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A large part of operational quantum mechanics can be reproduced from a classical statistical theory
with a restriction which implies a limit on the amount of knowledge that an agent can have about an
individual system [5, 18]. These epistemic restrictions have recently been restated via the symplectic
structure of the underlying classical theory [19]. Starting with this symplectic framework, we obtain
C∗-algebraic formulation for the epistemically restricted theories. In the case of continuous variables,
the groupoid quantization recipe of E. Hawkins provides us a twisted group C∗-algebra which is the
usual Moyal quantization of a Poisson vector space [12].

1 Introduction

In 2003, Spekkens introduced as an evidence of an epistemic view of quantum states [18] in order to
conceptually clarify certain quantum phenomena that resist classical explanation. Indeed, the new theory
contains many prominent quantum features including complementarity, no-cloning, no-broadcasting,
teleportation, entanglement, Choi-Jamiolkowski isomorphism and many others.

The toy theory was next reformulated by Coecke, et al. [6] in the language of symmetric monoidal
categories [14], with the objects of the category representing systems and the morphisms representing
processes undergone by these systems. This formalism, which falls under the programme of Categorical
Quantum Mechanics initiated by Abramsky and Coecke [1], not only provides a consistent mathematical
formulation of the toy theory but it also identifies in a precise way the structural difference -phase group-
between stabilizer quantum mechanics and the toy theory. Namely, the structure of the phase group
carries the main physical difference between these two theories: non-/locality.

Spekkens has recently generalized the toy theory to continuous and finite variables by positing an
epistemic restriction on what kind of statistical distributions can be prepared in a classical system. This
new theory is called epistricted theory. In this approach, starting with a classical ontological theory one
constructs a statistical theory where an object is a statistical distribution over the physical state space.
Here, the deterministic dynamics change the statistical distribution. Liouville mechanics, statistical the-
ory of bits, statistical optics are some examples of theories obtained at this point of the construction. In
the final step, one put forward a restriction on the knowledge of an agent about the statistical distribution
of the system. This results in subtheories of quantum mechanics such as Gaussian epistricted mechanics
(or epistemically-restricted Liouville mechanics), stabilizer subtheory for qutrits, subtheory of quantum
optics. For the case bits, this recipe gives us the original Spekkens’ toy theory which resembles the
stabilizer subtheory of qubits.

The above mentioned epistemical restriction, which is called classical complementarity, states that
”the valid epistemic states are those wherein an agent knows the values of a set of variables that commute
relative to the Poisson bracket and is maximally ignorant otherwise.” In order to describe this epistemic
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restriction, Spekkens uses a symplectic geometric formalism for which a symplectic inner product is
derived from the Poisson bracket on the pair of functionals over the phase space. Hence, he points out the
possibility of considering symplectic geometry as a possible scheme for an axiomatization programme
of Quantum Mechanics.

A symplectic manifold is also considered to be the phase space of a classical system in an inter-
esting mathematical abstraction of quantization, namely geometric quantization [2, 4, 21]. The general
premise of this approach for quantization is to construct quantum objects (in particular quantum states,
phase spaces, etc) by using the geometry of the corresponding classical objects. It originally started as
an attempt to extend known quantization procedures, such as Weyl quantization, and more generally, de-
formation quantization, to broader configurations and phase spaces. As an outcome, the quantum objects
come equipped with natural algebraic structures, from which the algebraic structures for the classical
objects can be naturally recovered (this procedure is usually called the semiclassical limit).

In this setting, the aim is to construct a Hilbert space and observables of the underlying quantum the-
ory from a symplectic manifold in order to compare classical and quantum theories. Another quantization
scheme which applies to any Poisson manifold is deformation quantization. According to Riefel’s ap-
proach, a deformation quantization of a Poisson manifold is a continuous field of C∗-algebras [16]. This
C∗-algebraic formulation can be related to geometric quantization via symplectic groupoid approach
of Eli Hawkins [12]. Our objective in this paper is to investigate how the epistricted theories fit into
mathematical methods of geometric and deformation quantization.

Finding C∗-algebraic counterpart of the epistricted theories has several benefits. For example, one
can investigate these theories from the operator algebraic point of view. In this direction, the work on
stabilizer formalism for operator quantum error correction [15] and the other related results [13, 3] can
provide insight about the foundational properties of the epistricted theories, such as complementarity,
mutually unbiased bases, contextuality etc.

From the perspective of Categorical Quantum Mechanics, Vicary [20] showed that finite dimensional
C∗ algebras correspond to the Frobenius algebras over the category of finite dimensional Hilbert spaces.
This result gives us a high level categorical formalism to study the characteristics of the epistricted the-
ories. One can for example work on the functoriality between the subcategories of Hilbert spaces corre-
sponding to Quantum subtheories and the subcategories of sets and relations corresponding to epistricted
theories.

The outline of this paper is as follows. We begin section 2 with a brief summary of the geometric
quantization procedure. We then discuss epistricted theories of continuous variables and their correspon-
dence in geometric quantization framework. We next briefly review Eli Hawkins’ groupoid quantization
recipe from which we obtain the usual Moyal quantization as a twisted group C∗-algebra from the ge-
ometric formulation of epistricted theories. We finally conclude that the resulting C∗-algebra contains
phase-space formalism for quadrature subtheories. We end the paper with the conclusion and discus-
sions.

2 Continuous degrees of freedom

In this section, the main objective is to provide a conceptual interpretation of geometric quantization
formalism under the light of epistemically restricted theories. Hence, we first give an overview of a
certain segment geometric quantization literature which we are going to utilise to make the connection
with the epistricted theories.
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2.1 Geometric quantization

Construction of quantum mechanics from the geometry of classical mechanical objects is the main focus
of the geometric quantization. The main problem of geometric quantization can be phrased as follows:

• Given a symplectic manifold (M,Ω) modelling a classical mechanic system and its geometric
properties, construct a Hilbert space H and a set of operators on H which give the quantum
analogue of the classical system.

Here we follow the flow of the lecture notes of Bates and Weinstein [4] as they start with a specific
case of WKB method and generalize this system to other phase spaces. Finally, one can get the connec-
tion to algebraic quantization (deformation quantization) via symplectic groupoid quantization. Thus,
our final aim is to obtain a C∗-algebra structure which contains the epistricted theory.

On the other hand, the basic WKB picture stated in a symplectic geometric formalism is sufficient to
cover the epistricted theories. WKB approximate solution of time-independent Schrodinger equation is
φ = eiS/h̄ where S is a function satisfying Hamilton-Jacobi equation H(x,∂S/∂x) = E. This solution can
be realized as the lagrangian sub-manifold of the level set H−1(E). For a ”semi-classical” approximation,
one considers the transport equation

a4S+2∑
∂a
∂x j

∂S
∂x j

= 0

where a is a function on Rn. After multiplying both sides by a, one can find that the divergence of
a2∇S is zero. By considering this condition on the lagrangian manifold L = im(dS), we can deduce
L

X (x)
H
(a2|dx|) = 0, where X (x)

H is the projection of the vector field

XH|L = ∑
j

∂S
∂x j

∂

∂q j
− ∂V

∂q j

∂

∂ p j

onto Rn where the hamiltonian H is H(q, p) = ∑ p2
i /2+V (q) and |dx|= |dx1∧ . . .∧dxn| is the canonical

density on Rn. Since XH is tangent to L by the Jacobi-Hamilton theorem and since Lie derivative is
invariant under diffeomorphism, the equation L

X (x)
H
(a2|dx|) = 0 implies that the pullback π∗(a2|dx|) is

invariant under flow XH , where π : T ∗Rn→ L is the projection onto L.
As a result, a geometric semi-classical state is defined as a lagrangian manifold L of R2n equipped

with a function a (half-density). This state is stationary when L lies in the level set of the hamiltonian
and a is invariant under its flow and the transformations correspond to Hamiltonians. Table 1 shows the
correspondence between semi-classical (geometric) and quantum (algebraic) objects in this specific case.

To be consistent with the formalism of epistricted theories, we define the lagrangian condition for a
symplectic vector space as follows: For a symplectic vector space (V,ω), ω-orthogonal to a subspace
W ⊂ V is defined as the set W⊥ = {x ∈ V : ω(x,y) = 0,∀y ∈W}. A subspace is called isotropic if it
is contained in its orthogonal. Any self orthogonal subspace, i.e. W = W⊥, is called lagrangian. As a
result of non-degeneracy of ω , one can obtain dimW = 1

2 dimV .

2.2 Quadrature Epistricted Theories

We now introduce the quadrature epistricted theories for continuous variables [19]. The epistemic re-
strictions on classical variables are adopted from the condition of the joint measurability of quantum
observables. A set of variables are jointly knowable if and only if it is commuting with respect to the
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Object Semi-classical (geometric) version Quantum (algebraic) version
phase space (R2n,ω) Hilbert space HR2n

state lagrangian submanifold of R2n with
half-density

half-density on Rn

transformations hamiltonian H on R2n operator Ĥ on smooth half densities
stationary state lagrangian submanifold in level set of

H with invariant half-density
eigenvector of Ĥ

Table 1: Correspondence between classical and quantum objects

Poisson bracket. The other restriction besides joint knowability is that an agent can know only the vari-
ables which are linear combination of the position and momentum variables.

If we start with the phase space Ω = R2n where a point is denoted by m = (p1,q1, . . . ,pn,qn), epis-
temic restrictions imply that the functionals f : Ω→ R are of the form

f = a1q1 +b1 p1 + . . .+anqn +bn pn + c

where a1,b1, . . . ,an,bn,c∈R and pi(m) = pi and qi(m) = qi are functionals associated with momentum
and position , respectively. Hence, each functional f is associated with a vector f = (a1,b1, . . . ,an,bn).
It is not hard to show that the value of the Poisson bracket over the phase space is uniform and equal to
the symplectic inner product:

[ f ,g]PB(m) =
n

∑
i=1

(
∂ f
∂qi

∂g
∂ pi
− ∂g

∂qi

∂ f
∂ pi

)(m) = 〈f,g〉

where
〈f,g〉= fT Jg

and J is the skew symmetric 2n× 2n matrix with components Ji j = δi, j+1− δi+1, j. Hence, the vector
space Ω becomes a symplectic vector space with the symplectic inner product ω = 〈·, ·〉. This allows us
to give the geometric presentation of the quadrature variables.

The only set of variables jointly knowable are the ones that are Poisson commuting. In symplectic
geometry, this set corresponds to the subspace V of vectors whose symplectic inner product vanish, i.e.
∀f,g ∈ V 〈f,g〉 = 0. For a 2n-dimensional phase space, the maximum possible dimension of such a V
is n. Such a maximal space is a Lagrangian space as defined above and it corresponds to the maximal
possible knowledge an agent can have. In order to specify an epistemic state one should also set the
values of the variables on V . The linear functional v acting on a quadrature functional corresponds to
the set of vectors in v ∈V which is determined via v( f ) = fT v. That is,for every vector v ∈V we obtain
distinct value assignment.

In summary, a pure state in the epistricted theory consists of a Lagrangian subspace V ∈ R2n and a
valuation functional v : R2n→R. In geometric quantization, the half density function can be regarded as
this valuation function.

On the other hand, the valid transformations are the symplectic transformations which maps the
quadrature variables to itself. These transformations map a phase space vector m ∈Ω to Sm+a where a
is a displacement vector and S is 2n×2n symplectic matrix. The group formed by these transformations
is called the affine symplectic group, which is subgroup of the hamiltonian symplectomorphism group.
Thus, each of these transformations can be obtained from a hamiltonian. Finally, the sharp measurements
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Object Semi-classical version in quantization Epistricted theories
phase space (R2n,ω) (R2n,ω)

state lagrangian submanifold of R2n with
half-density a : R2n→ R

lagrangian subspace with a valuation
function v : R2n→ R

transformations hamiltonian H on R2n affine symplectic transformation

Table 2: Correspondence between geometric quantization and epistricted theories

are parametrized by Poisson commuting sets of quadrature variables (isotropic subspaces V ) and the
outcomes are indexed by the vectors in V .

We summarize the correspondence between geometric quantization and epistricted theories in Table
2.

2.3 Groupoid Quantization

The aim of this section is to point out that the epistricted theories can be quantized by a twisted polarized
convolution C∗-algebra of a symplectic groupoid in the sense of E. Hawkins. The main idea in this
method is to find a C∗-algebra which is approximated by a Poisson algebra of functions on a manifold.
C∗-algebra quantization is mainly developed by the work of Rieffel where the quantization is stated as
a continuous field of C∗-algebras {Ah̄}. Hawkins’ construction gives a single algebra A1 by involving
additional structures on the symplectic groupoid. In his approach, it is possible to reinterpret geometric
quantization for a broader class of examples, coming from deformation quantization of Poisson algebras.
This gives a rigorous treatment to the dictionary strategy of Weinstein relating the symplectic category
and its geometrically quantized counterpart [4].

Here is the Hawkins’ strategy for geometric quantization of a manifold Ω.For a detailed discussion,
one can refer to [12].

• Construct an symplectic groupoid Σ over Ω.

• Construct a prequantization (σ ,L,∇) of Σ.

• Choose a symplectic groupoid polarization P of Σ which satisfies both symplectic and groupoid
polarization.

• Construct a ”half form” bundle.

• Ω is quantized by twisted, polarized convolution algebra C∗P(Σ,σ).

We start with the definition of symplectic groupoid. A topological groupoid Σ is a groupoid object
in the category of topological spaces, that is, Σ consists of a space of Σ0 of objects and a space Σ2 of
arrows, together with five continous structure maps:

• The source map s : Σ2→ Σ0 assigns to each arrow g ∈ Σ2 its source s(g).

• The target map t : Σ2→ Σ0 assigns to each arrow g ∈ Σ2 its target t(g). For two objects x, y ∈ Σ0,
one writes g : x→ y to indicate that g ∈ Σ2 is an arrow with s(g) = x and t(g).

• If g and h are arrows with s(h) = t(g), one can form their composition, denoted hg, with s(hg) =
s(g) and t(hg) = t(h). If g : x→ y and h : y→ z then hg is defined and hg : x→ z. The composition
map m is defined by m(h,g) = hg.

• The unit map u : Σ0→ Σ2 is a two sided unit for composition.
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• The involution map −∗ : Σ2 → Σ2. Here, if g : x→ y then g∗ : y→ x is two sided inverse for
composition.

Σ is said to be a groupoid over Σ0

Definition 1. A Lie groupoid is a topological groupoid Σ where Σ0 and Σ2 are smooth manifolds, and
such that the structure maps s, t, m, u and −∗ are smooth. Moreover, s and t are required to be submer-
sions so that the domain of m is a smooth manifold.

Definition 2. A Lie groupoid Σ is called a symplectic groupoid if Σ2 is a symplectic manifold with
symplectic form ω and the graph multiplication relation m = {(xy,x,y) : (x,y) ∈ Σ2} is a lagrangian
submanifold of Σ2⊕Σ2⊕Σ2, where Σ is the symplectic manifold (Σ2,−ω).

As m is lagrangian, one can find a unique Poisson structure on Σ0 of a symplectic groupoid such that
s is a Poisson map and t is anti-Poisson. Hence, we have the following definition.

Definition 3. A symplectic groupoid Σ is said to integrate a Poisson manifold Ω if there exists a Poisson
isomorphism from Σ0 onto Ω.

In the particular case of symplectic manifold Ω=R2n with symplectic form ω , which is the context of
the epistricted theories, we have the symplectic groupoid Ω⊕Ω∗ integrating the symplectic vector space
Ω, where the multiplication is given by fiber addition on Ω∗ = {(p1, p2, · · · , p2n)}, i.e. the symplectic
integration comes equipped with Darboux coordinates.

More explicitly, ω̂(u) : v 7→ ω(u,v) gives a map ω̂ : R2n→ R2n∗. One obtains a symplectic structure

σ((x,y),(z,w)) = ω(x,z)−ω(y,w)

= ω̂(x− y)[
z+w

2
]− ω̂(z−w)[

x+ y
2

].

We identify R2n⊕ R̄2n with the cotangent bundle T ∗(R2n) as follows: For the local coordinates of cov-
ectors (u,ξ ), (v,η) in T ∗(R2n), the cotangent symplectic structure is

σ
∗((u,ξ ),(v,η)) = ξ (u)−η(v).

This gives us a symplectomorphism Φ : R2n⊕ R̄2n→ T ∗(R2n) such that

Φ : (x,y) 7→ (1/2(x+ y), ω̂(x− y))

where Φ∗σ∗ = σ . 1

One can obtain the the Darboux coordinates (q1, . . . ,qn, p1, . . . , pn) of T ∗(R2n) from the symplecto-
morphism Φ. The projection of T ∗(R2n) to R2n∗ is a fibration of groupoids whose fibers are Lagragian.
Thus this is a polarization of the symplectic groupoid given by

P = span{∂/∂ p1, . . . ,∂/∂ pn}

The symplectic potential which vanishes on P can be chosen as θP =−pidqi.
This polarization gives us the half-form pairing, which enables quantizable observables to be rep-

resented as operators on the Hilbert space L2(R2n).Hence, this yields the correspondence between the
kernels of operators on L2(R2n) and Weyl symbols of these operators. This kernel T of an operator f is
given by

T f (p,q) =C
∫

f (
p+q

2
,ζ )eiζ (q−p)/h̄dζ .

1 This example has also been studied by Hawkins (see example 6.2 [12]).
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The quantization procedure gives the twisted group algebra C∗(Ω∗,σ) where σ : Ω∗ ×Ω∗ → T,
σ(x,y) = e

−i
{q,p} . This is the usual Moyal quantization of a Poisson vector space (see [17]). In this setting,

the observables corresponds to functions in classical phase-space and the Moyal product of functions
is derived from the product of pair of observables. In this case, the position and momentum operators
correspond to the generators of the Heisenberg group and they are related to each other by a Fourier
transform.

We now show that quadrature quantum subtheories agree with the Moyal quantization, in the sym-
plectic case. To be consistent with the formalism of [19], we work with projector valued measures
(PVM) rather than Hermitian operators. PVMs are used in quantum information and quantum founda-
tions to represent measurements as eigenvalues of Hermitian operators are operationally insignificant
and serve as labels of outcomes. A projector-valued measure with outcome set K is a set of projectors
{Πk : k ∈ K} such that Π2

k = Πk, ∀k ∈ K and ∑k Πk = I. Hence the position (momentum) observable are
the set of projectors onto position (momentum) eigenstates2:

Oq = {Π̂q(q) : q ∈ R}

where
Π̂q(q) = |q〉q〈q|.

We now define a unitary representation of symplectic affine transformation to introduce the other
quadrature observables. The projective unitary representation V̂ of the symplectic group acting on the
phase space Ω satisfies V̂ (S)V̂ (S′) = eiφV̂ (SS′) for every symplectic matrix S : Ω→ Ω and where eiφ is
a phase factor. The action of this unitary is defined by the conjugation

V (S)(·) = V̂ (S)(·)V̂ †(S).

For single degree of freedom, let S f be the symplectic matrix that takes the position functional q to a
quadrature functional f such that S f q = f. Then the quadrature observable associated with f is defined
as follows

O f = {Π̂ f (f) : f ∈ R}

where
Π̂ f (f) = V (S f )(Π̂q(f)).

For the n degrees of freedom Ω = R2n, the quadrature observable associated with f is given by

O f = {Π̂ f (f) : f ∈ R2n}

where
Π̂ f (f) = V (S f )(I⊗·· ·⊗ Π̂qi(f)⊗·· ·⊗ I)

for S f qi = f. We also know that the set of quadrature observables {O fi} commute if and only if the cor-
responding functionals { fi} are Poisson-commuting (see [18]). Hence, the commuting set of quadrature
observables can be labelled by isotropic subspaces of Ω. This set defines a single quadrature observable

OV = {Π̂V (v) : v ∈V}
2In the continuous case one can also use Hermitian operators corresponding to the real valued functionals but the commu-

tation relation of Hermitian operators does not have finite counterpart Therefore, Spekkens preferred to use PVMs in order to
cover finite and continuous cases simultaneously.



8 Geometric Quantization and Epistemically Restricted Theories

where
Π̂V (v) = ∏

f(i)
Π̂ f (i)( f (i)v).

On the other hand, in the geometric quantization procedure, any functional f on Ω is mapped to a
hermitian operator f̂ in a prequantum Hilbert space which corresponds to the observable O f = {Π̂ f (f) :
f ∈ R2n}. Moreover, the commutation relation for the observables in both quadrature subtheories and
geometric quantization, is implied by the Poisson commutation relation of the classical observables.
As the polarization is the commuting set of these hermitian operators, the state that is obtained after
quantization is the operator Π̂V (v).The choice of the vertical polarization for the groupoid Ω⊕Ω∗ is the
responsible of the correspondence between the two quantum states. The half-form pairing defined above
can be computed in terms of the integral kernel of the projection operator Π̂ f , which has Weyl symbol f .
This establishes a correspondence between phase-space formalism and quantum mechanics, and Moyal
product is deduced from this correspondence.

In [18], the operational equivalence quantum subtheories and epistricted theories is proven using
Wigner representation which maps operators in Hilbert space to the functions in phase-space formula-
tion of quantum mechanics. It is also well-known fact that the Wigner representation of an operator
product is given by the Moyal product. As a result, geometric quantization with an appropriate choice of
polarization is operationally equivalent to epistricted theories. We can also conlude that group algebra
C∗(H) = C∗(Ω∗,σ), which is the Hilbert space considered as a group representation of the Heisenberg
group H, contains the algebraic structure of quadrature subtheories.

2.4 Functoriality

The functoriality of geometric quantization is a delicate issue and it has been proven that the quantization
that fits with the Schroedinger picture is in fact not functorial. There are several problems even before
quantization, in particular, that the symplectic category is not quite a category, since the composition of
Lagrangian correspondences is not in general well defined, and also that when it is defined, the com-
position is not continuous with the standard topology in the Lagrangian Grassmanian. The failure of
geometric quantization to functorially represent Schroedinger’s picture is given e.g. in Gotay’s work [9].

However, the geometric quantization picture for symplectic groupoids turns out to be functorial with
respect to the choices, i.e. the polarizations (the groupoid one), the half line bundle. The fact that
the choices of polarizations are affine means that there is a higher structure for our C*-algebra quan-
tization, namely, the objects are symplectic manifolds, 1-morphisms are Lagrangian polarizations and
2-morphisms are affine transformations between Lagrangian polarizations. These 2-morphims are re-
flected in C*-algebra automorphisms after quantization.

3 Conclusion and further work

We establish the relationship between geometric quantization and quadrature subtheories for the conti-
nous degrees of freedom. We conclude that the group algebra C∗(H) for Heisenberg group H contains
the quadrature subtheories as a result of groupoid quantization procedure. One can use this fact to give
operator algebraic approach to quantum optics.

This construction also suggests that there is a ”geometric quantization” functor, from a subcategory
of the category of groupoids to the category of C∗-algebras. Following [7], this corresponds to a functor
from Frobenius algebras in the category FRel (Frobenius algebras in the category of sets and relations)
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to Frobenius algebras in the category of Hilbert spaces FHilb. The functor has to be defined in the
subcategory of Frobenius algebras arising from symplectic groupoids, and the morphisms have to be
adapted in order to obtain functoriality.

In ongoing work, we investigate discrete degrees of freedom. The variables in this case are chosen
from a finite field instead of real numbers. Even though Spekkens’ original toy theory [19] is contained
in the case where finite field is Z/2, we will first consider odd degrees freedom. The reason is that for
Ω = (Z/2)n the discrete Wigner representation can take negative values and therefore the epistricted
theory does not coincide with the quadrature subtheories [18]. ”Quantization” schemes in finite degrees
were not studied extensively but there are some result worth to check from the conceptual viewpoint of
epistricted theories [10]. Our aim is to give a discrete version of groupoid quantization that also contains
the functorial case of [10]. We conjecture that the resulting algebra is C∗(H) for the finite Heisenberg
group H. This finite C∗-algebra corresponds to a Frobenius structure via the construction of Vicary
[20]. Thus, one can study quantum phenomena such as complementarity in quadrature theories in this
algebraic framework.

We end the paper with the sketch of our discrete quantization. The details will appear in the future
work.

• We start with the special dagger frobenius algebra of epstricted theories, Spek, which is a subcat-
egory of finite sets and relations, FRel.

• We then construct the groupoid G corresponding to Spek via the explicit connection in Heunen et.
al.[7].

• We next obtain the pair groupoid from G and introduce the symplectic structure on it which is
compatible with the pair groupoid. In this case, the each polarization corresponds to a lagrangian
subspace in epistricted theories.

• We then apply geometric quantization procedure on the pair groupoid by considering the complex
valued function space on the groupoid and using discrete fourier transform (integral kernel) defined
by Gross [8].

• Finally, we end up with the finite dimensional C∗-algebra from which one can construct special
dagger frobenius algebra over FHilb via [20].
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