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Operational semantics for
formal tensorial calculus

Pablo Arrighi∗ Gilles Dowek†

Abstract

With a view towards models of quantum computation, we define a functional lan-
guage where all functions are linear operators by construction. A small step opera-
tional semantic (and hence an interpreter/simulator) is provided for this language in the
form of a term rewrite systems. Thelinear-algebraicλ-calculushereby constructed
is linear in a different (yet related) sense to that, say, of the linearλ-calculus. These
various notions of linearity are discussed in the context of quantum programming lan-
guages .

1 Introduction

Quantum computation lacks a convenient model of computation. To this day its algorithms
are expressed in terms of quantum circuits, but their descriptions always seem astonish-
ingly remote from the task they do accomplish [12]. Moreover universality is only pro-
vided via the notion of uniform family of circuits [29]. Quantum Turing machines solve
this latter point, yet they are even less suitable as a programming language [6]. Another
approach is to enclose quantum circuits within a classical imperative-style control struc-
ture [21] - but we wish to avoid this duality, in an attempt to bring programs closer to
their specifications. Functional-style control structure, on the other hand, seem to merge
with quantum evolution descriptions in a unifying manner. With a view towards models of
quantum computation, we describe a functional language for expressing linear operators,
and linear operators only.

We provide a semantic for this language in the form of aterm rewrite system[11].
These consist in a finite set of rulesl −→ r, each interpreted as follows:“Any term t
containing a subtermσl in positionp (i.e. t = t[σl]p) should be rewritten into a termt′

containingσr in positionp, with all the rest unchanged (i.e.t′ = t[σr]p)”. The mini-
malist interpretation of the rules makes term rewrite systems (TRS) extremely suitable for
describing the behavior of a computer languages unambiguously - so long as the order in
which the substitution occur does not matter to the end result (a property named conflu-
ence). Moreover, becausel −→ r may be seen as an oriented version of equationl = r,
the TRS provides both an operational semantic (an interpreter/simulator for the language)
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and an axiomatic semantic (an equational theory in which to prove properties about the
language).

We begin by orienting the equations which axiomatize vectorial spaces and tensor
products, to yield an algorithm for reducing vectors to a linear combination of base vectors,
e.g.

λ.(µ.u) −→ (λ× µ).u.

Completed with few additional rules such as

u + u −→ (1 + 1).u

the term rewrite system is shown terminating and confluent. Remarkably this in turn pro-
vides a computational definition of vectorial spaces and their tensors, as any mathematical
structure validating the algorithm (Section 2).
In order to lay the ground for a rigorous definition of quantum functional languages, the
term rewrite system must also cater for the complex scalars upon which its vectors live.
This raises the problem of the conditional rewriting required for division, which we can
circumvent, basing quantum computation upon the ring of dyadic floats together with1√

2
and imaginary numberi (Section 3).

Modern days functional languages such as Caml, Haskell etc. are based upon two basic
evaluation mechanisms:matching, which provides conditional branching by inspection of
variables values; and some avatar of theλ-calculus, which provides both control flow and
data flow.
The first mechanism is obtained as we extend the term rewrite system to handle linear
maps - themselves denoted as superpositions of bipartite states, e.g.

(true � false+ true � false) ∗ false−→∗ false+ true.

Applications are therefore analogous to contractions in tensorial calculus. This approach
offers an elegant paradigm to represent quantum operations as quantum states, which we
argue may be necessary a feature for quantum higher-order programming (Section 4).
The second mechanism is obtained through an implementation ofλ-terms via de Bruijn
indices, a scheme whereby variables are encoded as integers referring to their binders, e.g.

λx.(λy.(x⊗y)) is encoded asL(L(var(1)⊗var(0))).

The question of the interpretation of terms such asλx.(x⊗x) is lengthily addressed as
we draw a distinction betweencloning andcopying. The semantic of our calculus for-
bids only the former, non-linear operation, by enforcing a higher priority of the addition’s
distributivity over substitution (Section 5).

Erasureon the other hand remains allowed in our calculus, because we do not restrict
ourselves to unitary operations. Whilst we discuss possible well-formedness conditions
to implement this restriction (a crucial one for quantum computation), the claim here is
to have provided a “linear”, λ-calculus, in the sense oflinear algebra. We discuss the
various notions of ‘linearity’ used in quantum programming languages, such as the one by
Van Tonder [24] (Section 6).
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λ.(u + v) −→ λ.u + λ.v

λ.u + µ.u −→ (λ + µ).u
λ.(µ.u) −→ (λ× µ).u

u + 0−→ u

1.u −→ u

0.u −→ 0

with + an AC symbol.

Figure 1:VECTORIAL SPACES: AXIOMS

2 Vectorial spaces

We seek to represent quantum programs, their input vectors, their output vectors and their
applications as terms of a first-order language. Moreover we seek to provide rules such
that the term formed by the application of a quantum program onto its input vector should
reduce to its output vector. Several terms may be used to express one output vector, as a
consequence we must ensure that these all reduce to one unique,normal form, upon which
there is nothing more to compute.
Since quantum theory is based upon vectorial spaces it seems natural to considerL a two-
sorted language having sortK for scalars and sortE for vectors - together with: two
constants0 and1 of sort K; a constant0 of sort E; two binary symbols+ and× of
rank 〈K, K,K〉; a binary symbol+ (also) of rank〈E,E,E〉; and a binary symbol. of
rank 〈K, E, E〉. Moreover the most natural normal form to aim for is that of a linear
combination of the unknowns, i.e. the computation finishes once we have to coordinates
of the vector. For instance we must develop:

4.(false+ true) −→ 4.false+ 4.true

But factorize:
4.false+ 6.false−→ 10.false

A TRS which has this effect can be obtained by orienting the 8 equations axiomatizing
vectorial spaces, as given in Figure 1. Only those two rules corresponding to associativ-
ity and commutativity of vector addition are missing - because we use rewriting modulo
AC(+). For confluence we need to add three more rules, as given in Figure 2. The TRS
containing these 9 rules is denotedR and has all the desired properties, which we now list.
For in-depth discussion and proofs the reader is referred to [4].

Proposition 1 For any terminating rewrite systemS on scalars, the systemR ∪ S termi-
nates.

This implies in particular the systemR terminates on its own. To prove confluence of
R ∪ S, we first prove, by a simple analysis of critical pairs, the confluence of the system
R ∪ S0 (Figure 3) and we use the following proposition:
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λ.u + u −→ (λ + 1).u
u + u −→ (1 + 1).u

λ.0−→ 0

Figure 2:VECTORIAL SPACES: CONFLUENCE

0 + λ −→ λ

0× λ −→ 0
1× λ −→ λ

λ× (µ + ν) −→ (λ× µ) + (λ× ν)

where + and× are AC symbols.

Figure 3:SCALAR MINIMAL RULES

Proposition 2 Let R, S, and S0 be three relations defined on a set such thatR ∪ S0

is confluent,S is confluent and terminating,S subsumesS0, and R commutes with the
reflexive-transitive closure ofS. Then the relationR ∪ S is confluent.

Corollary 2.1 Let S be a ground confluent and terminating rewrite system on scalars
subsumingS0. Then the rewrite systemR ∪ S is confluent on terms containing vector
variables but no scalar variables.

Proposition 3 Let t be a normal term whose free variables are amongstx1, ...,xn. The
termt is0 or it has the formλ1xi1 + ...λkxik

+xik+1 +xik+l
where the indicesi1, ..., ik+l

are distinct and theλk ’s are neither0 nor 1.

Note that the algorithm defined byR is relatively common in computing, for presenting
any number as a linear combination of unknowns. But it does in fact define vector spaces
- as any mathematical structure validating the algorithm. Furthermore note that support
for tensor products is easily added into the TRS, through the six rules given in Figure 4.
Proposition 1 to 2 remain true whenR is extended with those six additional rules, whilst
proposition 3 now yields normal forms for terms inE ⊗ E of the form0 or

λ1xi1⊗yj1 + . . . + λkxik
⊗yjk

+ xik+1⊗yjk+1 + . . . + xik+l
⊗yjk+l

,

where the pairs of indices< i1, j1 >, . . . , < ik+l, jk+l > are distinct and theλk ’s are
neither0 nor1 [4].

3 The field of quantum computing

Fields are not easily implemented as term rewrite systems, because of the conditional
rewriting required for the division by zero. In the previous section such problems were
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(u + v)⊗w −→ u⊗w + v ⊗w

(λ.u)⊗ v −→ λ.(u⊗ v)
u⊗ (v + w) −→ u⊗ v + u⊗w

u⊗ (λ.v) −→ λ.(u⊗ v)
0⊗ u −→ 0

u⊗ 0 −→ 0

Figure 4:VECTORIAL SPACES: TENSORS

avoided by simply assuming a TRS for scalars having a certain number of basic rules, but
if the objective is to lay the ground for formal quantum programming languages then we
must provide such a TRS. The present section briefly outlines how this is achieved.

3.1 Background

We seek to model quantum computation as a formal rewrite system upon a finite set of
symbols. Since the complex numbers are uncountable, we must therefore depart from
using the whole ofC as the fieldK of our vector space. Such considerations are com-
monplace in computation theory, and were successfully addressed with the provision of
the first rigorous definition of a quantum Turing machine [6]. In short the quantum Turing
machines are brought as an extension of probabilistic Turing machines

<Q : head states, Σ: alphabet,

δ : transition function, qo, qf : start,end state>

whose transition functions are no longer valued over the efficiently computable positive
reals (probabilities)

δ : Q× Σ −→ (Q× Σ× {Left, Right} → R̃+)

but over the efficiently computable complex numbers (amplitudes)

δ : Q× Σ −→ (Q× Σ× {Left, Right} → C̃).

In both casesδ is constrained to be aunit function (probabilities/squared modulus sum-
ming to one), and for the quantum Turing machineδ is additionally required to induce a
unitary global evolution. A well-known result of complexity theory is that probabilistic
Turing machines remain as powerful when the transition functionδ is further restricted
to take values in the set{0, 1

2 , 1}. The result in [6] is analogous: quantum Turing ma-
chines remain as powerful when the transition functionδ is further restricted to take val-
ues in the set{−1,− 1√

2
, 0, 1√

2
, 1}. Later it was shown in [2], and independently in [23]

that no irrational number is necessary, i.e.δ may be restricted to take values in the set
{−1,− 8

5 ,− 3
5 , 0, 3

5 , 8
5 , 1} without loss of power for the quantum Turing machine.
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In the circuit model of quantum computation the emphasis was placed on the ability
to approximateany unitary transform from a finite set of gates. This line of research (cf.
[22, 16] to cite a few) has so far culminated with [7], where the following set

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (1)

H =

(
1√
2

1√
2

1√
2

− 1√
2

)
P =

(
1 0

0 eiπ/4

)
was proven to be universal in the above strict sense. A weaker requirement for a set of
gates is the ability tosimulateany unitary transform, a notion which is also referred to as
encoded universality- since a computation onn qubits may for instance be represented as
a computation onn + 1 ‘real bits’, through a simple mapping. A recent paper shows that
the gate

G =


1 0 0 0
0 1 0 0
0 0 a −b
0 0 b a

 ,

with eithera = b = 1√
2
, or a = 3

5 andb = 8
5 , has this property [20]. Do appreciate how

the result falls into line with those regarding the quantum Turing machine.

Definition 1 We call computational scalars, and denoteK̃ the ring formed by the additive
and multiplicative closure of the complex numbers{−1, 1, 1√

2
, i}.

Once we have shown that the computational scalars arithmetics can be performed by a
TRS, it will be sufficient to express the basic gates (1) in our formalism to immediately
obtain the more traditional notion of quantum computation universality. Hence our choice.

3.2 Rules

We begin by implementing natural numbers and unsigned binary numbers. That such TRS
can be made ground confluent and terminating are now well-established results [9, 28].
This places us in a position to build up dyadic floats out of a sign, an unsigned binary
number and an exponent, e.g. fl(neg, 1, S(zeron)) is to stand for− 1

2 , as exemplified in
Figure 5.

Reached this point it suffices to notice thatK̃, i.e. dyadic floats together with imaginary
numberi and real number1√

2
, can be viewed as a four-dimensional module upon dyadic

floats. Indeed any such number could be represented as a linear combination of the form:

α.1 + β.
1√
2

+ γ.i + δ.
i√
2

.

As a consequence we can reuse the results of section 2 to implement computational scalars
and their additions. Computational scalars multiplication then needs to be defined, we do
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fl(s, n :: 0, S(p)) −→ fl(s, n, p)
%to remove trailing zeroes after the point

fl(neg, 0, p) −→ fl(pos, 0, p) %to normalize zero

fl(s, 0, S(p)) −→ fl(s, 0, zeron) %to normalize zero

...

fl(pos,m1, e1) timesf fl(neg,m2, e2) −→ fl(neg,m1 timesbm2, addn(e1, e2))
fl(neg,m1, e1) timesf fl(pos,m2, e2) −→ fl(neg,m1 timesbm2, addn(e1, e2))

...

Figure 5:DYADIC FLOATS

so modulo AC in Figure 6. Augmented with these rules the TRS remains ground confluent,
as one may check through the method outlined below:

• First showing thatt −→ t′ impliesJtK = Jt′K, whereJK : L −→ C is the valuation
defined so that

J1K = 1, JiK = i, J1/
√

2K = 1/
√

2, Ji/
√

2K = i/
√

2,

Jλ.uK = JλK ∗ JuK, Jfl(s, b, e)K = JsK ∗ JbK ∗ JeK,
JposK = −JnegK = 1, JS(p)K = JpK/2, JzeronK = 1,

Jb :: 0K = 2 ∗ JbK, Jb :: 1K = 1 + 2 ∗ JbK,
Jλ× µK = λ ∗ µ, Jλ + µK = λ + µ.

(done by examining each rule in the TRS).

• Second showing thatJtK = JuK, with t andu normal implies thatt =AC u.

Moreover we believe the TRS is also terminating, but have not yet a formal proof for this
assertion.
Notice we have never defined a division operation. This is because only the ring properties
of these numbers are required for expressing linear operations: we place ourselves upon a
‘module’ rather that a full vectorial space.
Convention.Even though computational scalars were themselves implemented as a vector
space, from now on we treat them and denote them simply and solely like scalars, e.g.
λ.u + µ.v will refer to the superposition of vectorsu andv, with λ andµ in K̃.

4 Matching construct

4.1 Notations

Your typical functional language (Haskell , ML. . . ) will always have “matching” con-
structs (for branching). Here is a piece ofCaml:
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1 ∗ v −→ v
1√
2
∗ 1√

2
−→ fl(pos, 1, S(zeron)).1

1√
2
∗ i −→ i√

2
...

i ∗ i −→ fl(neg, 1, zeron).1

i ∗ i√
2
−→ fl(neg, 1, zeron).

1√
2

...

(λ.u) ∗ v −→ λ.(u ∗ v)
(t + u) ∗ v −→ t ∗ v + u ∗ v

Figure 6:SCALAR MULTIPLICATION

let rec not b = match b with
| false -> true
| true -> false ;;
We wish to provide such constructs in our linear-algebraic calculus, but mathematicians
and physicist in this field would normally write linear maps instead: NOT= |true〉〈false|+
|false〉〈true|. However here the〈false| and〈true| may be viewed as patterns, waiting to be
compared to the input vector through a scalar product. Thus we choose to reconcile both
worlds and write:

NOT = false� true + true � false.

An expression(t �u) applied to a vectorv will then reduce into(t •v).u, with • the scalar
product. In this sense(t � u) ∗ v does returnu in so far ast overlaps withv. More formal
justifications, and formal rewrite rules follow in the next two subsections. For now we give
the reduction steps involved in the application of the phase gateP upon the vectortrue,
as a motivating example for these rules:(

(false� false) + true � (
1√
2

+ i
1√
2
).true

)
∗ true

−→∗ (false� false) ∗ true +
(
true � (

1√
2

+ i
1√
2
).true

)
∗ true

−→∗ (false• true).false+ (true • true).
(
(

1√
2

+ i
1√
2
).true

)
−→∗ 0.false+ (

1√
2

+ i
1√
2
).true

−→∗ (
1√
2

+ i
1√
2
).true.
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All of the three gates forming a universal set for quantum computation are trivially ex-
pressed as terms in this notation:

CNOT = (false⊗ false) � (false⊗ false)
+ (false⊗ true) � (false⊗ true)
+ (true ⊗ false) � (true ⊗ true)
+ (true ⊗ true) � (true ⊗ false)

H =
(

false�
1√
2
.(false+ true)

)
+
(

true �
1√
2
.(false− true)

)
P = (false� false) +

(
true � (

1√
2

+ i
1√
2
).true

)
.

4.2 Higher-order programming and
quantum operations as quantum states

Higher-order programming languages allow functions to be passed as arguments, and to
undergo processing just as any other data. Informally such languages are often said to
place functions as “first class citizens”, i.e. on an equal footing with data. The paradigm is
pushed to some extreme in the untypedλ-calculus, where one can no longer differentiate
functions from data - for instance the booleantrue gets represented byλx.(λy.x), which
is also the function that discards its second argument whilst returning the first.
There are several well-established reasons to favour higher-order programming: as a way
to define useful higher-order functions (e.g.Map f [1 2 3] to mean[f(1) f(2)
f(3)] ); in order to obtain a type system akin to propositional logic (e.g. withMap of
type (a -> b) -> (list(a) -> list(b)) and f of type (a -> b) , Map f
is of type(list(a) -> list(b)) ); so as to implement control flow as a particular
case of data flow (e.g.(λx.(x ∗ x))(λx.(x ∗ x)) will recurse for ever, where * denotes
application).
Suppose we want a higher-order programming language for quantum computation. We
therefore want a scheme whereby a quantum operation$̂ can act upon another quantum
operationρ̂, just as though it was a state1. As a consequence we need an encoding of

quantum operationŝρ as quantum stateρ. We will then let$̂(ρ̂) stand for
(̂
$̂(ρ)

)
.

There exists at least one such encoding in the quantum information literature, which dates
back to the work of Jamiolkowski [15] and Choi [8], reviewed and taken further in [3].
Although the isomorphism has several deep consequences on the mathematics of the den-
sity matrix formalism of quantum theory, it remains straightforward upon pure states, as it
relates vectors ofCm ⊗ Cn to endomorphisms fromCn to Cm.

1There are no formal definitions for these notions, but here we usually mean something stronger than just
the composition

(
$̂ ◦ ρ̂

)
. For instance the higher-order functionMapcannot be implement through composition

mechanisms alone.
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(t + u) � v −→ t � v + u � v

t � (v + w) −→ t � v + t � w

(λ.u) � v −→ λ.(u � v)
u � (µ.v) −→ µ.(u � v)

0 � u −→ 0

u � 0 −→ 0

Figure 7:MATCHING OPERATOR BILINEARITY

Isomorphism 1 The following linear map

ˆ : Cm ⊗ Cn → End(Cn → Cm)

A 7→ Â∑
ij

Aij |i〉|j〉 7→
∑
ij

Aij |i〉〈j|

wherei = 1, . . . ,m andj = 1, . . . , n, is an isomorphism takingmn vectorsA into m×n
matricesÂ.

Until Section 6 we do not worry about normalization and unitarity conditions. For now the
isomorphism provides exactly what is needed: linear operations can be encoded as sums
of tensors describing which vector is associated to which. This is the rationale behind the
� notation.

4.3 Rules

Since� is just another type of tensor product, bilinearity applies (see Figure 7. Notice
the conjugation of theλ scalar, denotedλ, easily implemented in the TRS). Other than its
left-hand-side antilinearity, the particularity of� is the reduction it induces when placed
left of an application symbol *, as described in Figure 8. Finally note that the application
needs itself be made bilinear, i.e. we need six rules as in Figure 4 - replacing⊗ by *.

5 Lambda calculus construct

5.1 Physical considerations

Whatever formalism we choose for quantum theory (vectors or density matrices), quantum
operations act linearly upon their input states. This, in turn, implies that quantum states
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(t � u) ∗ v −→ (t • v).u
(t⊗ u) • (v ⊗ w) −→ (t • v)× (u • w)
(t⊗ u) • (v � w) −→ 0

(t⊗ u) • true −→ 0
(t⊗ u) • false−→ 0

(t⊗ u) • 0 −→ 0
(t � u) • (v ⊗ w) −→ 0
(t � u) • (v � w) −→ (t • v)× (u • w)

...

true • (v ⊗ w) −→ 0
true • (v � w) −→ 0

true • true −→ 1
true • false−→ 0

...

0 • v −→ 0

Figure 8:MATCHING OPERATOR AND THE SCALAR PRODUCT

cannot becloned. Indeed such an evolution acts upon a qubit as follows:

(α|0〉+ β|1〉)⊗ |0〉 CLONE7−→ (α|0〉+ β|1〉)⊗ (α|0〉+ β|1〉)
α
0
β
0

 CLONE7−→


α2

αβ
αβ
β2

 ,

which cannot be linear (a more formal discussion can be found in [27]). Cloning should
be distinguished fromcopyinghowever, as we now illustrate once more on qubit:

|0〉 ⊗ |0〉 COPY7−→ |0〉 ⊗ |0〉
|1〉 ⊗ |0〉 COPY7−→ |1〉 ⊗ |1〉

(α|0〉+β|1〉)⊗ |0〉 COPY7−→ α|0〉⊗|0〉+ β|1〉⊗|1〉


α
0
β
0

 COPY7−→


α
0
0
β

 .

Such an evolution is perfectly valid, and in the above case it may be implemented as a
single application of the quantum gateCNOT , which is of course both linear and unitary.

In classical functional languages terms such asλx.f(x, x), with (λx.f(x, x) t)
β−→

f(t, t), are crucial for the expressiveness. Recursion, for instance, relies upon such terms,
and is absolutely necessary for universality. When designing a quantum functional lan-
guage we therefore face a choice:

• Either we prevent terms such asλx.f(x, x) from being applied to quantum states -
thereby ensuring that no quantum cloning is allowed. But we must authorize their
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L(u) ∗ v −→ (u of v)
t of (r.v) −→ r.(t of v)
t of (v + w) −→ (t of v) + (t of w)
t of true −→ t bof subst(true)
t of false−→ t bof subst(false)
t of 0 −→ t bof subst(0)
t of (v ⊗w) −→(((

(t bof ⇑(↑)) bof ⇑(↑)
)

bof subst
(
var(0)⊗var(S(0))

))
of v

)
of w

t of (v � w) −→(((
(t bof ⇑(↑)) bof ⇑(↑)

)
bof subst

(
var(0)�var(S(0))

))
of v

)
of w

Figure 9:ENFORCING LINEARITY OVER SUBSTITUTION

applications upon ‘classical terms’ for expressiveness. As a consequence the lan-
guage must be able to keep track of quantum resources versus classical resources.
This is the approach followed by Van Tonder [24].

• Or we allow terms such asλx.f(x, x) from being applied to quantum states - only
to be interpreted as a quantum copy. We may still want to keep track of quantum
resources versus classical resources, but not for the purpose of forbidding cloning.
This is the approach we take.

For now the latter option seems preferable, since it models thedosanddon’tsof the lin-
earity requirement more closely, whilst keeping the calculus to a minimum. Moreover
copying, as we now show, can be imposed over cloning by the semantics of the calculus
alone.

5.2 Substitution of de Bruijn indices

The point of the previous discussion is that we can only duplicate basis vectors. Informally

(λx.(x⊗x)) ∗ true −→∗ true ⊗ true is OK;

(λx.(x⊗x)) ∗ (false+ true) −→∗ ((λx.(x⊗x)) ∗ false
)

+
(
(λx.(x⊗x)) ∗ true

)
−→∗ (true ⊗ true

)
+
(
false⊗ false

)
is OK;

(λx.(x⊗x)) ∗ (false+ true) −→∗ (false+ true)⊗ (false+ true) is not OK.

Again another way to grasp this idea is to realize that faced with a term of the form(λx.t)∗
(u + v), one could either start by proceeding to the substitution, or start by applying the
right-hand-side linearity of *, leading to two different results. So that operations remain
linear, we must favour the right-hand-side linearity of * over substitution. The rules of
Figure 9 accomplish exactly that. The three first rules are the most straightforward, they
invoke the linearity of the vector to be substituted. The three following rules treat the base
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(r.u) bof s −→ (r bof s).(u bof s)
(t • u) bof s −→ (t bof s) • (u bof s)
(r × s) bof s −→ (r bof s)× (s bof s)

...

(t + u) bof s −→ (t bof s) + (u bof s)
(t⊗ u) bof s −→ (t bof s)⊗ (u bof s)
(t � u) bof s −→ (u bof s) � (v bof s)
(t ∗ u) bof s −→ (t bof s) ∗ (u bof s)

L(t) bof s −→ L(t bof ⇑ (s))
true bof s −→ true

...

var(S(p)) bof subst(v) −→ var(p)
var(0) bof subst(v) −→ v

var(0) bof ⇑ (s) −→ var(0)
var(S(p)) bof ⇑ (s) −→ (var(p) bof s) bof ↑

var(p) bof ↑ −→ var(S(p))

Figure 10:EXPLICIT SUBSTITUTION OF DEBRUIJN INDICES

cases, when the vector to be substituted is down to a basic state. The last two rules handle
the more subtle case of tensor statesu⊗ v or u � v. In a word the trick is to treat

(
λx.(. . . x . . .)

)
∗ (u⊗ v) as

(
λx.
(
λy.(. . . x⊗ y . . .)

)
∗ u
)
∗ v

with y a fresh variable, and then proceed recursively.
Once the vector to be substituted is a basic state, we can safely proceed to the substitution.
Here we have chosen to represent variables by their de Bruijn indices [1, 10, 17], i.e. each
variable is now an integer number corresponding to number of binders (‘L’ or ‘ λ’ symbols)
one must go through before reaching the binding occurrence. For instance

λx.(λy.(x⊗ y)) is encoded asL(L(var(1)⊗ var(0)))

since there is oneλ symbol lying betweenx and the binding occurrence ofx. This variable
numbering scheme is often used for implementing functional languages. Notice how in
this scheme a variable may be denoted differently depending upon its position in the term
(i.e. depending upon how far it lies from its biding occurrence). The rules of Figure 10
implement this mechanism.
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6 Discussion

6.1 Unitarity

In its simplest formulation quantum theory only allows unitary evolutions, i.e. vectors
evolve in time according to square matricesU verifying U†U = I. In this framework it is
impossible to delete, say, a qubit:

|0〉 ERASE7−→ |0〉

|1〉 ERASE7−→ |0〉

(α|0〉+β|1〉) ERASE7−→ |0〉,

the evolution is not injective and therefore not unitary. Von Neumann’s projective mea-
surements help us only partially: if the vector is measured in the canonical basis, and when
this measurement yields outcome ‘0’, then the qubit undergoes the above exact dynamics.
But this will only occur with probability|α|2.
TheERASEoperation is however perfectly physical, as one can always ignore a qubit and
focus upon another, taken to be in state|0〉. Moreover the process needs not be probabilis-
tic. There are two well-established formulations of quantum theory which cater for this
possibility:

• The generalized measurementformalism unifies quantum evolutions and quantum
measurements as one single object. Mathematically a generalized measurement is
given by a set of matrices{Mm} verifying∑

m

M†
mMm << Id. (2)

A vector v will then evolve in time according to the matrixMm with probability
pm = |Mmv|2 - in which case we shall say that outcome ‘m’ has occurred. As an
example the following generalized measurement performs theERASEoperation:{(

1 0
0 0

)
,

(
0 1
0 0

)}
.

For a more detailed presentation of these concepts the reader is referred to [19], page
84.

• Thedensity matrixformalism represents quantum states as positive matrices instead
of vectors. These evolve in time according to Completely Positive-preserving maps,
i.e. operations of the form

ρ 7−→
∑
m

MmρM†
m with probability pm = Tr(MmρM†

m)

and verifying Equation (2). This framework is traditional when dealing with open
quantum systems, and therefore well appropriate as one discards a qubit.
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In classical functional languages terms such asλy.(λx.x), with (λy.(λx.x)t)
β−→ λx.x,

are commonly used. Boolean values and branching, for instance, are encoded in such
manners. Although convenient, non-injective functions are not absolutely necessary, for
reversible computation can be both universal and efficient [5]. Whether a quantum func-
tional language should allow erasure or not must therefore depend upon which of the three
above mentioned formulation of quantum theory gets chosen.

If we adopt the simplest formulation of quantum theory, our language must be re-
stricted to operation which are a not only linear but also unitary. At first sight this seems
feasible by imposing the standardU†U = I condition upon the matching constructs of
Section 4, and therelevancecondition upon theλ-terms of 5 (i.e. for all termλx.t the
variablex must occur at least once int). This, together with the search for a state-operator
correspondence similar to Isomorphism 1, but yielding normalized states, remains a sub-
ject for future work.

6.2 Linearity?

Linear logic appears in [13] as a mean to express and prove properties of dynamical sys-
tems where theconsumptionof resources is important. The standard example (price up-
dated) isA ≡“I have6AC”, B ≡“I have a paquet of Gauloises”, and the statementA ( B
to express the possibility of using upA to obtainB. With⊗ now expressing a conjunction,
it is clear one cannot haveA ( (B ⊗ B), since this would mean buying two paquets for
the price of one. Neither can we haveA⊗A ( B: we must get something for our money -
at worse the feeling of getting cheated. Therefore the rules governing symbols(,⊗ differ
from those of classical logic for⇒, ∧. Unless there is an abundance of resources (denoted
by the exclamation mark ‘!’), in which is case they coincide again:!A ( (B ⊗B ⊗ . . .).
Whilst considering this point the father of Linear logic has the following thought [14]:
‘Classical logic appears to be the logic of macro-actions, as opposed to linear logic which
would be a logic of micro-actions. The unusual character of linear logic may therefore be
considered similar to the strange character of micro-mechanics, i.e. quantum mechanics.’.

Specifications expressed in linear logics can be seen as types for programs expressed
in linear λ-calculus. In the linearλ-calculus one distinguisheslinear resources, which
may not be copied nor discarded, fromnonlinear resources, which are denoted by the ex-
clamation mark ‘!’ and whose fate is not subjected to particular restrictions. Van Tonder’s
quantumλ-calculus (λq) is founded upon these ideas. As we have mentioned in 5.1, he
uses this well-established framework in order to distinguish quantum resources (treated as
linear) from classical resources (treated as nonlinear):

(λq) t ::= x |λx.t | (t t) | c | !t |λ!x.t

c ::= 0 | 1 |H |CNOT |P
(together with the well-formedness rules of the classical linearλ calculus)

(Rq) (λx.t s)
β−→ t[s/x]

H 0 −→ 0 + 1
H 1 −→ 0− 1
...
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Here the well-formedness conditions of the classical linear calculus (which prevents linear
terms from being discarded), together with!-suspension (which stops quantum terms from
being treated as nonlinear) maintain unitarity throughout the reductions.

The connection between the linearλ-calculus and quantum functional languages is
striking. It comes at a price however: theλq-calculus remains heterogeneous, i.e. a
juxtaposition of quantum resources (linear resources) and classical resources (nonlinear
resources). In some sense it is twice linear, both in the sense of linearλ-calculus and
linear algebra, and thus perhaps overrestricted. In particular it forbids both the cloning
of quantum data (which needs be done) and the copying of quantum data (which needs
not be done). As a consequence its control flow remains inherently based upon classical
resources.

The linear-algebraicλ-calculusconstructed in this paper is homogeneous, i.e. it does
not draw a line between quantum resources and classical resources (the latter are merely
thought of as basis states of the former). Moreover it exhibits only one notion of linearity,
which is that of linear algebra. Thus cloning remains disallowed (just by the semantics) but
not copy. Control flow is still provided as a consequence. These results seem to open the
way to a linear algebraic interpretation of linear logic, in the spirit of Girard’s Geometry
of interaction, although much work remains ahead in order to strengthen this connection.
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