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We present a cohomological formulation of measurement-based quantum computation (MBQC),
the central object of which is a phase function. The phase function describes symmetries of the
resource state of the MBQC, specifies the computational output, and acts as a contextuality witness.
It is also a topological object, namely a 1-cocycle in group cohomology. Non-triviality of the cocycles
reveals the presence of contextuality, and is a precondition for quantum speedup.

PACS numbers: 03.67.Mn, 03.65.Ud, 03.67.Ac

An important question in the theory of quantum com-
putation is which key quantum property is responsible
for the speedup. This question is often viewed through
the lens of resource theories, and a goal of this approach
is to show that a candidate quantum property is indis-
pensable for universality or for the hardness of classical
simulation. Entanglement [1] and contextuality [2]-[6]
have in this way been established as necessary resources
[7]-[9], [10]-[13], at least when quantified in specific ways
(see [14],[15], however).

Here, we address the initial question from a different,
algebraic angle. We ask: “Are there computational struc-
tures in Hilbert space, and what do they look like?” We
require such structures to satisfy two criteria: (i) They
must specify the function computed, and (ii) they must
be quantum.

Scanning for examples, one appears in Anders and
Browne’s contextual measurement-based quantum com-
putation (MBQC) [10] on a 3-qubit Greenberger-Horne-
Zeilinger state. It is based on the state-dependent version
of Mermin’s star [3], which is contextual. Contextuality
is an obstruction to describing quantum mechanics in a
classical statistical fashion, similar to Bell non-locality
[16]. Mermin’s star is a genuinely quantum structure. It
also computes, if only an OR-gate.

In addition to [10] and its numerous cousins, there ex-
ists a contextual MBQC with a real application and a
super-polynomial (as far as is known) quantum speed-
up, namely the MBQC version of the deterministic vari-
ant [17] of the ‘Discrete Log’ quantum algorithm [18].

Next arise the questions of which key structural ele-
ment is to be gleaned from Mermin’s star, and, more
generally, how individual examples such as the above fit
into a common framework. Here, we provide answers
to these questions, for the model of measurement-based
quantum computation [19]. The key element in Mer-
min’s star is its non-trivial cohomology (defined below;
also see [4]). Further, there is a common framework for
contextual quantum computations that has at its center
the so-called phase function, a topological object known
from crystallography in Fourier space [20]-[22].

The phase function enters MBQC through the descrip-
tion of a group of symmetry transformations on the re-
source state (See Fig. 1), but it has further computational
and physical meaning for MBQC. Namely, it encodes the

function computed, up to an additive constant, and it is
a witness for contextuality and thus quantumness.

To establish a cohomological framework for MBQC, we
combine two links, namely the link between cohomology
and contextuality identified by Abramsky and coworkers
[4], [23], and the link between contextuality and MBQC
[10], [11]. To make those links match, the Čech cohomol-
ogy used in [23] is replaced by group cohomology [24],
and the model of MBQC is moderately generalized.

This paper is organized as follows. First we describe a
generalization of MBQC where the possible inputs form a
finite group G. Then we present the topological formula-
tion of this generalization in terms of a phase function Φ,
leading up to the classification of the equivalence classes
of Φ by the first cohomology group of G.

Finally, we investigate the physical and computational
manifestations of this classification. We find that non-
trivial cohomology of [Φ] is (a) a precondition for the
function computed in the G-MBQC to be non-trivial,
and (b) a witness for contextuality in the quantum com-
putation. Furthermore, (c) for any given G-MBQC, we
identify a logical contextuality inequality whose maximal
violation puts an upper bound on the cost of reproducing
the computational output by classical means. Significant
speedup thus requires large amounts of contexuality.
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FIG. 1: Similarity transformation on the quasi-probability
function Q|GHZ〉of a GHZ-state, cf. Eq. (5) [hatched: Q(..) =
−1/64, solid: Q(..) = 3/64]. Q transforms covariantly under
the input group G = Z2 × Z2 of the MBQC [10], in such a
way that the origin of phase space remains fixed. The effect
of the g ∈ G on Q|GHZ〉 are translations; i.e., the symmetry
transformations of Q|GHZ〉 are analogous to glide planes.
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Generalized notion of MBQC.—To the standard set-
ting [19] of MBQC, we apply a generalization and a
specialization. The specialization is to temporally flat
MBQCs, i.e., all measurement bases are independent of
all measurement outcomes. This is a substantial restric-
tion which needs to be lifted in a subsequent more de-
tailed treatment. We also confine to MBQCs with a sin-
gle output bit, for notational simplicity.

The generalization concerns the set of possible inputs,
which is typically a string of bits. Here we assume the
inputs to form a finite group G, Abelian or non-Abelian.
The motivation for this generalization is to pinpoint the
underlying topological structure. We note that (i) stan-
dard MBQC remains a special case, with G = Z2

m,
m ∈ N, and (ii) some structure in the set of inputs is
required, for otherwise an unreasonable amount of com-
putational power could be packed into the mapping be-
tween inputs and measurement settings; See Appendix A.

We assume that the dimension d of the underlying
Hilbert space H is finite, and that all measurable observ-
ables have eigenvalues ±1 only (they need not be Pauli
operators, however). We denote the set of these observ-
ables by O+. We also define the enlarged set Ω+ :=
O+ ∪ {T (g), g ∈ G} ∪ {I}, where the observables T (g)
are those for which the measured eigenvalues (−1)o(g)

provide the computational outputs o(g). The elements
of Ω+ are labeled by an index set A, Ω+ = {Ta, a ∈ A}.
(A is the support of a characteristic function, see below.)

For the input value being the identity e ∈ G, the ob-
servables in a reference context C(e), with [Ta, Ta′ ] = 0,
∀Ta, Ta′ ∈ C(e), are simultaneously measured on an
MBQC resource state ρ. The corresponding measured
eigenvalues (−1)s(a) are post-processed to infer the eigen-
value (−1)o(e) of the observable T (e) =

∏
a|Ta∈C(e) Ta.

The outcome o(e) of the MBQC given the input e ∈ G
is thus related to the measurement outcomes via o(e) =∑
a|Ta∈C(e) s(a) mod 2.

Regarding all input values, we require of G that it has
a projective representation u(G) acting on H. Then, the
measurement context for any input g ∈ G is

C(g) = {u(g)Tau(g)†, Ta ∈ C(e)}. (1)

The observables T (g) :=
∏
a|Ta∈C(g) Ta, with measured

eigenvalues (−1)o(g), represent the output of the compu-
tation. For all g ∈ G, the computational output o(g) is
related to the measurement outcomes via

o(g) =
∑

a|Ta∈C(g)

s(a) mod 2. (2)

This setting we call G-MBQC.
Above, Eq. (2) relating measurement outcomes to com-

putational output is standard in MBQC [19], but Eq. (1)
relating the input of the computation to the measure-
ment settings represents a modification and extension of
the original scheme. The latter remains a special case,
with G = Z2

m, m ∈ N; See Appendix B.

To summarize, G-MBQCs take as input an element g
of a finite input group G, and are run in three steps.
1) Classical pre-processing. The input g ∈ G is con-
verted by the CC into the measurement context C(g), cf.
Eq. (1). 2) Quantum part. The observables Ta ∈ C(g)
are measured, yielding outcomes s(a). 3) Classical post-
processing. The output o(g) is obtained from the mea-
surement outcomes {s(a)} via Eq. (2). Comparing with
standard MBQC, the CC requires new capability, to ac-
complish above Step 1.

Let’s apply the above definitions to the simplest
contextual MBQC, the measurement-based OR-gate
[10]. The point about the OR-gate is that it pro-
motes the limited classical control computer in MBQC
to classical universality. The resource state is a
3-qubit Greenberger-Horne-Zeilinger state |Ψ〉, with
stabilizer relations X1X2X3|Ψ〉 = −X1Y2Y3|Ψ〉 =
−Y1X2Y3|Ψ〉 = −Y1Y2X3|Ψ〉 = |Ψ〉, and measure-
ment contexts C00 = {X1, X2, X3}, C01 = {X1, Y2, Y3},
C10 = {Y1, X2, Y3}, C11 = {Y1, Y2, X3}, for the inputs
(0, 0), (0, 1), (1, 0), (1, 1) ∈ Z2 × Z2, respectively. The in-
put group for this MBQC is G = Z2 × Z2 = 〈g01, g10〉,
with a representation {u(g01) = I1 ⊗ A2 ⊗ A3, u(g10) =

A1 ⊗ I2 ⊗ A3, ..}, where A := (X + Y )/
√

2. Thus,
AXA† = Y and AY A† = X, and Eq. (1) reproduces the
above four contexts for the corresponding input values.

Back to the general discussion of G-MBQC, there ex-
ists a group of equivalence transformations changing the
set Ω+, namely

Ta 7→ T ′a = (−1)v(a)Ta, ∀a ∈ A, ∀v ∈ V, (3)

where the phases v(a) ∈ Z2 are such that they preserve
all product relations among commuting observables in
Ω+, and V is the maximal set of such transformations.
If u,v ∈ V then u + v ∈ V ; hence V = Z2

m, m ∈ N.
The motivation for considering these transformations

is that basing a G-MBQC on a set Ω+ of observables
vs. a set Ωv := {(−1)v(a)Ta, a ∈ A} does not change
the cost or even the procedure of computation. The G-
MBQCs based on the sets Ωv, for all v ∈ V , are therefore
equivalent. The transformations induced by V amount
to mere consistent relabelings of measurement outcomes,
and we regard them as gauge transformations.

However, the transformations V change the computed
function o : G −→ Z2, such that those functions form
equivalence classes. In the previously mentioned GHZ-
example [10], the equivalent functions are OR ∼= NOR ∼=
NAND ∼= AND. They are all non-linear, and boost the
classical control computer (CC), which by itself is capable
only of evaluating linear functions, in the same way.

Finally, we impose a consistency condition on Ω+. By
construction, G maps O+ to itself and Ω+ to itself under
conjugation. The action of G on Ω+ implies an action
of G on A. Namely, for all a ∈ A and all g ∈ G, ga
is defined through Tga = u(g)Tau(g)†. Now, we require
that, for all a, b ∈ A,

v(a) = v(b), ∀v ∈ V =⇒ a = b. (4)
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This implies in particular that if Ta ∈ Ω+ then −Ta 6∈
Ω+. More generally, for any a ∈ A, χ(a) : V −→ {±1}
defined by v 7→ χv(a) := (−1)v(a) is a linear character,
χu+v(a) = χu(a)χv(a) for all a ∈ A; i.e., χ(a) ∈ V ∗. If
Eq. (4) holds then all observables Ta ∈ Ω+ are uniquely
identifiable by the linear character χ(a) they induce.∑

v∈V χv(a)χv(b) = |V |δa,b is then implied by charac-
ter orthogonality. We will use this property shortly.

Formulation in phase space.—To reveal its topolog-
ical features, we formulate G-MBQC in phase space,
equipped with a quasi-probability function Q and a char-
acteristic function Ξ.

The phase space is the module V defined in Eq. (3).
The quasi-probability Q : V −→ R is defined as Qρ(v) :=
Tr(Avρ), with

Av =
1

|V |
∑
a∈A

(−1)v(a)Ta. (5)

The characteristic function Ξ is the Fourier transform
of Q, Ξρ(a) :=

∑
v∈V (−1)v(a)Wρ(v). By Eq. (4) and

character orthogonality, it follows that

Ξρ(a) = 〈Ta〉ρ, ∀a ∈ A. (6)

The phase function Φ. In G-MBQC, the possible re-
source states ρ are constrained by similarity transfor-
mations induced by G. As already discussed, G acts
on the set A, and this implies an action on the phase
space V , namely (g(v))(a) = v(g−1a), for all a ∈ A;
See Lemma 3 in Appendix C. Then, the resource states
ρ are such that their quasi-probability functions Qρ sat-
isfy Qu†(g)ρu(g)(v) ≡ Qρ(g(v)) = Qρ(v + vg), ∀g ∈ G,
∀v ∈ V . That is, the quasi-probability functions Qρ of
resource states are invariant under combinations of rota-
tions g and matching translations vg of the underlying
phase space V . Note that the equivalence holds for all
states (covariance of Q, see Lemma 2 in Appendix C);
the equality only holds for resource states ρ. This situa-
tion is analogous to the symmetries of matter density in
a crystal. There, the analogue of G is the point group,
and the corresponding symmetry transformations can be
screw axes and glide planes.

This is illustrated in Fig. 1, for the 3-qubit MBQC [10].
The quasi-probability functions for the states |GHZ〉 and

g†11|GHZ〉 are shown, where g11 = A1A2. The resulting
translation of Q|GHZ〉 is by the vector (1,0,0) in the ver-
tical direction, indicated by the rectangles.

In terms of the characteristic function Ξρ, the above
symmetry constraint on resource states ρ reads

Ξρ(ga) = (−1)Φg(a) Ξρ(a), (7)

where Φg ∈ V , for all g ∈ G. We have just introduced
the phase function Φ : G −→ V , the central object of
the cohomological description of G-MBQC. As a remark,
the characteristic function Ξ plays the same role for G-
MBQC as the Fourier transform of the matter density
plays for crystallography in Fourier space [21], [22].

The phase function Φ has two arguments, g ∈ G and
a ∈ A, and it satisfies two constraints, linearity on A
and group compatibility on G. First, consider a, b, c ∈ A
such that [Ta, Tb] = 0 and Tc = ±TaTb. Then, since
Φ : G −→ V , ∀g ∈ G,

Φg(c) = Φg(a) + Φg(b) mod 2. (8)

The group compatibility condition [21] is enforced by
associativity, and reads Ξρ((gh)a) ≡ Ξρ(g(ha)). With
Eq. (7), ∀g, h ∈ G, ∀a ∈ A, we thus have

Φgh(a) = Φh(a) + Φg(ha) mod 2. (9)

This compatibility condition can be restated in topo-
logical terms. Namely, in group cohomology [24] a k-
cochain is a map ϕk : Gk −→M , where G is a group and
M is a module on which G acts. Since V is a mod-
ule, the function Φ : G −→ V defined by g 7→ Φg,
Φg : A −→ Z2, matches the definition of a 1-cochain.
Φ has a coboundary dΦ : G × G −→ V , given by
(dΦ)g,h(a) := Φg(ha) + Φh(a)−Φgh(a) mod 2. By com-
parison with Eq. (9), we find that the group compatibility
condition has a topological interpretation,

dΦ = 0. (10)

The phase function Φ is thus a 1-cocycle, which may be
trivial or non-trivial. The coboundary of a 0-cochain is

(dA)g(a) = A(ga)−A(a) mod 2, ∀g ∈ G,∀a ∈ A.
(11)

Now considering the equivalence transformations Eq. (3),
with Eqs. (6) and (7), we find that

Φ ∼= Φ + dv mod 2, ∀v ∈ V. (12)

The phase functions Φ are subject to the restriction
Eq. (10) and the identification Eq. (12). For their equiva-
lence classes [Φ] under the gauge transformations Eq. (3)
it therefore holds that

[Φ] ∈ H1(G,V ).

This is the topological characterization of G-MBQC. We
now look at its physical and computational ramifications.

(a) Phase function and computation. Up to an ad-
ditive constant, the phase function contains full infor-
mation about the computational output, as we now ex-
plain. With Eq. (6), for any a ∈ A, the probability
pa(s) for obtaining the outcome s in the measurement
of Ta is pa(s) = (1 + (−1)sΞρ(a))/2, and the probabil-
ity pga(s′) for the outcome s′ of Tga is pga(s′) = (1 +

(−1)s
′
Ξρ(ga))/2. With the symmetry property Eq. (7)

of the resource state ρ, pa(s) = pga(s′) if the outcomes
s and s′ are related via s = s′ + Φg(a), for all g ∈ G.
Now, for any g ∈ G, we define the ‘intended’ outcome
o(g) as the likeliest outcome of the measurement of T (g).
With the preceding relation, first, the success probability
of computation is uniform over G, and furthermore

o(g) = Φg(be) + const. mod 2, (13)
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where const. = o(e), and be is such that Tbe = T (e).
Thus, up to an additive constant, the phase function Φ
contains all information about the output function o :
G −→ Z2 computed in the MBQC.

Furthermore, there exists a connection between coho-
mological triviality of Φ and computational triviality of
the output function o specified by Φ through Eq. (13).

Proposition 1 Assume that the classical control com-
puter (CC) of G-MBQC has access to a memory of size
|O+|, with binary-valued cells addressable by a, Ta ∈ O+.
Then, the CC is capable of computing any function o
specified through Eq. (13) by a trivial phase function
Φ = dA, without any access to quantum resources.

Remark: If the CC has access to a memory of size |Ω+|,
then it can compute any function o without quantum
resources. However, Proposition 1 has grip because, typ-
ically, |O+| � |Ω+|. For example, in standard MBQC,
|Ω+\O+| = 2m and |O+| = 2n, where m is the number
of input bits and n the number of qubits in the cluster
state. For efficient such computations, n = Poly(m).

Proof of Proposition 1. With Eq. (13), the com-
puted function is o(g) = (dA)g(be) + const. Then,
with Eqs. (8), (11), (dA)g(be) =

∑
a|Ta∈C(e)(dA)g(a)

mod 2 =
∑
a|Ta∈C(e)A(ga) − A(a) mod 2. To evalu-

ate the o(g), as a pre-computation, load the memory
with the values A(a), for all a with Ta ∈ O+. Then,
at runtime, 1. Call from memory all values A(ai), with
Tai ∈ C(e), and add them → v1, 2. Compute a′i = gai,
for all Tai ∈ C(e), 3. Call all A(a′i) and add them → v2,
4. Add v1 + v2 + const. mod 2 =: v, and output v. All
required operations are accessible to the CC. �

(b) Phase function and contextuality. By Eq. (13), Φ,
when supplemented with a constant, satisfies criterion (i)
imposed on computational structures in Hilbert space.
But in which sense is it quantum?

Proposition 2 Consider a G-MBQC M computing a
function o : G −→ Z2. If for all phase functions
Φ satisfying the output relation Eq. (13) it holds that
[Φ] 6= 0 ∈ H1(G,V ), then M is strongly contextual.

The proof of Proposition 2 is given in Appendix D 1.
Prop. 2 provides symmetry-based proofs of contextual-
ity; also see [25]. Namely, in many instances it can be
shown that (i) linearity Eq. (8) of Φ, (ii) the output re-
lation Eq. (13), and (iii) Φ = dA are incompatible. With
Prop. 2 contextuality then follows.

This is best illustrated with the example of the
measurement-based OR-gate [10] discussed earlier. Re-
call that the resource state in this MBQC is a 3-qubit
GHZ state |Ψ〉, with stabilizer relations X1X2X3|Ψ〉 =
−X1Y2Y3|Ψ〉 = −Y1X2Y3|Ψ〉 = −Y1Y2X3|Ψ〉 = |Ψ〉. We
consider the input group element g = g11 which acts on
O+ as X1 ↔ Y1, X2 ↔ Y3, X3 	, Y3 	. Further, be
a(X1) such that Ta(X1) = X1, etc. With the above eigen-
value equations we then have

Φg(aXXX) = 1, Φg(aY XY ) = 0. (14)

By linearity Eq. (8) of Φg on commuting observables,

Φg(aXXX) = Φg(aX1) + Φg(aX2) + Φg(aX3),
Φg(aY XY ) = Φg(aY1) + Φg(aX2) + Φg(aY3),

(15)

where addition is mod 2. Combining Eqs. (14) and (15),
1 = Φg(aX1)+Φg(aX3)+Φg(aY1)+Φg(aY3). Now assume
that Φ = dA, for some A ∈ V . The previous equation
then specializes to

1 = (A(aX1
)−A(aY1

)) + (A(aX3
)−A(aY3

)) +
+ (A(aY1

)−A(aX1
)) + (A(aY3

)−A(aX3
)) mod 2

= 0.

Contradiction. Hence Φ 6= dA for any A. With Proposi-
tion 2, the above MBQC is strongly contextual. �

Note that 1 = Φg(aXXX) ⊕ Φg(aY XY ) = s(aXXX) ⊕
s(aY Y X) ⊕ s(aY XY ) ⊕ s(aXY Y ). Thus, the obstruction
to non-contextuality is the non-linearity of the function
computed.

Further note that there is a close relation between the
present symmetry based and Mermin’s parity based con-
textuality proofs [3]; See Appendix D.

(c) Contextuality and speedup. In view of the contex-
tual 3-qubit MBQC [10] executing an OR-gate, one may
ask “What is contextual about an OR-gate?”. A first
answer to this question would be that, of course, there is
nothing contextual about an OR-gate per se, only one of
its physical realizations—the MBQC—is contextual.

But we can say more. There is a non-contextuality
inequality whose strength of violation in G-MBQC puts
an upper bound on the computational cost of classical
function evaluation. Therefore, a significant violation of
this inequality is required for quantum speedup.

The quantity ∆(o)ρ :=
∑
g∈G(1+(−1)o(g)〈T (g)〉ρ)/2 is

a contextuality witnesses. The maximum value allowed
by quantum mechanics, ∆(o)ρ,max = |G|, is reached for
deterministic G-MBQCs. Be s : A −→ Z2 an internally
consistent, non-contextual value assignment, and S the
set of all such assignments. Any s induces a function os
via os(g) = s(gb), for all g ∈ G, where b ∈ A is such
that Tb = T (I). The value of ∆(o) for a ncHVM with
deterministic value assignments is therefore bounded by

∆(o)HVM ≤ maxs∈S
(
|G| − wt(o⊕ os)

)
, (16)

where wt(r) is the Hamming weight of a function r :
G −→ Z2. This is a logical non-contextuality inequality
[26]. If no consistent non-contextual value assignment
reproducing the function o exists, then ∆(o)HVM < |G|.

Proposition 3 The classical computational cost Cclass

of reducing the evaluation of a function o : G → Z2 to
the evaluation of a trivial function os, induced by a phase
function Φ ≡ ds via Eq. (13), is bounded by the maxi-
mum violation of the logical non-contextuality inequality
Eq. (16), Cclass ≤ |G| −∆(o)HVM,max.

Taken together with Prop. 1, this result establishes that
a large amount of contextuality is necessary for quantum
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speedup. It is thus a contextuality counterpart to corre-
sponding results [8],[9] for entanglement, and [27] for the
negativity of Wigner functions.

Proof of Proposition 3. We establish the upper bound
by explicit construction of an algorithm that matches it.
Be s a consistent non-contextual value assignment, with
os(g) := s(gbe) where be is such that Tbe = T (e), that

maximizes the r.h.s. of Eq. (16). We assume the set G̃ :=
{g ∈ G|os(g) 6= o(g)} is given in table form. To classically
evaluate the function o in question, for any input g ∈ G,
check membership in G̃. If g ∈ G̃, output os(g) ⊕ 1,
otherwise output os(g). This reduces the evaluation of
the function o to the evaluation of os, and os is indeed
of the form Eq. (13), with Φ ≡ ds and const. = s(be).

Since |G̃| = |G| −∆(o)HVM,max, the operational cost of

sifting through the list G̃ (the memory cost of storing G̃)
is bounded by (given by) |G| −∆(o)HVM,max. �

Conclusion.—We have described a cohomological
framework for measurement-based quantum computa-
tion in which the classical inputs form a finite group
G. The central object of this framework is the phase
function, which constrains the allowed resource states by
a symmetry condition, and also specifies the computa-
tional output. The possible phase functions group into
equivalence classes which are labeled by the first coho-

mology group of G. We have described computational
and physical ramifications of this topological classifica-
tion. For any given G-MBQC, non-trivial cohomology
of the phase function is a witness of quantumness in the
form of contextuality, and a precondition for speedup.

The next step suggested by this work is to extend the
cohomological framework to G-MBQCs with proper tem-
poral order. Further, group cohomology has also reached
the subject of MBQC in a different vein, namely through
the description of ‘computational phases of matter’ [28]-
[31] within the paradigm of symmetry-protected topolog-
ical order. Is there a relation?

From a broad perspective, the search for a quintessen-
tial quantum property at the root of the quantum
speedup and the search for efficient quantum algorithms
are two sides of the same coin. In view of this, the present
work raises the following question: “Is there a quantum
computational paradigm that relates to contextuality in
the same way as ‘quantum parallelism’ [32] relates to su-
perposition and interference?” In this work we have pro-
vided an algebraic framework within which any emerging
contender may be examined and utilized.
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Appendix A: The need for structure in the input set

If we merely require that the set of input values forms
a set with no additional structure, then there is plenty
of flexibility in assigning measurement contexts to input
values, and this proves to be problematic. Namely, a
large amount of computational power can be packed into
the relation between inputs and measurement contexts.

The sets C(i) of measured observables are labeled by
the input value i. If τ : i 7→ C(i), for all input values
i ∈ G, is a valid assignment of computational inputs to
the contexts, then so is τP : i 7→ C(P i), where P is an
arbitrary permutation of the elements in G. Thus, if a
given MBQC can realize a function o : G −→ Z2

m, with
m ∈ N, it can also realize the function oP = o ◦ P .

This is an unsatisfactory state of affairs, as the fol-
lowing example illustrates. Consider first an MBQC

with one input and one output bit, |Ψ〉 = |00〉+|11〉√
2

,

C(0) = {X1, X2}, C(1) = {Y1, Y2}, and o = s1 ⊕ s2.
The computed function is the identity, o(i) = i. Now
tensor this computation m times with itself, resulting in
an MBQC that evaluates the identity function on m-bit-
strings. Nothing is being computed so far. However,
by the above freedom in assigning contexts to input val-
ues, we can also compute any invertible function P on
G = Z2

m. Then we can also compute any Boolean func-
tion o : Z2

m−1 −→ Z2, since for any such function o(i),
the m-bit function y(i, j) := (i, j⊕o(i)) is invertible, and
y(i, 0) = (i, o(i)).

Thus, complete freedom in assigning inputs to contexts
gives the power of efficiently computing any Boolean
function, which is unreasonable. In addition, note that
the quantum part of this MBQC is near trivial. The
above example illustrates that the freedom in assign-
ing measurement contexts to input values must be con-
strained.

Appendix B: Standard MBQC is a special case

To demonstrate that standard MBQC [19] is contained
in the generalized framework presented here, we have
to show that the classical side-processing in standard
MBQC is a special case of the classical side processing
discussed here. First, the classical post-processing here
and in standard MBQC are the same, cf. Eq. (2) and
[19]. The difference arises in the preprocessing.

To begin, we note that in both standard MBQC and
the present generalization the input specifies the mea-
sured observables. In the present setting, this proceeds
by the action of an input group on a reference context
of measurable observables, see Eq. (1). In the standard
setting, no such group action is made explicit. But it is
nonetheless there, as we now show.

In the standard setting [19] of MBQC, a measurement
context is associated with a bit string i ∈ Zm2 as follows.
For each qubit location k, k = 1, .., n, there is a flag qk ∈

Z2 that decides which one of two possible observables,

Ok[qk] = cosϕXk + (−1)qk sinϕYk, (B1)

is going to be measured. We may assemble the flags qk in
a vector q = (q1, q2, .., qn). In this notation, for the spe-
cial case of temporally flat MBQC considered here, the
relation between the input i and the vector q specifying
the measurement setting is linear,

q = Qi mod 2,

with Q a binary-valued matrix. We now note that for
the observables in Eq. (B1) it holds that

XkOk[0]X†k = Ok[1] and XkOk[1]X†k = Ok[0].

There is thus a homomorphism g from {i} = Zm2 into the
n-qubit Pauli group Pn,

i 7→ g(i) :=

n⊗
l=1

(Xl)
[Qi]l ,

with the property that Ok[qk(i)] = g(i)Ok[0]g(i)†. The
pre-processing in standard MBQC is thus a special case
of the generalized setting discussed here. Namely, the
input group is G = Zm2 and has a unitary representation
u(G) = {g(i), i ∈ Zm2 }. The reference context associated
with the input g = I is {Ok[0], k = 1, .., n}.

Another question that arises is whether the resource
states of MBQC, typically cluster states or, more gen-
erally stabilizer states, naturally satisfy the symmetry
constraint Eq. (7). This can only hold when the success
probability is uniform over all inputs. As for the reverse
direction, we have the following Lemma.

Lemma 1 If the success probability of MBQC with an
input group G is uniform over G and the resource state
|Ψ〉 is a stabilizer state with no single qubit disentangled,
then |Ψ〉 satisfies the invariance condition Eq. (7).

Proof of Lemma 1. We subdivide the set A into three
subsets, namely A = {0} ∪ AM ∪ Aout, where 0 ∈ A
is such that T0 = I, AM := {a ∈ A|Ta ∈ O+} and
Aout = {a ∈ A| ∃ g ∈ G s.th. Ta = T (g)}.

Case 1: {0} ⊂ A. With I = I · I and linearity of v, for
all v ∈ V , it holds that v(0) = v(0) + v(0) mod 2 = 0.
Since Φg ∈ V by definition, Φg(0) = 0 for all g ∈ G.
Further, 〈T0〉σ = 〈I〉σ = 1 for all normalized quantum
states σ. Eq. (7) is thus satisfied for 0 ∈ A, for all g ∈ G.

Case 2: Aout ⊂ A. Recall that be ∈ Aout is such that
Tbe = T (e), with e the identity in G. Since for all g ∈ G,
o(g) is by definition the outcome with the larger prob-
ability, it holds that (−1)o(g)〈Tgbe〉ρ ≥ 0. With the as-
sumption of uniform success probability, it further holds
that (−1)o(g)〈Tgbe〉ρ = (−1)o(e)〈Tbe〉ρ, ∀g ∈ G. With
Eq. (13), we thus find that

〈Tgbe〉ρ = (−1)Φg(be)〈Tbe〉ρ, ∀g ∈ G, (B2)
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which is a special case of the desired relation in which
Aout 3 a = be. By construction of Aout, for all a ∈ Aout

there exists a h ∈ G such that a = hbe. Now, substituting
g 7→ gh in Eq. (B2), we obtain

〈Tga〉ρ = (−1)Φgh(be)〈Tbe〉ρ
= (−1)Φh(be)+Φg(a)〈Tbe〉ρ
= (−1)Φg(a)〈Ta〉ρ.

Therein, we have used the group compatibility condition
Eq. (9) in the second line, and Eq. (B2) in the third.
With Eq. (6), Eq. (7) is thus satisfied for all a ∈ Aout.

Case 3: AM ⊂ A. In standard MBQC, all Ta with
a ∈ AM are local, and of form Eq. (B1). Since, by as-
sumption, no qubit in the resource stabilizer state |Ψ〉
is disentangled from the rest, for every qubit k = 1, .., n
there is a stabilizer operator S of |Ψ〉 such that S|k = Zk,
and hence Ok[q]S = −SOk[q], and 〈Ψ|Ok[q]|Ψ〉 = 0, ∀k,
∀q. Thus, Eq. (7) holds trivially for all a ∈ AM . Hence
it holds for all a ∈ A. �

Appendix C: The quasi-probability functions Q

Here we discuss properties of the quasi-probability
functions Qρ(v) = TrAvρ, defined through the phase

point operators Av = 1/|V |
∑
a∈A(−1)v(a)Ta. We begin

with an example, to explore how the present definition
relates to quasi-probability functions described in the lit-
erature.

1. Q for one qubit

We construct the quasi-probability function Q for a
single qubit, based on the set

Ω+ = {I,X, Y, Z}.

The first step is to construct the phase space V . Since,
for consistency, the identity +I always remains +I under
all transformations in V , and there are no pairs of com-
muting observables in Ω+\{I}, hence no corresponding
constraints, it holds that V ∼= Z1

3. The eight phase point
operators are thus

A±,±,± =
1

8
(I ±X ± Y ± Z).

This one-qubit quasi-probability distribution has been
discussed in [33]. Note for comparison that the phase
space for standard one-qubit Wigner functions has four
points rather than eight.

2. Basic properties

Every quasi-probability functions Q is a linear map-
ping sending operators to functions on phase space V , as

follows immediately from the definition. Also, probabil-
ities for measurement outcomes of observables Ta ∈ Ω+

are given by the sums of Qρ(v) over cosets in phase space.
Namely, the probability for obtaining the eigenvalue

(−1)s in the measurement of an observable Ta ∈ Ω+ is
ps(a) = (1 + (−1)s 〈Ta〉)/2. We may express ps(a) in
terms of the quasi-probability function,

ps(a) = (1 + (−1)s 〈Ta〉)/2 = (1 + (−1)s Ξρ(a))/2
= 1

2

∑
v∈V (1 + (−1)s (−1)v(a))Qρ(v)

=
∑

v∈V δs,v(a)Qρ(v)

The set of v ∈ V for which v(a) = s is a coset of the
subspace V (a) = {v ∈ V | v(a) = 0}, as claimed. In the
second line above we have used the fact that I ∈ Ω+.

3. Covariance of Q under G

Definition 1 (Covariance) A quasi-probability func-
tion Q is covariant under a group G of unitary transfor-
mations if, for all states σ, all phase space points a ∈ V ,
and all h ∈ H it holds that

Qu(h)†σ u(h)(v) = Qσ(Shv + vh), (C1)

with Sh a square invertible matrix and vh ∈ V .

We then have the following result.

Lemma 2 The quasi-probability function Q is covariant
under the input group G. Furthermore, the origin 0 ∈ V
remains fixed under all g ∈ G, i.e.,

Qu(g)†σu(g)(v) = Qσ(Sgv),

for all v ∈ V , for all g ∈ G, and all states σ.

We prove Lemma 2 by way of another Lemma. We have
already defined the sets Ωv = {(−1)v(a)Ta, a ∈ A}, for
all v ∈ V . G is acting on all Ta ∈ Ω+ by conjugation,
Ta 7→ u(g)Tau(g)† = Tga, and this induces an action of
G on the sets Ωv. We define

g(Ωv) := {(−1)v(a)Tga, a ∈ A}, ∀v ∈ V. (C2)

We now show that this action of G permutes the sets Ωv.

Lemma 3 For all g ∈ G, ∀v ∈ V , there exists a g(v) ∈ V
such that

g(v)(·) = v ◦ g−1(·). (C3)

Then, with Eq. (C2) and Lemma 3,

g(Ωv) = {(−1)v(g−1a)Ta, a ∈ A} = Ωg(v).

Thus, the sets Ωv, v ∈ V , are indeed permuted by the
action of G, as claimed.

Proof of Lemma 3. For all triples a, b, c ∈ A with
[Ta, Tb] = 0 and Tc = (−1)β(a,b)TaTb it holds by definition
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Eq. (3) of V that v(c) = v(a) + v(b) mod 2, v ∈ V .
Hence,

(−1)v(c)Tc = (−1)β(a,b)+v(a)+v(b)TaTb, ∀v ∈ V. (C4)

Conjugating Eq. (C4) by any u(g), g ∈ G, we obtain,
after relabeling the elements of A,

(−1)v(g−1c)Tc = (−1)β(g−1a,g−1b)+v(g−1a)+v(g−1b)TaTb,
(C5)

for all v ∈ V and all a, b, c ∈ A with [Ta, Tb] = 0 and
Tc = (−1)β(a,b)TaTb. Setting v ≡ 0 in Eq. (C5), it follows
that, ∀g ∈ G,

β(a, b) = β(g−1a, g−1b), ∀a, b ∈ A.

Therefore, ∀g ∈ G, ∀v ∈ V and all a, b, c ∈ A with
[Ta, Tb] = 0 and Tc ∼ TaTb it holds that

v(g−1c) = v(g−1a) + v(g−1b) mod 2.

Thus, v ◦ g−1 ∈ V , for all v ∈ V and all g ∈ G. �

Proof of Lemma 2. Qu(g)†ρu(g)(v) = Tru(g)Avu(g)†ρ,
and we are thus interested in how the phase point oper-
ators Av transform under conjugation by g ∈ G.

u(g)Avu(g)† = g
(

1
|V |
∑
a∈A χv(a)Ta

)
g†

= 1
|V |
∑
a∈A χv(a)Tga

= 1
|V |
∑
a∈A χv(g−1a)Ta

= 1
|V |
∑
a∈A χg(v)(a)Ta

= Ag(v).

Therein, the fourth line follows by Lemma 3. Thus, phase
point operators are mapped to phase point operators by
conjugation under any g ∈ G.

We now show that G acts linearly on V . For any g ∈ G,
for all a ∈ A and all g(u), g(v) ∈ V ,

χg(u)+g(v)(a) = χg(u)(a)χg(v)(a)
= χu(g−1a)χv(g−1a)
= χu+v(g−1a)
= χg(u+v)(a).

We may thus write g(v) = Sgv, for a square matrix Sg,
for all g ∈ G and all v ∈ V . Since g−1 ∈ G, Sg must be
invertible. Thus, Eq. (C1) holds, with the special offsets
vg = 0, for all g ∈ G. �

Appendix D: More on contextuality

1. Proof of Proposition 2

The first step in the proof of Proposition 2 is the fol-
lowing lemma.

Lemma 4 Be s : A −→ Z2 a consistent non-contextual
value assignment. Then, s′ : A −→ Z2 is a consistent
non-contextual value assignment if and only if there ex-
ists a v ∈ V such that s(a)−s′(a) mod 2 = v(a), ∀a ∈ A.

Proof of Lemma 4. “If”: With s(·) being a consistent
value assignment,

(−1)s(c)Tc = (−1)s(a)Ta(−1)s(c)Tb,

for all a, b, c ∈ A with [Ta, Tb] = 0 and Tc = ±TaTb.
Then, by definition of V ,

(−1)s(c)+v(c)Tc = (−1)s(a)+v(a)Ta(−1)s(c)+v(a)Tb,

for all v ∈ V . Thus, s′ = s + v mod 2 is a consistent
value assignment for all v ∈ V . In other words, if s′ − s
mod 2 ∈ V then s′ is a consistent value assignment.

“Only if”: Let s(·) and s′(·) be two consistent non-
contextual value assignments. Then, the following two
relations simultaneously hold for all a, b, c ∈ A with
[Ta, Tb] = 0 and Tc = ±TaTb.

(−1)s(c)Tc = (−1)s(a)Ta(−1)s(c)Tb,

(−1)s
′(c)Tc = (−1)s

′(a)Ta(−1)s
′(c)Tb.

Therefore, by multiplying the above equalities,

(s⊕ s′)(c) = (s⊕ s′)(a)⊕ (s⊕ s′)(b),

for all a, b, c ∈ A such that [Ta, Tb] = 0 and Tc = ±TaTb.
Since, by definition, V is the module of all functions sat-
isfying these relations, it follows that s⊕ s′ ∈ V . �

For convenience, we restate Proposition 2.

Proposition Consider a G-MBQC M computing a
function o : G −→ Z2. If for all phase functions
Φ satisfying the output relation Eq. (13) it holds that
[Φ] 6= 0 ∈ H1(G,V ), then M is strongly contextual.

Proof of Proposition 2. We establish that if M is
not strongly contextual, i.e., if there exists a consistent
value assignment s : a ∈ A 7→ s(a) ∈ Z2, then (i)
Φ = ds is a valid phase function, and (ii) Φ = ds is
compatible with Eq. (13). (i) We need to show that ds :
G −→ V . Assume that s(·) is a consistent non-contextual
value assignment. Then, Ta(−1)s(a)Tb(−1)s(b) =
Tc(−1)s(c). Conjugating under any g ∈ G, it follows that
Tga(−1)s(a)Tgb(−1)s(b) = Tgc(−1)s(c). But it also holds

that Tga(−1)s(ga)Tgb(−1)s(gb) = Tgc(−1)s(gc). There-
fore, s(·) and s ◦ g−1(·) simultaneously are consistent
value assignments. By Lemma 4 they must differ by
some v ∈ V . That is, ∃v ∈ V such that s(ga) − s(a)
mod 2 = v(a), ∀a ∈ A, ∀g ∈ G. By Eq. (11), s(ga)−s(a)
mod 2 = (ds)g(a). Hence, (ds)g ∈ V for all g ∈ G.

(ii) The outputted function given the consistent non-
contextual value assignment s is g ∈ G 7→ o(g) = s(gbe),
where be is such that Tbe = T (e). On the other hand,
Eq. (13) states that o(g) = (ds)g(be) + const. mod 2 =
s(gbe) − s(be) + const. mod 2. The two expressions for
o : G −→ Z2 agree for the choice const. = s(be). �

2. The relation between symmetry-based and
parity-based contextuality proofs

Our earlier state-dependent contextuality proof for the
GHZ-scenario resembles Mermin’s original proof [3] in-
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sofar as it leads the assumption of context-independent
value assignments to an algebraic contradiction. How-
ever, the present proof, like [25], is based on a trans-
formation of the observables, whereas Mermin’s original
proof is based on the observables themselves, without any
transformation. Here we explain the relation between
those two types of contextuality proofs.

The relation between the present symmetry-based con-
textuality proofs and the parity proofs of [3] is via the
state-independent version of symmetry-based contextu-
ality proofs, which we have not discussed yet. As we will
see in Lemma 6 in Appendix D 3, pairs (Ω+, G) in which
G maps Ω+ onto itself do not lead to state-independent
symmetry-based contextuality proofs, and we therefore
need to generalize the concept.

To this end, we introduce a symmetry group G larger
than G, G ⊂ G. It is based on a set of observables
Ω := {±Ta, Ta ∈ Ω+}. Specifically, G has a projective
representation u(G) that maps Ω onto itself under con-
jugation (but it does not necessarily map Ω+ to itself).
The transformation behaviour under G is

u(h)Tau(h)† = (−1)Φ̃h(a)Tha, ∀h ∈ G, ∀a ∈ A (D1)

where the generalized phase function is a map Φ̃ : A −→
Ṽ = span({Φ̃h, h ∈ G}). Note that the space Ṽ into

which Φ̃ maps is constructed in a very different manner
from how V was constructed. As a consequence, the
Φ̃h ∈ Ṽ do not need to satisfy the linearity requirement
Eq. (8) imposed on the original phase function Φ.

Transformation of value assignments s. In a hidden
variable model describing the given physical situation, we
require the value assignments s : A −→ Z2 to transform
under all h ∈ G in such a way as to match the transfor-
mation of the quantum-mechanical expectation values.
With the transformation for observables, since the state
ρ doesn’t change (Heisenberg picture), the expectation

values transform as 〈Ta〉ρ 7→ 〈T ′a〉ρ = (−1)Φ̃h(a)〈Tha〉ρ.
Hence, if a consistent value assignment s exists, it trans-
forms under h ∈ G as

s(a) 7→ s′(a) = s(ha) + Φ̃(ha) mod 2. (D2)

Transformation of constraints. We denote by C
the set of all product constraints among sets of com-
muting observables in Ω. Be R = {±

∏
i∈J Oi =

I}. Then, an action of G on C is defined via h ◦
R = {±

∏
i∈J u(h)Oiu(h)† = I}, for all h ∈ G.

Since u(h)
(∏

i∈J Oi
)
u(h)† =

∏
i∈J u(h)Oiu(h)†, and

u(h)Oiu(h)† ∈ Ω if Oi ∈ Ω, it holds that h ◦ R ∈ C,
for all h ∈ G and all R ∈ C. That is,

G : C −→ C.

This has the following consequence.

Lemma 5 If s : A −→ Z2 is a consistent value assign-
ment, then so is s′ : A −→ Z2 as given by Eq. (D2), for
every h ∈ G.

(a) (b)
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XZ

ZZ

ZX

Z1Z2

X1 X2

-YY

XXX XZZ ZZXZXZ

Z1

Z2

Z3

X1

X2

X3

C

C00

C01C10

C11

FIG. 2: Mermin’s square and star.

Proof of Lemma 5. If s is a consistent non-contextual
value assignment satisfying the constraints C, then, ∀h ∈
G, s′ of Eq. (D2) is a consistent value assignment for the
constraints h(C). But since h(C) = C, ∀h ∈ G, s′ is also
a consistent non-contextual value assignment for C. �

Structure of the set of consistent value assignments s.
If a consistent value assignment s exists, there can be
more than one. Denote by S the set of internal states
of the HVM purportedly describing the given physical
situation, such that the consistent value assignments are
{sν | ν ∈ S}. By Lemma 4, the set of consistent outcome
assignments {sν |ν ∈ S} form a coset of V ,

sν ∈ s0 + V, (D3)

assuming that a single solution s0 exists.

Assuming the existence of an HVM describing the
physical situation, the equations (D2) and (D3) must
both hold. However, in certain situations those require-
ments are incompatible. Whenever that happens, the ex-
istence of an HVM for the given setting is falsified. Below
we first give an example for such a situation, then discuss
the general case, and finally explain the connection with
state-independent parity proofs of contextuality [3].

Example: Mermin’s square. In this example, Ω+ is the
set of all observables appearing in Mermin’s square (See
Fig. 2a),

Ω+ = {I,X1, X2, X1X2, Z1, Z2, Z1Z2, X1Z2, Z1X2, Y1Y2},

and A is the corresponding index set.
Assume that a consistent non-contextual value assign-

ment s exists, S 6= ∅, and consider the quantities

η =
∑
a∈A

s(a) mod 2, s. (D4)

Now, for any h ∈ G, consider the transformed quantity
η′ =

∑
a∈A s

′(a). Using Eq. (D2), and h(A) = A,

η′ = η +
∑
a∈A

Φ̃h(a) mod 2. (D5)
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On the other hand, by Lemma 5, s′ is also a valid non-
contextual value assignment. Thus, applying Eq. (D3)/
Lemma 4 to η′, for every h ∈ G exists a vh ∈ V such that

η′ = η +
∑
a∈A

vh(a) mod 2 = η mod 2. (D6)

The last equality holds because, by construction of Mer-
min’s square, ∀v ∈ V the Hamming weight of v is even.

Now we choose a specific element of G, namely
the Hadamard gate H1 on the first qubit. Since

H1 Y1Y2H
†
1 = −Y1Y2, it holds that Φ̃H1(aY Y ) = 1. All

other values of Φ̃H1(a), a ∈ A\{aY Y } vanish. Thus,∑
a∈A Φ̃H1

(a) mod 2 = 1. Now comparing Eqs. (D5)
and (D6) for the case of h = H1, we find

η + 1 = η mod 2.

Contradiction. Hence, no consistent value assignment s
exists. �

Remark: In the above proof, although we dropped the
linearity requirement Eq. (8) from Φ̃, linearity sneaked
back in when invoking Lemma 4 to arrive at Eq. (D6).

General method for constructing symmetry-based KS
proofs. Suppose there exists an assignment s of values
to all observables in Ω+. We may list these values in a
vector s, which, according to Eq. (D2), then transforms
under any h ∈ G as

G 3 h : s 7→ s′ = Phs + vh mod 2, (D7)

where Ph is a permutation matrix, and vh a suitable
offset vector. The value assignments s and s′ need to
satisfy the same set of linear constraints,

Ks mod 2 = c = Ks′ mod 2,

where K is the constraint matrix with its rows labeled
by constraints and its columns labeled by the elements
of A. Combining the two above equations, we find that

K(I − Ph)s = Kvh mod 2, ∀h ∈ G. (D8)

If we can find a vector aT such that

aTK(I − Ph) mod 2 = 0T , and (D9a)

aTKvh mod 2 6= 0, (D9b)

this immediately leads to a contradiction in Eq. (D8).

Connection with Mermin’s original parity proofs. The
above contextuality proof and Mermin’s original parity
proof [3] are not the same, because Mermin’s proof is
about the inconsistency of assignments, and the present
proof about the inconsistency of the transformation be-
haviour of assignments. Nonetheless, both proofs employ
the same type of algebraic contradiction.

To see this, we revisit the linear system of equations
on which Mermin’s proof is built,

Ks mod 2 = u. (D10)

The goal is to find a vector b such that (i) bTK = 0

mod 2, and (ii) bTu mod 2 6= 0. Multiplying Eq. (D10)

with any such bT immediately leads the contradiction
with every noncontextual HVM.

With an eye on the symmetry-based proof displayed
in Eq. (D8), we note that the group G, by construction,
does not only act on the value assignments, but also on
the constraints. Therefore, for each h ∈ G there exists
a matrix P ′h such that KPh = P ′hK. Now using this in
Eq. (D8), we obtain the noncontextual HVM constraint

(I − P ′h)Ks = Kvh mod 2, ∀h ∈ G.

Therefore, the parity proof based on Eq. (D10) and the
symmetry-based proof Eq. (D8) exploit the same alge-

braic contradiction whenever bT = aT (I − P ′h) mod 2.
This is possible if b ∈ Im (I − P ′h)T for some h ∈ G.
Mermin’s parity proof method is thus stronger than the
present symmetry based proof: Every symmetry-based
proof implies a Mermin-type parity proof, but not the
other way around.

3. The roles of covariance and contextuality for
G-MBQC

The set Ω+ was constructed such that it is mapped
onto itself under conjugation by G, i.e.,

u(g)Tau(g)† ∈ Ω+, ∀g ∈ G, ,∀Ta ∈ Ω+. (D11)

This property has the following implication with respect
to contextuality.

Lemma 6 If the pair (Ω+, G) satisfies Eq. (D11), then
no symmetry-based state-independent contextuality proof
can be based on it.

Proof of Lemma 6. Eq. (D11) implies that in Eq. (D7)
vg = 0, for all g ∈ G. Thus, the relation Eq. (D9b)
needed for a symmetry-based contextuality proof cannot
be satisfied for any a. Hence, no symmetry-based con-
textuality proof exists for the pair (Ω+, G). �

To summarize, we find that G-MBQC assumes a very
particular location with respect to contextuality and co-
variance of quasi-probability functions. Namely,

1. The quasi-probability function Q used to
describe the resource state ρ is covariant
under the input group G (Lemma 2).

2. There is no state-independent symmetry-
based contextuality proof for the pair
(Ω+, G) (Lemma 6).

3. If the G-MBQC in question is non-trivial,
then there exists a state-dependent
symmetry-based contextuality proof
based on the triple (Ω+, G, ρ) (Prop. 2).

(D12)



11

These three properties of G-MBQC crucially depend on
the property Eq. (D11) of (Ω+, G), which is illustrated
in the second of the examples below.

Example: State-independent Mermin star. In this ex-
ample, we consider symmetry transformations in the in-
put group G = 〈A1A2, A1A3〉 (recall that A := (X +

Y )/
√

2). The purpose is to illustrate that, in attempt-
ing a symmetry-based proof, no vector b which gives
a KS contradiction by left-multiplying Eq. (D10) is in
Im(I − P ′g)T , for any g ∈ G.

It suffices to consider A1A2, because the identity I ∈
G cannot produce a KS proof, and the remaining three
group elements map onto each other by permutation of
particles, under which Mermin’s star is invariant.

For the ordering of observables XXX, XZZ, ZXZ,
ZZX, X1, X2, X3, Z1, Z2, Z3, and a suitable ordering
of constraints where the bottom row corresponds to the
“horizontal” context in Mermin’s star (see Fig. 2b) , the
parity check matrix reads

K =


1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 0 1 1
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 1 1 0
1 1 1 1 0 0 0 0 0 0

 .

As explained, the right-multiplication of K under AAI,
K 7→ KPAAI may as well be captured by multiplying K
from the left by a matrix P ′AAI , and

P ′AAI =


0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

0 0 0 0 1

 .

Thus, the last column of I ⊕ P ′AAI is all 0’s, and in
particular (1, 1, 1, 1, 1)T 6∈ Im (I + P ′AAI)

T . Hence, we
cannot exploit Mermin’s contradiction in this symmetry-
based, state-independent argument. We have already
seen that the symmetry-based contextuality proof exists
in the state-dependent version.

Example: Dressed Mermin star. The purpose of this
example is to illustrate the crucial dependence of the first
two properties of Eq. (D12) on the property Eq. (D11)
of the pair (Ω+, G). Let’s replace the set Ω+ used in
Mermin’s star (see Figures 2b and 3) by

Ω+ −→ Ω′+ = Ω+ ∪ {Z1Z2, Z1Z3, Z2Z3}.

The new observables are dependent on the set of ob-
servables {Y1Y2X3, Y1X2Y3, X1Y2Y3} which are already
in Ω+. However, G does not map Ω′+ to itself under
conjugation. For example,

A1A2 Z1Z3(A1A2)† = −Z1Z3. (D13)

We now show that, in consequence, the pair (Ω+, G) does
lead to a state-independent symmetry-based contextual-
ity proof. Following the argument in Appendix D 2, we

XXX XYY YYXYXY

Y1

Y2

Y3

X1

X2

X3

IZZ

ZIZ

ZZI

FIG. 3: Dressed Mermin star.

choose a subset Υ of Ω′+,

Υ = {X1, X3, Y1, Y3, X1Y2Y3, Y1X2Y3, Z2Z3},

and consider the linear combination

η =
∑
a|Ta∈Υ s(a) mod 2. (D14)

Therein, s(·) is a consistent non-contextual value assign-
ment, of which assume that it exists. Since A1A2 flips
Z2Z3 under conjugation, s(aIZZ) −→ s(aIZZ) ⊕ 1. The
other values s appearing on the r.h.s. of Eq. (D14) are
permuted among themselves. Therefore, A1A2 : η 7→
η⊕ 1. On the other hand, η is a sum of constraints (add
2s(aXXX) + 2s(aX2

) on the r.h.s.), hence must remain
constant under all symmetry transformations. Contra-
diction. Hence, no consistent non-contextual value as-
signment exists.

By a very similar argument, it can be shown that the
quasi-probability function Q′ defined by the phase point
operators

A′v :=
1

|V |
∑

Ta∈Ω′+

χv(a)Ta

is not covariant under G. In this regard, we ask whether
for any g ∈ G there exists an u ∈ V such that gA′0g

† =

A′u. In other words, is there a u ∈ V such that (−1)Φ̃(·) =
χu(·)? This is a necessary condition for the covariance of
Q′ under G. For G 3 g0 = A1A2, define

ν :=
∑

a|Ta∈Υ

Φ̃g0(a) mod 2.

By explicit computation, (−1)ν = −1. However,∏
a|Ta∈Υ χu(a) = χu(aX1

)χu(aX2
)χu(aX3

)χu(aXXX)×
χu(aY1

)χu(aX2
)χu(aY3

)χu(aY XY )×
χu(aXXX)χu(aXY Y )χu(aIZZ)

= 1× 1× 1 = +1.
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Note that, on the r.h.s. of the first equality, the observ-
ables X2, X1X2X3 6∈ Υ, but the corresponding charac-
ters χu(aXXX) and χu(aX2

) appear twice in the prod-
uct, such that their values do not matter. In the last
line, we have used the linearity of χu(·) = (−1)u(·), cf.

Eq. (3). We thus find that (−1)Φ̃(·) 6= χu(·), for any

u ∈ V . Therefore, g0A
′
0g
†
0 6= A′u, for any u ∈ V , and Q′

is not covariant under G, as claimed.
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