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Abstract

Full formal descriptions of algorithms making use of quantum principles must take
into account both quantum and classical computing components and assemble them so
that they communicate and cooperate. Moreover, to model concurrent and distributed
quantum computations, as well as quantum communication protocols, quantum to
quantum communications which move qubits physically from one place to another
must also be taken into account.

Inspired by classical process algebras, which provide a framework for modeling
cooperating computations, a process algebraic notation is defined, named QPAlg for
Quantum Process Algebra, which provides a homogeneous style to formal descriptions
of concurrent and distributed computations comprising both quantum and classical
parts. On the quantum side, QPAlg provides quantum variables, operations on quan-
tum variables (unitary operators and measurement observables), as well as new forms
of communications involving the quantum world. The operational semantics make
sure that these quantum objects, operations and communications operate according to
the postulates of quantum mechanics.

1 Introduction

Quantum algorithms are frequently described by means of quantum gate networks. This
has several drawbacks, for instance, gate networks do not allow descriptions of loops nor
conditional execution of parts of networks. So as to overcome these difficulties, a few
quantum programming languages have been developed, such as: QCL [8], an impera-
tive language designed by BernhardÖmer which aims at simulating quantum programs,
qGCL [11] by Paolo Zuliani which allows the construction of proved correct quantum
programs through a refinement method, and QPL [9], a functional language designed by
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Peter Selinger with a denotational semantics. A quantum lambda calculus [10], based on
a simplified linear lambda calculus, as also been developed by André van Tonder.

Cooperation between quantum and classical computations is inherent in quantum al-
gorithmics. For example, the quantum computation part is in general probabilistic: it
produces a result which is checked by a classical part and, if this result is not correct,
the quantum computation has to be repeated. Teleportation of a qubit state from Alice to
Bob [2] is another good example of this cooperation. Indeed, Alice carries out a measure-
ment, the result of which (two bits) is sent to Bob, and Bob uses this classical result to
determine which quantum transformation he must apply. Moreover, initial preparation of
quantum states and measurement of quantum results are two essential forms of interac-
tions between the classical and quantum kinds of computations which the language must
be able to express. Process algebras are a good candidate for such a language since they
provide a framework for modeling cooperating computations. In addition, they have well
defined semantics and permit the transformation of programs as well as the formal study
and analysis of their properties.

Process algebras have already been used in the context of quantum programming in
[7], where Simon Gay and Rajagopal Nagarajan have modeled a quantum cryptographic
protocol and verified its correctness with a classical process algebra. Starting with a clas-
sical process algebra described in appendix A, this paper explains how to ”quantumize” it
in section 2. Examples of short quantum programs are given in section 3.

2 ”Quantumized” Processes

2.1 Quantum Variables

For the purpose of this paper, we consider that there are two types of variables in the
”quantumized” process algebra, one classical:Nat, for variables taking integer values, and
one quantum:Qubit for variables standing for qubits. An extended version of the process
algebra would of course also include quantum registers and other types of variables.

In classical process algebras, variables are instantiated when communications between
processes occur and cannot be modified after their instantiation. As a consequence, it is
not necessary to store their values. In fact, when a variable is instantiated, all its occur-
rences are replaced by the value received (see the semantics of communication in parallel
composition, as given in appendix A).

Here, quantum variables stand for physical qubits. Applying a unitary transformation
to a variable which represents a qubit modifies the state of that qubit. This means that
values of variables are modified. For that reason, it is necessary to keep track of both
variable names and variable states.

Since variables are no longer just names standing for communicated values, they have
to be declared. The syntax of declarations is:[[[ x1 : t1, . . . , xn : tn . P ]]] wherex1, . . . , xn

is a list of variables,t1, . . . , tn are their types, andP is a process which can make use
of these classical and quantum variables. To simplify the rest of this paper, the names of
variables will always be considered distinct.

In the inference rules which describe the semantics of processes, the states of processes
can no longer be process terms only, as was the case for the classical process algebra, they



A process algebraic approach to concurrent and distributed quantum computation111

have to be process termsP together with contextsC, of the formP/C. The main purpose
of a context is to maintain the quantum state, stored asq = |ψ〉 whereq is a sequence of
quantum variable names and|ψ〉 their quantum state. Moreover, in order to treat classical
variables in a similar way, modifications of classical variables are also allowed. So, for the
same reason as in the case of quantum variables, classical values are stored in the context.
Storing and retrieving classical values is represented by functionsf : names→ values.
The context must also keep track of the embedding of variable scopes. To keep track
of parallel composition, this is done via a ”cactus stack” structure of sets of variables,
called the environment stack (s), which stores variable scopes and types. The set of all the
variables ins is denoted Var(s), ” .” adds an element on top of a stack, and ”|” concatenates
two stacks.

In summary, the context has three components< s, q = |ψ〉, f >, where:

• s is the environment stack;

• q is a sequence of quantum variable names;

• |ψ〉 is the quantum state of the variables inq;

• f is the function which associates values to classical variables.

The rules for declaration and liberation of variables are the following:

Declaration:

[[[ x1 : t1, . . . , xn : tn . P ]]]/C −→ [[[ P ]]]/C ′

with C =< s, q = |ψ〉, f >, C ′ =< s′, q = |ψ〉, f >
ands′ = {(x1, t1), . . . , (xn, tn)}.s

This rule adds the new variable names and types on top of the stacks. Because the vari-
ables do not have values yet, the quantum state and the classical function do not have to
be modified at this point.

Evolution of a process within the scope of declared variables:

P/C 99K P ′/C ′

[[[ P ]]]/C 99K [[[ P ′ ]]]/C ′

where99K stands for any of the transitions:
α−→ with α an action,

τ−→ with τ the ”silent”
action, and the declaration transition−→.

In short: if the processP can perform a transition, then the process[[[ P ]]] can perform
the same transition, provided that the action of the transition is notδ.

Termination of a process with exit from a scope and liberation of the variables:

P/C δ−−−→ P ′/ < e.s, q = |ψ〉, f >
[[[ P ]]]/C δ−−−→ nil / < s, q[e← ∗] = |ψ〉, f\Var(s) >
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If the action isδ, this means thatP has successfully terminated, so the context must be
cleaned up by eliminating the variables having their scope limited to that process.

Cleaning up the context means eliminating the head of the stack and restricting the
function f to the variables remaining in the stack (f\E meansf restricted toE). As
regards the quantum part of the context, because of possible entanglement among local
variables and other more global ones, qubits corresponding to these local variables cannot
be removed. Only their variable names are erased and replaced by a ”∗” in the sequenceq
(q[e ← ∗] is q in which all the names listed ine have been replaced by∗). The quantum
state is not modified.

2.2 Basic Actions

The classical basic actions are classical to classical communications. Classical to quantum
communications and quantum to quantum communications are introduced for respectively
initializing qubits and allowing the description of communication protocols. Quantum to
classical communications are part of measurement and are dealt with in the next paragraph.

The semantics of communications is based upon the following rules:

g !v .P/C g !v
−−−−−−→

P/C
v ∈ IN

g !x .P/C g !x
−−−−−−→

P/C ′

where

• C =< s, q = |ψ〉, f > andC ′ =< s\{x}, q[x← ∗] = |ψ〉, f >

• x ∈ Var(s) andx ∈ q

g ?x .P/C g ?x
−−−−−−→

P/C

with C =< s, q = |ψ〉, f >, x ∈ Var(s), andx 6∈ q.

The first rule deals with classical value sending, the second one, with qubit sending,
and the last one, with value reception. For qubit sending (second rule), because of the
no-cloning theorem, the sent qubit must be removed from the context. It should be noted
that in the third rule, the variablex can be classical or quantum but, if it is quantum, it
must not have already been initialized.

In the operational semantics of parallel composition, the combination of these rules
defines communication. In a classical to quantum communication, the qubit is initialized
in the basis state|v〉, wherev is the classical value sent (in this case,v must be0 or 1). In
a quantum to quantum communication, the name of the sent qubit is replaced inq by the
name of the receiving qubit.

The second kind of basic actions is unitary transformations which perform the unitary
evolution of qubit states. Given a setU of predefined unitary transformations, the action
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corresponding to the application ofU ∈ U to a list of quantum variables is denoted by
U [x1, . . . , xn].

The inference rule for unitary transformations is:

U [x1, . . . , xn].P/C τ−−−→ P/C ′

where

• C =< s, q = |ψ〉, f >, C ′ =< s, q = |ψ′〉, f >

• U ∈ U , x1, . . . , xn ∈ Var(s), andx1, . . . , xn ∈ q

• ∀ i, j ∈ {0, . . . , n} such thati 6= j : xi 6= xj

• |ψ′〉 = Πt.(U ⊗ I⊗k).Π|ψ〉

• Π is the permutation matrix which places thexi’s at the head ofq andΠt is the
transpose ofΠ

• k = size(q)− n

• I⊗k = I ⊗ · · · ⊗ I︸ ︷︷ ︸
k

, whereI is the identity matrix onC2

The conditionx1, . . . , xn ∈ q prevents from applying a unitary transformation to
qubits which have not been initialized. The fourth point deals with the evolution from
a quantum state initially equal to|ψ〉. Since the unitary transformationU may be applied
to qubits which are anywhere within the listq, a permutationΠ must be applied first. This
permutation moves thexi’s so that they are placed at the head ofq in the order specified
by [x1, . . . , xn]. ThenU can be applied to the firstn elements andI to the remainder.
Finally, the last operation is the inverse of the permutationΠ (Π−1 = Πt) so that at the
end, the elements inq and|ψ〉 are placed back in the same order.

2.3 Measurement and Probabilistic Processes

A last but essential basic action has to be introduced into the process algebra: quantum
measurement. LetM ∈ O be an observable,x1, . . . , xn a list of distinct quantum variables
andg a gate. Then, the syntax for measurement is the following:

• M [x1, . . . , xn] is a measurement of then qubits of the list with respect to observable
M , but the classical result is neither stored nor transmitted.

• g !M [x1, . . . , xn] is a measurement of then qubits of the list with respect to ob-
servableM , followed by sending the classical result through gateg.

Measurement is probabilistic: more precisely, the classical result and the quantum
state after measurement are probabilistic. This requires the introduction of a probabilistic
composition operator for contexts. This operator is denoted�p: the stateP/C1 �p C2 is
P/C1 with probabilityp andP/C2 with probability1− p.
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This implies that, in general, the context is either of the form< s, q = |ψ〉, f >, or of
the form�pi

< si, qi = |ψi〉, fi > where thepi’s are probabilities adding to1.
As explained in [4] and [5], if a process contains both a probabilistic and a nondeter-

ministic choice, the probabilistic choice must always be solved first. In the process algebra
presented here, nondeterminism appears with parallel composition and conditional choice.
So as to guarantee that probabilistic choice is always solved first, the notion of probabilis-
tic stability for contexts is introduced: a contextC is probabilistically stable, which is
denotedC ↓, if it is of the form< s, q = |ψ〉, f >. If the context of a process state is not
stable, a probabilistic transition must be performed first.

The semantic rule for measurement without communication is:

M [x1, . . . , xn].P/C τ−−−→ P/�pi
< s, q = |ψi〉, f >

with

• C =< s, q = |ψ〉, f > (which impliesC ↓)

• x1, . . . , xn ∈ Var(s) andx1, . . . , xn ∈ q

• ∀ i, j ∈ {0, . . . , n} such thati 6= j : xi 6= xj

• M ∈ O with
∑

i λiPi as spectral decomposition

• pi = 〈ψ|Πt(Pi ⊗ I⊗k)Π|ψ〉 and|ψi〉 =
Πt(Pi ⊗ I⊗k)Π|ψ〉

√
pi

• Π is the permutation matrix which places thexi’s at the head ofq andΠt is the
transpose ofΠ

• k = size(q)− n

As in the case of unitary transformations, a permutationΠ rearranges the qubits so that
projectors apply only to measured qubits. The computations of|ψi〉 andpi stem from the
projective measurement postulate of quantum mechanics.

When the value coming out of the measurement is sent out, the rule is:

g !M [x1, . . . , xn] .P/C τ−−−→ [[[ g !y .end]]] ;P/�pi
Ci

where

• y is a new variable (implicitly declared asy : Nat, see below)

• C =< s, q = |ψ〉, f > (which impliesC ↓)

• Ci =< {(y,Nat)}.s, q = |ψi〉, f ∪ {y 7→ λi} >

• and the conditions are the same as in the rule without communication.
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The only remaining point is the evolution of processes within probabilistic contexts. It
is necessary to introduce probabilistic transitions for describing this evolution:

S1 −→p S2

means that stateS1 becomesS2 with probabilityp. This is used in the following rule:

P/�pi Ci −→pi P/Ci
where

∑
j

pj = 1

The syntax and the main inference rules of this quantum process algebra are presented
in appendix B.

3 Examples

In the following examples, the setU of unitary transformations is:

U = {H,CNot, I,X, Y, Z}

whereH is Hadamard transformation,CNot is the ”controlled not” operation,I is the
identity, andX,Y, Z are Pauli matrices. The setO of observables contains the observ-
ables corresponding to measurement of one and two qubits in the standard basis, denoted
respectivelyMstd,1 andMstd,2, and the observable corresponding to measurement of a
qubit in the basis{|+〉, |−〉}, denotedM+−.

3.1 Construction of an EPR pair

BuildEPR def= [[[ x : Qubit, y : Qubit .
((g1 ?x .g2 ?y .H[x].CNot[x, y].end)
‖ (g1 !0 .g2 !0 .end))\{g1, g2}

]]]

This process puts the pair of qubitsx, y in the state|EPR〉 = 1√
2
(|00〉 + |11〉). To

check that the order of measurement of the two qubits does not matter, it is possible, using
the inference rules, to analyze the behavior of the following two processes: in both of them,
the first measurement produces0 (1) with probability 0.5 and the second measurement
produces0 (1) with probability 1.

CheckEPR1
def= [[[ a : Qubit, b : Qubit .

BuildEPR[a, b] ;Mstd,1[a].Mstd,1[b].end
]]]

CheckEPR2
def= [[[ a : Qubit, b : Qubit .

BuildEPR[a, b] ;Mstd,1[b].Mstd,1[a].end
]]]
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3.2 Teleportation

Once upon a time, there were two friends, Alice and Bob who had to separate and live
away from each other. Before leaving, each one took a qubit of the same EPR pair. Then
Bob went very far away, to a place that Alice did not know. Later on, someone gave Alice
a mysterious qubit in a state|ψ〉 = α|0〉 + β|1〉, with a mission to forward this state to
Bob. Alice could neither meet Bob and give him the qubit, nor clone it and broadcast
copies everywhere, nor obtain information aboutα andβ. Nevertheless, Alice succeeded
thanks to the EPR pair and the teleportation protocol [2]:

Alice def= [[[ x : Qubit, y : Qubit .
CNot[x, y].H[x].meas!Mstd,2[x, y] .end

]]]

Bob def= [[[ z : Qubit .
[[[ k : Nat .

meas?k .
[[[ k = 0→ I[z].end,
k = 1→ X[z].end,
k = 2→ Z[z].end,
k = 3→ Y [z].end]]]

]]]
]]]

Teleport def= [[[ ψ : Qubit .
[[[ a : Qubit, b : Qubit .

BuildEPR[a, b] ;
(Alice[ψ, a] ‖ Bob[b])\{meas}

]]]
]]]

The inference rules can be used to show that this protocol results in Bob’sz qubit
having the state initially possessed by thex qubit of Alice, with only two classical bits
sent from Alice to Bob.

3.3 Communication protocols

Alice sends qubits to Bob through a non secure channel and Eve eavesdrops this channel
to get information on the qubits sent by Alice. In the following exampleA, B, andE are
processes modeling whatever Alice, Bob, and Eve may respectively apply to their qubits.
The actions of these processes, which are not made explicit here, will be specified in the
next example of the BB84 protocol.

The communication protocols which are described here could be used to model cryp-
tographic protocols so as to check if they are secure.
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Eve intercepts all qubits

Eve intercepts qubits because of a flaw in the channel that Alice and Bob use to commu-
nicate.

Alice def= [[[ a : Qubit . A[a] ; fill !a .end]]] ; Alice

Bob def= [[[ b : Qubit . empty?b .B[b] ]]] ; Bob

Eve def= [[[ e : Qubit, f : Qubit .
emptyFlaw?e .E[e, f ] ; fillFlaw !f .end

]]] ; Eve

Flaw def= [[[ u : Qubit, v : Qubit . emptyFlaw!u .fillFlaw ?v .end]]]

Channel def= [[[ x : Qubit, y : Qubit . fill ?x .Flaw[x, y] ; empty!y .end]]] ;
Channel

Protocol def= (Alice ‖ Bob ‖ Eve ‖ Channel)
\{ fill ,empty, fillFlaw,emptyFlaw}

Eve intercepts some of the qubits

This part requires that a nondeterministic process compositionP +Q be introduced in the
process algebra. This can be done, provided that probabilistic choices are always solved
first (this operator is not presented in the operational semantics in appendix B).

To model the fact that Eve does not succeed in intercepting all qubits, the flaw in the
channel is made nondeterministic:

Channel def= [[[ x : Qubit .
fill ?x .
(

[[[ y : Qubit . Flaw[x, y] ; empty!y .end]]]+
(empty!x .end)

)
]]] ; Channel

3.4 The BB84 Protocol

The BB84 protocol [1] is a protocol of quantum key distribution: Alice and Bob must agree
on a private key, i.e. a list of bits that should remain secret. To communicate, they can
send qubits through a non secure channel. In fact, the processesA andB left unspecified in
the previous paragraph can be used to model this protocol. The processAlice is redefined
and the processB used byBob is made explicit. In addition, another process is defined:
the processRandom which initializes a bit randomly at0 or 1. The gateskeepDataAand
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keepDataBare used by Alice and Bob respectively to send the bits that they want to keep.
In this example, we take the liberty of using identical names for variables having distinct
scopes.

Alice def= [[[ a : Qubit,dataA: Nat,baseA: Nat .
A1[a,dataA,baseA] ; fill !a .A2[dataA,baseA]

]]] ; Alice

Random def= [[[ r : Nat .
[[[ x : Qubit .

(g !0 .end‖ g ?x .end)\{g} ;
H[x].
(h !Mstd,1[x] .end‖ h ?r .end)\{h}

]]]
]]]

A1
def= [[[ a : Qubit,dataA: Nat,baseA: Nat .

Random[dataA][a] ;
Random[baseA] ;
[[[ baseA= 1→ H[a].end]]]

]]]

A2
def= [[[ dataA: Nat,baseA: Nat .

[[[ bool : Nat,ok : Nat .
received?ok .
base!baseA.
keep?bool .
[[[ bool = 1→ keepDataA!dataA.end]]]

]]]
]]]

B def= [[[ b : Qubit .
[[[ baseA: Nat,baseB: Nat,dataB: Nat .

Random[baseB] ;
(

[[[ baseB= 0→ g !Mstd,1[b] .end,
baseB= 1→ g !M+−[b] .end]]]
‖ g ?dataB.end

)\{g} ;
received!1 .
base?baseA.
[[[ baseA= baseB→ keep!1 .keepDataB!dataB.end,
baseA6= baseB→ keep!0 .end]]]

]]]
]]]
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4 Conclusion

This paper has presented a process algebra for quantum programming. One of its advan-
tages is that it can describe classical and quantum programming, and their cooperation.
Without this cooperation, the implementation of the above protocols is not possible. An-
other feature of this language is that measurement and initialization of quantum registers
appear through communications between quantum and classical parts of the language,
which happens to be a faithful model of physical reality.

Moreover, a thorough semantics has been defined, thus allowing the study and anal-
ysis of programs. One peculiarity of this semantics is the introduction of probabilistic
processes, due to quantum measurement. Probabilistic processes perform probabilistic
transitions. As a consequence, the execution tree obtained from a process presents action
branches and probabilistic branches.

Several extensions are possible. As already mentioned, a nondeterministic process
composition operator can be introduced. A probabilistic composition of processes could
be added. This would allow, for example, the description of communication protocols in
which Eve intercepts qubits with a given probability. Another track that could be followed
is the use of density matrices, which are a more general description of quantum states than
vectors inC2n

. This may also open the way to a semantic analysis similar to abstract
interpretation. Another direction of study concerns the definition of an equivalence among
processes, which is necessary for obtaining a more abstract semantics.
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A A Classical Process Algebra

The classical process algebra chosen here is quite similar to CCS [6] and Lotos [3]. In
this process algebra, communication among processes is the only basic action. There is a
distinction between value emission denotedg !v , whereg is a communication gate andv a
value, and value reception denotedg ?x , whereg is a gate andx a variable which receives
the value. To create a process from basic actions, the prefix operator ”.” is used: ifα is an
action andP , a process,α.P is a new process which performsα first, then behaves asP .

There are two predefined processes. The first one isnil, the process that cannot perform
any transition, and the other one isend, which performs a ”δ-transition” for signaling
successful termination, and becomesnil (”δ-transitions” are necessary in the semantics of
sequential composition of processes).

The operators of the process algebra are: sequential composition (P ;Q), parallel com-
position (P ‖ Q), conditional choice ([[[ c1 → P1, . . . , cn → Pn ]]]) and restriction (P\L ).
As for sequential composition, processQ is executed if processP terminates successfully,
that is to say ifP performs aδ-transition. The process[[[ c1 → P1, . . . , cn → Pn ]]], where
ci is a condition andPi a process, evolves as a process chosen nondeterministically among
the processesPj such thatcj is true. Restriction is useful for disallowing the use of some
gates (the gates listed inL), thus forcing internal communication within processP . Com-
munication can occur between two parallel processes whenever a value emission in one
of them and a value reception in the other one use the same gate name. For instance, a
communication can occur on gateg in the processg !v .P ‖ g ?x .Q. After the communi-
cation has occurred, this process becomesP ‖ Q[x← v] whereQ[x← v] isQ where all
occurrences ofx have been replaced byv.

A.1 Syntax of Process Terms

process ::= nilnilnil
| endendend
| communication... process
| process;;; process
| process‖‖‖ process
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| process\\\{{{ gate list }}}
| [[[[[[[[[ cond list ]]]]]]]]]
| processname

communication ::= gate! exp| gate? variable

cond ::= bexp→→→ process

proc def ::= processname
def
=
def
=def
= process

A.2 Semantics

The semantics is specified with inference rules which give the evolution of the states of
processes. In the classical process algebra considered here, the state of a process is a
process term, and there are three kinds of transitions:

• action transition:
α−→ whereα is g !v or g ?x ;

• silent transition:
τ−→ , for internal transition;

• delta transition:
δ−→ , for successful termination.

In the following,P,Q, P ′, Q′, Pi andP ′i are processes,α andαi are actions,g is a
communication gate,v is a value,x is a variable, andcj is a condition.

Successful termination

end δ−−−→ nil

Action Prefix

g !v .P g !v
−−−−−−→

P
v ∈ IN

g ?x .P g ?x
−−−−−−→

P

Sequential composition

P α−−−→ P ′

P ;Q α−−−→ P ′ ;Q
α 6= δ

P δ−−−→ P ′

P ;Q τ−−−→ Q

Parallel composition

P α−−−→ P ′

P ‖ Q α−−−→ P ′ ‖ Q
α 6= δ

Q α−−−→ Q′

P ‖ Q α−−−→ P ‖ Q′
α 6= δ

P g !v
−−−−−−→

P ′ Q g ?x
−−−−−−→

Q′

P ‖ Q τ−−−→ P ′ ‖ Q′[x← v]
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P g ?x
−−−−−−→

P ′ Q g !v
−−−−−−→

Q′

P ‖ Q τ−−−→ P ′[x← v] ‖ Q′

P δ−−−→ P ′ Q δ−−−→ Q′

P ‖ Q δ−−−→ nil

Conditional choice

Pi αi−−−−→ P ′i

[[[ c1 → P1, . . . , cn → Pn ]]] αi−−−−→ P ′i
ci

[[[ c1 → P1, . . . , cn → Pn ]]] δ−−−→ nil
∀i,¬ci

Restriction

P α−−−→ P ′

P\L α−−−→ P ′\L
α = τ ∨ α = δ

∨(α = g[ !v or ?x ] ∧ g 6∈ L)

B The Quantum Process Algebra

B.1 Syntax

process ::= nilnilnil
| endendend
| action... process
| process;;; process
| process‖‖‖ process
| process\\\{{{ gate list }}}
| [[[[[[[[[ cond list ]]]]]]]]]
| [[[[[[[[[ var decl list ... process]]]]]]]]]
| processname[[[[ var list ]]]]

action ::= communication
| unit transf
| measurement

communication ::= gate! exp
| gate! measurement
| gate? variable

unit transf ::= unitary operator[[[ var list ]]]
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measurement ::= observable[[[ var list ]]]

var decl ::= variable::: var type

proc def ::= processname
def
=
def
=def
= process

B.2 Main Inference Rules of the Semantics

With respect to appendix A.2, two new kinds of transitions have been added:

• declaration transition:−→, for variable declaration;

• probabilistic transition:−→p, wherep is a probability.

In the following,C, C ′ orCi are contexts andSi is a process state.

Successful termination

end/C δ−−−→ nil/C
C ↓

Action Prefix

g !v .P/C g !v
−−−−−−→

P/C
v ∈ IN, C ↓

g !x .P/C g !f(x)
−−−−−−−−→

P/C

whereC =< s, q = |ψ〉, f >, x ∈ Var(s) andx ∈ dom(f )

g !x .P/C g !x
−−−−−−→

P/C ′

where

• C =< s, q = |ψ〉, f > andC ′ =< s\{x}, q[x← ∗] = |ψ〉, f >

• x ∈ Var(s) andx ∈ q

g ?x .P/C g ?x
−−−−−−→

P/C

whereC =< s, q = |ψ〉, f >, x ∈ Var(s)

U [x1, . . . , xn].P/C τ−−−→ P/C ′

where

• C =< s, q = |ψ〉, f >, C ′ =< s, q = |ψ′〉, f >

• U ∈ U , x1, . . . , xn ∈ Var(s), andx1, . . . , xn ∈ q
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• ∀ i, j ∈ {0, . . . , n} such thati 6= j : xi 6= xj

• |ψ′〉 = Πt.(U ⊗ I⊗k).Π|ψ〉

• Π is the permutation matrix which places thexi’s at the head ofq andΠt is the
transpose ofΠ

• k = size(q)− n andI⊗k = I ⊗ · · · ⊗ I︸ ︷︷ ︸
k

M [x1, . . . , xn].P/C τ−−−→ P/�pi
< s, q = |ψi〉, f >

with

• C =< s, q = |ψ〉, f > (which impliesC ↓)

• x1, . . . , xn ∈ Var(s) andx1, . . . , xn ∈ q

• ∀ i, j ∈ {0, . . . , n} such thati 6= j : xi 6= xj

• M ∈ O with
∑

i λiPi as spectral decomposition

• pi = 〈ψ|Πt(Pi ⊗ I⊗k)Π|ψ〉 and|ψi〉 =
Πt(Pi ⊗ I⊗k)Π|ψ〉

√
pi

• Π is the permutation matrix which places thexi’s at the head ofq andΠt is the
transpose ofΠ

• k = size(q)− n

g !M [x1, . . . , xn] .P/C τ−−−→ [[[ g !y .end]]] ;P/�pi
Ci

where

• y is a new variable

• C =< s, q = |ψ〉, f > (which impliesC ↓)

• Ci =< {(y,Nat)}.s, q = |ψi〉, f ∪ {y 7→ λi} >

• and the conditions are the same as in the rule without communication.

Probabilistic contexts

P/�pi Ci −→pi P/Ci
where

∑
j

pj = 1
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Sequential composition

P/C 99K P ′/C ′

P ;Q/C 99K P ′ ;Q/C ′

where99K stands for any of the transitions :
α−→ with α an action different fromδ,

τ−→ ,
or−→.

P/C δ−−−→ P ′/C ′

P ;Q/C τ−−−→ Q/C ′

Parallel composition

In the rules for parallel composition,C, CP andCQ are defined as:

• C =< (sP ‖ sQ).s, q = |ψ〉, f >

• CP =< sP |s, q = |ψ〉, f >

• CQ =< sQ|s, q = |ψ〉, f >

In the definition ofC, the operator‖ permits to build a cactus stack (see paragraph
2.1). In the cactus stack(sP ‖ sQ).s of the processP ‖ Q, the names ins correspond to
variables shared byP andQ whereas the names insP (resp.sQ) correspond to variables
declared inP (resp.Q).

P/CP 99K P ′/C ′P
P ‖ Q/C 99K P ′ ‖ Q/C ′

where

• 99K stands for one of those transitions :
α−→ with α an action andα 6= δ,

τ−→ ,
−→

• If C ′P =< s′, q′ = |ψ′〉, f ′ > thenC ′ =< (s′P ‖ sQ).s, q′ = |ψ′〉, f ′ > with s′P
such thats′ = s′P |s (P can neither add to nor remove variables froms)

• If C ′P = �pi
< s′i, q

′
i = |ψ′i〉, f ′i > thenC ′ = �pi

< (sP
′
i ‖ sQ).s, q′i = |ψ′i〉, f ′i >

with sP
′
i such thats′i = sP

′
i|s

P/CP g !v
−−−−−−→

P ′/C ′P Q/CQ g ?x
−−−−−−→

Q′/C ′Q

P ‖ Q/C τ−−−→ P ′ ‖ Q′/C ′

where

• x ∈ Var(s) ∪ Var(sQ) andv ∈ IN

• If x is of type Nat, then:C ′ =< (sP ‖ sQ).s, q = |ψ〉, f ∪ {x 7→ v} >

• If x is of type Qubit, then:x 6∈ q, v ∈ {0, 1}
andC ′ =< (sP ‖ sQ).s, x.q = |v〉 ⊗ |ψ〉, f >
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P/CP g !x
−−−−−−→

P ′/C ′P Q/CQ g ?y
−−−−−−→

Q′/C ′Q

P ‖ Q/C τ−−−→ P ′ ‖ Q′/C ′

where

• x ∈ Var(s) ∪ Var(sP ), x ∈ q

• y ∈ Var(s) ∪ Var(sQ), y 6∈ q, y of type Qubit

• C ′ =< ((sP ‖ sQ).s)\{x}, q[x← y] = |ψ〉, f >

P/CP δ−−−→ P ′/C ′P Q/CQ δ−−−→ Q′/C ′Q

P ‖ Q/C δ−−−→ nil/C ′

with C ′ =< s, q[(Var(sP ) ∪ Var(sQ))← ∗] = |ψ〉, f\Var(s) >

Variable declaration

[[[ x1 : t1, . . . , x1 : tn . P ]]]/C −→ [[[ P ]]]/C ′

with C =< s, q = |ψ〉, f >, C ′ =< s′, q = |ψ〉, f >
ands′ = {(x1, t1), . . . , (xn, tn)}.s

End of scope of variables

P/C 99K P ′/C ′

[[[ P ]]]/C 99K [[[ P ′ ]]]/C ′

where99K stands for any of the transitions:
α−→ with α an action,

τ−→ , or−→.

P/C δ−−−→ P ′/ < e.s, q = |ψ〉, f >
[[[ P ]]]/C δ−−−→ nil / < s, q[e← ∗] = |ψ〉, f\Var(s) >


