞,λ ]).

Proposition 6.3. Let r ∈ R, s, t ∈ R, and X η MSA. For j = R,C,S, we have the following relations.

(i) [[ř ∈ s̃]] j = [[š ≤ ř]] j = Es1(t).
(ii) [[s̃ ≤ t̃]] j = [[š ≤ ť]] j = Es1(t).

(iii) [[X̃ ≤ t̃]] j = EX(t) = EX((−∞, t]).
(iv) [[t̃ < X̃ ]] j = 1−EX(t) = EX((t,∞)).
(v) [[s̃ < X̃ ≤ t̃]] j = EX(t)−EX(s) = EX((s, t]).

(vi) [[X̃ = t̃]] j = EX(t)−
∨

r<t,r∈Q EX(r) = EX({t}).
In what follows, we write r∧ s = min{r,s} and r∨ s = max{r,s} for any r,s ∈ R.
The Q-value of equality [[u = v]] j for u,v ∈ R(Q) is independent of the choice of the conditional and

characterized as follows.
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Theorem 6.4. For any u,v ∈ R(Q) we have

[[u = v]] j = P{ψ ∈ H | u(x̌)ψ = v(x̌)ψ for all x ∈ Q}.

Theorem 6.5. For any u,v ∈ R(Q) and ψ ∈ H , the following conditions are all equivalent.
(i) ψ ∈ R[[u = v]] j.
(ii) u(x̌)ψ = v(x̌)ψ for any x ∈ Q.
(iii) u(x̌)v(y̌)ψ = v(x̌∧ y̌)ψ for any x,y ∈ Q.
(iv) 〈u(x̌)ψ,v(y̌)ψ〉 = ‖v(x̌∧ y̌)ψ‖2 for any x,y ∈ Q.

The set RQ of real numbers in V (Q) is defined by

RQ = R(Q)×{1}.

Let A be an observable. For any (complex-valued) bounded Borel function f on R, we define the
observable f (A) by

f (A) =
∫

R
f (λ )dEA(λ ).

We shall denote by B(R) the space of bounded Borel functions on R. For any Borel set ∆ in R, we define
EA(∆) by EA(∆) = χ∆(A), where χ∆ is a Borel function on R defined by χ∆(x) = 1 if x ∈ ∆ and χ∆(x) = 0
if x 6∈ ∆. For any pair of observables A and B, the joint probability distribution of A and B in a state ψ is
a probability measure µA,B

ψ on R2 satisfying

µA,B
ψ (∆×Γ) = 〈ψ,(EA(∆)∧EB(Γ))ψ〉

for any ∆,Γ ∈B(R). Gudder [10] showed that the joint probability distribution µA,B
ψ exists if and only if

the relation [EA(∆),EB(Γ)]ψ = 0 holds for every ∆,Γ ∈ B(R).

Theorem 6.6. For any observables (self-adjoint operators) A,B on H and any state (unit vector) ψ ∈
H , the following conditions are all equivalent.

(i) ψ ∈ R[[Ã = B̃]] j.
(ii) EA(r)ψ = EB(r)ψ for any r ∈ Q.
(iii) f (A)ψ = f (B)ψ for all f ∈ B(R).
(iv) 〈EA(∆)ψ,EB(Γ)ψ〉 = 0 for any ∆,Γ ∈ B(R) with ∆∩Γ = /0.
(v) There is the joint probability distribution µA,B

ψ of A and B in ψ satisfying

µA,B
ψ ({(a,b) ∈ R2 | a = b}) = 1.

Condition (iii) above is adopted as the defining condition for A and B to be perfectly correlated in ψ
[17] because of the simplicity of the formulation. Condition (v) justifies our nomenclature calling A and
B “perfectly correlated.” By condition (i), quantum logic justifies the assertion that “perfectly correlated”
observables actually have the same value in the given state. For further properties and applications of the
notion of perfect correlation, we refer the reader to Ref. [17].

7 Order relations on quantum reals

Since the real numbers are defined as the upper segment of Dedekind cuts of rational numbers whose
lower segment has no end point, the order relation between two quantum reals u,v ∈ R(Q) is defined as

u ≤ v := (∀r ∈ v)[r ∈ u].
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Let M = Q′′. For any self-adjoint operators X ,Y η M we write X 4 Y iff EY (λ )≤ EX(λ ) for all λ ∈ R.
The relation is called the spectral order. This order is originally introduced by Olson [16] for bounded
operators; for recent results for unbounded operators see [20]. With the spectral order the set M SA is
a conditionally complete lattice, but it is not a vector lattice; in contrast to the fact that the usual linear
order ≤ of self-adjoint operators is a lattice if and only if M is abelian. The following facts about the
spectral order are known [16, 20]:

(i) The spectral order coincides with the usual linear order on projections and mutually commuting
operators.

(ii) For any X ,Y η MSA, we have X 4 Y if and only if Xn ≤ Y n for all n ∈ N.
Proposition 7.1. For any X ,Y η MSA and j = S,C,R, we have [[X̃ ≤ Ỹ ]] j = 1 if and only if X 4 Y .

Proof. We have

[[X̃ ≤ Ỹ ]] j = [[(∀r ∈ Ỹ )[r ∈ X̃ ]]] j =
∧

r∈dom(Ỹ )

Ỹ (r) → j [[r ∈ X̃ ]] j =
∧
r∈Q

EY (r) → j EX(r)

Thus, the assertion follows from the fact that EY (r) ≤ EX(r) if and only if EY (r) → j EX(r) = 1.

To clarify the operational meaning of the truth value [[X̃ ≤ Ỹ ]] j, in what follows we shall confine
our attention to the case where H is finite dimensional. We define the joint probability distribution
PX ,Y

ψ (x,y) representing the joint probability of obtaining the outcomes Y = y and X = x from the suc-
cessive projective measurements of Y and X , where the X measurement follows immediately after the
Y measurement on the same system prepared in the state ψ just before the Y measurement. Then, it is
well-know that PX ,Y

ψ (x,y) is determined by

PX ,Y
ψ (x,y) = ‖EX(x)EY (y)ψ‖2.

Analogously, we define the joint probability distribution PY,X
ψ (y,x) obtained by the projective X measure-

ment and the immediately following Y measurement. Then, we have

PY,X
ψ (y,x) = ‖EY (y)EX(x)ψ‖2.

Then, we have the following.
Theorem 7.2. Let X and Y be observables on a finite dimensional Hilbert space H and ψ be a state in
H . Then, we have the following.

(i) ψ ∈ R([[X̃ ≤ Ỹ ]]S) if and only if PX ,Y
ψ (x,y) = 0 for any x,y ∈ R such that x > y.

(ii) ψ ∈ R([[X̃ ≤ Ỹ ]]C) if and only if PY,X
ψ (y,x) = 0 for any x,y ∈ R such that x > y.

(iii) ψ ∈ R([[X̃ ≤ Ỹ ]]R) if and only if PY,X
ψ (y,x) = PX ,Y

ψ (x,y) = 0 for any x,y ∈ R such that x > y.

Proof. Let ψ ∈ R([[X̃ ≤ Ỹ ]]S). From Theorem 3.1 we have EX(λ )⊥EY (λ )ψ = 0 for any λ ∈ R.
Then, it is easy to see that EX(λ )⊥EY ({λ})ψ = 0. Thus, if x > y then we have PX ,Y

ψ (x,y) =
‖EX({x})⊥EY ({y})ψ‖2 = 0. Conversely, suppose that the last equation holds. Then, we have
EX({x})⊥EY ({y})ψ = 0 for all x > y, so that it easily follows that EX(λ )⊥EY (λ )ψ = 0 for every λ ∈ R.
Thus, assertion (i) follows from Theorem 3.1. The rest of the assertions follow routinely.

Note that PX ,Y
ψ (x,y) = 0 for any x,y ∈ R such that x > y if and only if ∑x≤y PX ,Y

ψ (x,y) = 1 if and
only if the outcome of the X-measurement is less than or equal to the outcome of the Y -measurement
in a successive (Y,X)-measurement with probability 1. Similarly, PY,X

ψ (y,x) = 0 for any x,y ∈ R such
that x > y if and only if the outcome of the X-measurement is less than or equal to the outcome of the
Y -measurement in a successive (X ,Y )-measurement with probability 1.



10 Quantum set theory

8 Conclusion

In quantum logic there are at least three candidates for conditional operation, called the Sasaki con-
ditional, the contrapositive Sasaki conditional, and the relevance conditional. In this paper, we have
attempted to develop quantum set theory based on quantum logics with those three conditionals, each of
which defines different quantum logical truth value assignment. We have shown that those three models
satisfy the transfer principle of the same form to determine the quantum logical truth values of theorems
of the ZFC set theory. We also show that the reals in the model and the truth values of their equality
are the same for those models. Interestingly, however, we have revealed that the order relation between
quantum reals significantly depends on the underlying conditionals. In particular, we have completely
characterized the operational meanings of those order relations in terms of joint probability obtained
by the successive projective measurements of arbitrary two observables. Those characterizations clearly
show their individual features and will play a fundamental role in future applications to quantum physics.
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