Proc. QPL 2004, pp. 127-143

Towards a semantics for
higher-order quantum computation

Peter Selingér

Abstract

The search for a semantics for higher-order quantum computation leads naturally
to the study of categories of normed cones. In the first part of this paper, we develop the
theory of continuous normed cones, and prove some of their basic properties, including
a Hahn-Banach style theorem. We then describe two different concet®dnomous
categories of normed cones. The first of these categories is built from completely
positive maps as in the author's semantics of first-order quantum computation. The
second category is a reformulation of Girard’s quantum coherent spaces. We also point
out why ultimately, neither of these categories is a satisfactory model of higher-order
guantum computation.

1 Introduction

In quantum computation, one often considers programs which depend parametrically on
a so-calletblack box which is typically a quantum circuit that computes some unknown
function. The black box is considered to be part of the input of the program, but it dif-
fers from ordinary data, such as qubits, in that it can only be tested via observing its
input/output behavior. In the terminology of functional programming, programming with
black boxes is a special case of what is knowrhigher-order functional programming
which means, programming with functions whose input and/or output may consist of other
functions.

Recently, there have been some proposals for higher-order quantum programming lan-
guages, based on linear versions of the lambda calculus [11, 12, 10]. These languages
have been given meaning syntactically, in terms of tbeierationalbehavior; however,
there is currently no satisfactodenotationalsemantics of such higher-order quantum
programming languages. This is in contrast to the first-order case, where a complete de-
notational description of the quantum computable functions on finite data types, based on
superoperators, has been given [8].

In trying to extend this work to the higher-order case, one is led to search for a sym-
metric monoidal closed category which contains the category of superoperators from [8]
as a full, symmetric monoidal subcategory. This leads naturally to the study of categories
of normed cones, as pioneered by Girard in his study of quantum coherent spaces [5].
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In the first part of the present paper, we attempt to develop a systematic account of
normed cones and their basic properties. The study of normed cones is similar, in many
respects, to the study of normed vector spaces, but there are some important differences,
notably the presence of a partial order, the so-catiede order This order allows us
to use techniques from domain theory [2], and to work with order-theoretic notions of
convergence and continuity which are rather stronger than the corresponding notions that
are usually available in normed vector spaces such as Banach spaces.

In the second part of this paper, we report on two instructive (but ultimately failed)
attempts at constructing a model of higher-order quantum computation based on normed
cone techniques. We describe two concrete categories of normed cones. The first such cat-
egory is a direct generalizations of the category of superoperators from the author’s work
on first-order quantum computation [8]. The second category is based on a reformulation
of Girard's quantum coherent spaces. Both categories turn out tealdéonomous, and
thus possess all the structure required to model higher-order linear language features (and
more). However, neither of these categories yields the correct answer at base types, and
thus they are not correct models of quantum computation. The author believes that the
techniques used here are nevertheless interesting and might turn out to be building blocks
in the construction of a model of higher-order quantum computation in the future.

Acknowledgments. | am grateful to Andrea Schalk for many useful discussions on the
topics of this paper.

2 Cones

In this section, we develop the basic theory of continuous normed cones. The techniques
used are similar to those employed in the study of normed vector spaces, except that we
also make extensive use of domain-theoretic methods to exploit the partial order which

naturally exists on cones. Another domain-theoretic treatment of cones was given by Tix

[9], but the present work differs in many key details, such as the presence of a norm, and
the consequently modified notion of completeness.

2.1 Abstract cones

Let R, be the set of non-negative real numbers. dastract conds analogous to a real
vector space, except that we tdRe as the set of scalars. SinBe. is not a field, we have
to replace the vector space lawt+ (—v) = 0 by acancellation lawv + u = w + u =

v = w. We also requirstrictnesswhich means, no non-zero element has a negative.

Definition (Abstract cone). An abstract conds a setV, together with two operations
+:VxV —=Vand :R; xV — V and a distinguished elemeht V, satisfying the
following laws for allv, w,u € V andA, u € R:

O+v=w lv=v
v+ (w+u)=@wW+w)+u (Ap)v = A(u)
v+w=w-+v A+ p)v = v+ po

Av 4+ w) = v+ Aw,
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v+u=w+u = wv=w (cancellation)
v+w=0 = wv=w=0 (strictness)

Example2.1 R, is an abstract cone. The set
RY ={(z1,...,2n) | z1,..., 20 € Ry}

is an abstract cone, with the coordinate-wise operations. More generdly,.if. |V,
are abstract cones, then solis x ... x V,,. The set of all complex hermitian positive
n X n-matrices,

P,={AeC"" | A= A*andVv € C".v*Av > 0}
is an abstract cone.

Definition (Linear function). A linear functionof abstract cones is a functigh: V' —
W such thatf (v +w) = f(v) + f(w) andf(A\v) = Af(v), forallv,w € V andX € R...

Remark.Every abstract con& can be completed to a real vector space(V'), which we
call theenveloping spacef V. The elements afnv (V) are pairgv, w), wherev,w € V,
modulo the equivalence relatiqw, w) ~ (v/,w’) if v + v’ = v’ + w. Addition and
multiplication by non-negative scalars are defined pointwise, and we defingv) =
(w,v). We say that an abstract condirste dimensionaif its enveloping space is a finite
dimensional vector space.

Definition (Convexity). A subsetD of an abstract con¥ is said to beconvexif for all
u,v € DandA € [0,1], Au+ (1 — A\)v € D. Theconvex closuref a setD is defined to
be the smallest convex set containibg

2.2 The cone order

Definition (Cone order). Let V' be an abstract cone. Tleene ordetis defined by T w
if there existsu € V such thaty + © = w. Note that the cone order is a partial order. If
v £ w, then we sometimes also write— v for the unique element such that) +u = w.

Remark.Note that every linear function of abstract corfesVV — W is alsomonotone
i.e.,v C o implies f(v) C f(v'). Also, addition and scalar multiplication are monotone
operations.

Example2.2 OnR,, the cone order is just the usual ordepf the reals. OR”, itis the
pointwise order. OrP,,, it is the so-called.dwner partial order{7].

Definition (Down-closure). Let D C V be a subset of an abstract cone ddsvn-closure

D is the se{u € V|3v € D.u C v}. We say thatD is down-closedf D = |D.
The concept ofip-closureis defined dually. Note that the down-closure of a convex set is
convex.
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2.3 Normed cones

Definition (Norm). LetV be an abstract cone.ormonV is a function||—|| : V' — R4
satisfying the following conditions for all, w € V andX € R, :

o+ wll < o]l + ]
X0l = Allv]

lv]| =0=v=0
0w = |lo < [wl

A normed cond” = (V, ||—||) is an abstract cone equipped with a norm.

Remark. The first three conditions of a norm are just the usual conditions for a norm on a
vector space, except of course that the scalar property is restricted to non-negative scalars.
The last condition ensures that the nornmisnotone

Definition (Unit ideal). Theunit idealof a normed con&’ is the set
Dy ={veV || <1}

It is akin to the unit ball in a normed vector space.

2.4 Complete normed cones
We recall the definition of a directed complete partial order from domain theory [2].

Definition (Directed complete partial order (dcpo)). A partially ordered setl is called
directedif for all a,b € A, there existg € A with a,b C c. A partially ordered setD, C)
is called adirected complete partial order (dcpdf) every directed subsef of D has a
least upper bound ii. The least upper bound of a directed sub$és denoted by/A,
and it is also called thdirected supremupor sometimes thémit, of A.

If Iis a directed poset anB is a dcpo, then a monotone map I — D is called
andirected nef(or simplynef). As usual, we write a net & );c;. The image of a net
is a directed subset dP, and its directed supremum is written %fgélai. Note that an
increasing sequence is a particular kind of directed net.

Definition (Complete normed cone).A normed cond/ is calledcompletdf its unit ideal
is a directed complete partial order.

Remark. A normed coné/ is complete if and only if the following two conditions hold,
for all directed net$a;);cr in V:

o if \f.a; exists, therj|\f,a;|| = \,||a;||, and
e if {||a;|| | i € I} is bounded, thely;a; exists.

The first of these condition states that the norn$®tt-continuousi.e., it preserves di-
rected suprema. The second conditioné®mpletenessondition; it is akin to the require-

ment, in complete normed vector spaces, that every Cauchy sequence has a limit. However,
unlike in normed vector spaces, we require convergence with respectdaitrenot with

respect to th@orm The norm merely serves to rule out unbounded sequences.
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2.5 Examples

We write z LI y for the maximum of two numbers,y € R,. Note that this operation
is commutative and associative, has uhitand is distributive with respect to addition:
(xUy)+z=(z+2z)U(y+2)

Example2.3. R, is a complete normed cone witlx|| = x. The sefR" is a complete
normed cone with thé-norm

[(x1,. s zn)l1 =21 4 .. + X

The sefR’ is also a complete normed cone with tikenorm

(z1, .. 2n)|loo =21 UL Uz,
More generally, ifl;,...,V, are complete normed cones, then each of the following
formulas makd/; x ... x V,, into a complete normed cone:
[(vi, .- vn)lly o= llorllvy + -+ [lvnllv,,,
11,5 on) oo := Nlvallv U U [on]lv, -
We write V4 @ ... @ V,, for the normed conéV; x ... x V,,||—]l1), and we write

Vi&...&V, forthe normed conéV; x ... x Vi, ||—|loo)-
The setP,, of complex hermitian positive x n-matrices is a complete normed cone
with the 1-norm (or trace norn)

1AL = | Ale =tr A= aii.

It is also a complete normed cone with thenorm (or operator norn)
[Alloe = sup{|Av| | v e C", [v] < 1},

where|v| = v/v*v denotes the usual norm of a complex vector. Note thgl is the sum
of the eigenvalues ofl (counted according to multiplicity), anfi ||, is the maximum of
the eigenvalues.

Example2.4. Consider the seV = {(z,y) | z =y =0o0rz,y >0} C R? with the
norm||(z,y)|| = « + y. Clearly,V is a normed cone. However, it is not complete: the
increasing sequencg = (2 — 1/4,2 — 1/i) has many upper bounds, none of which is
least. For examplé2, 2) and(2, 3) are two incomparable minimal upper bounds.
Example2.5. Let ¢, be the set of sequencesin of bounded sum, together with the sum
norm||(z;)|l1 = >, xi. Letl be the set of bounded sequenceRin together with the
supremum normi(z;);|l.c = sup x;. Then both¢; and/,, are complete normed cones.
Least upper bounds are given pointwise.

Example2.6. Let P be any partially ordered set, and léf be the set of bounded mono-
tone mapsf : P — R,. LetRY be equipped with the pointwise operations of addition
and scalar multiplication, and with the supremum ndiffi.c = sup{f (i) | ¢ € P}. Then

Ri is a complete normed cone. Least upper bounds of directed nets are given pointwise.
However, note that the cone orderon ]Rﬁ does not in general coincide with the point-
wise order, because fgrC ¢, we must have that — f is not only non-negative, but also
monotone.
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2.6 Continuous normed cones
We recall some additional concepts from domain theory [2].

Definition (Continuous dcpo). If w, v are elements of a dcpb, we say thatv is way
beloww, or in symbolsw < v, if for any directed setl with v C \/4, there exists some
a € Asuchthatw C a. We write v = {w | w < v} andfv = {w | v < w}. A dcpo
D is calledcontinuousf for every v € D, the set| v is directed and = \f| v.

Definition (Continuous normed cone).A continuous normed corng a complete normed
cone whose unit ideal is a continuous dcpo.

Remark.If V' is a complete normed cone, th&his continuous iff for everw € V, the
set|v is directed and> = \/|v in V. In particular, continuity, as a property of complete
normed cones, is independent of the norm; it only depends on the order.

2.7 Examples

Example2.7. The complete coneR,, R}, P,, /s, and/; from Examples 2.3 and 2.5
are all continuous. IR, we haver < y iff + = 0O orz < y. In R}, we have
(1, Tn) < (y1,...,yy,) iffforall ¢, z; =0orz; <vy;. InP,, we haved < B iff
forallv € C*, v*Av = 0 orv*Av < v*Bv. In £, and{;, we haver < ¢ iff & is finitely
supported and for all, z; = 0 orz; < y;. Moreover, ifV, ..., V,, are continuous normed
cones, thensoag & ... dV,, andV; & ... & V., and the way-below relation is given
pointwise in this case.

Example2.8. Let I = [0, 1] be the unit interval with the natural order. Consider the
complete con®’_ of monotone functiong : I — R, (see Example 2.6). We claim that
Rﬁr is not a continuous cone. Indeed, consider the gfap = x, and suppose thgt < g.

We will show thatf = 0. We first show that for any € I, there exists a neighborhood of
x on which f is constant. Fixz € I. For anye > 0, defineg. by

y ify<z—e
ge(y)=¢ z—€¢ fz—e<y<z+e
y—2¢ ifxt+e<y.

Then the netg.).~o converges tg. Hencef C ¢, for somee > 0. Sinceg, is constant
on a neighborhood af, and bothf andg. — f are monotone, it follows thaf is also
constant on a neighborhood .of As = was arbitrary, and is connected, it follows thaf

is a constant function, hence necessafily- 0. As there is only one element way below
g, it follows thatR’ is not a continuous cone.

Open Problem. Characterize the partially ordered sétfor which RY is a continuous
normed cone.

2.8 Order convergence and norm convergence

We have already remarked that, in the theory of normed cones, we normally consider
convergence with respect to the order, and not with respect to the norm. However, it is
sometimes useful to know more about the relationship between the two concepts.
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Remark.Order-convergence does not in general imply norm-convergence; for instance, in
¢+, the increasing sequenece = (1,1,...,1,0,0,...) has least upper bourd, 1, .. .),
but it does not converge in norm.

On the other hand, norm-convergence of increasing sequences implies order-conver-
gence, as shown in the following lemma:

Lemma 2.9. Let V' be a complete normed congy;); an increasing sequence (or a di-
rected net), and let be an upper bound such thit — v;|| — 0. Thenv = \/v;.

Proof. By completeness, a least upper bound exists, so let\/,v;. Sincev is an upper
bound, we havev T v. Now for all 2, we havev; C w, hencev — w C v — v;, hence
lv —w| < |Jv—w;||. As the latter quantity converges @owe must havélv — w|| = 0,
hencev = w. O

2.9 Bounded and non-expanding functions

Definition (Bounded and non-expanding linear function). Let V and W be complete
normed cones. A linear function of congs V' — W is boundedf there exists a constant
¢ € R, such that for alb € V, || f(v)]] < ¢|lv|. Itis non-expandingf for all v € V,

If @)l < lvll.

Perhaps surprisingly, the definition of boundedness is redundant, as the following
lemma shows:

Lemma 2.10. Any monotone function (and therefore any linear function) between com-
plete normed cones is bounded.

Proof. Supposef : V' — W is monotone but unbounded. For ed¢ishoose an element
v; € V such that|v;|| = 1 but||f(v;)|| > ¢ - 2*. Now consider the sequence whate
elementis

1 1 1
ui:vo+§v1+1v2+...+§vi.

Then (u;); is an increasing sequence ¥y with |ju;|| < 2 for all ;. By completeness,
this sequence has a least upper bound \f,u; with ||u| < 2. On the other hand, by
construction, we havéf (u;)| > ||f(v:)||/2° > i. Now for all i, we haveu; C u, thus
flw) E f(u), thusi < || f(w;)|| < ||f(u)]]. This contradicts the fact thgt(u) has finite
norm. d

2.10 Continuous linear functions

Definition (Continous linear function). Let VV and W be complete normed cones. A
function of conesf : V' — W is called Scott-continuougor simply continuou$ if it
preserves directed suprema, i.e f {§/,a;) = \/, f(a;) for all directed netga;);.

Example2.11 LetV = {(z¢,z1,...) € RY | zg > z1 > ...} be the set of non-
increasing sequences of non-negative reals, with j¢ury);|| = xo. ThenV is a complete
normed cone (see Example 2.6). The functfonV — V with f(xg,z1,...) = inf;(x;)

is linear (and thus bounded by Lemma 2.10), but not continuous: it does not preserve the
least upper bound of the increasing sequence (1,1,...,1,0,0,...).
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Lemma 2.12. In a complete normed cone, addition and scalar multiplication are contin-
uous.

Proof. Note that for any fixed, the functionf(v) = a + v is an order isomorphism from
Vto{u € V | a C u}; hence, it preserves least upper bounds of non-empty sets. Since
Scott continuity is pointwise, addition as a function of two arguments is also continuous.
Similarly, for any non-zero scalax, the functiong(v) = Av is an order isomorphism
from V to itself, thus preserving least upper bounds. In case 0, there is nothing to
show. Thus\v is continuous as a function ef Finally, the fact that\v is continuous

as a function of\ follows from Lemma 2.9, because = \f,)\; implies || \v — \jv| =

A= Adll[vl] — 0. O

2.11 A separation theorem

Definition (Generating set). Let V' be an abstract cone, and IBtC V' be a down-closed,
convex subset. We say thBtgenerated/ if for all v € V, there exists somg > 0 such
that\v € B.

Recall that a subséf of a dcpoD is calledScott-openor simply open if it is up-
closed and for any directed sétwith \fA € U, there exists some ¢ AN U. A setis
Scott-closear closedif its complement is open.

Theorem 2.13 (Separation).Let V' be a continuous normed cone, and lgtand U be
convex sets such th&is down-closedl/ is up-closed and open, aréinU = (. Further,
assume thaB generated/. Then there exists a continuous linear functipn V- — R
such thatf(v) < 1forallv e Band f(u) > 1forall w e U. O

2.12 A Hahn-Banach style theorem

An important application of the separation theorem is the following Hahn-Banach style
theorem for continuous normed cones:

Theorem 2.14. Let V be a continuous normed cone, anddet V with |ja]| > 1. Then
there exists a continuous linear functign: V. — R, with f(v) < ||v||, forall v € V,
such thatf(a) > 1.

Proof. Since the norm is continuous, we can find sathe« o such thaf|a’|| > 1. Now
apply the separation theorem to the sBts- {v € V | ||v]| < 1} andU = fd'.

Remark. One might ask whether the functighin Theorem 2.14 can be chosen so that
f(a) = ||la]|. Contrary to basic intuitions, this is not in general possible, unless one gives
up the continuity off. Consider the following counterexample. Lét= /., the set of
bounded sequences R, with the supremum norm (see Examples 2.5 and 2.7). Note
that every sequence:;); € V is a directed supremum of finitely supported sequences;
therefore, every continuous linear function is uniquely determined by its action on the
standard basis vectorg = (d;;); € V. Now leta = (a;); Wwherea; = 2 — 1%1
Then|ja|| = sup a; = 2. However, we claim that there exists no continuous function
f:V — Ry with f(v) < |Jv]|, forallv € V, such thatf(a) = 2. For assume that there
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was such a functiorf. For everyi, letv; = a + 714%161' € V. Thenf(v;) > f(a) =2, but
alsof(v;) < ||(JJv;) = 2, hencef (v;) = f(a) + i%lf(ei) = 2. Butalsof(a) = 2, which
implies thatf (e;) = 0 for all i. Sincef is uniquely determined by all th&(e;), it follows

that f = 0, a contradiction.

3 Completely positive maps and superoperators

Categories of completely positive maps and superoperators occur naturally in the seman-
tics of quantum programming languages, see [8]. In this section, we briefly recall the
definition of these concepts. The category of superoperators is symmetric monoidal, but
it lacks closed structure. Thus, it forms a useful semantics of first-order, but not higher-
order quantum programming languages. In Sections 4 and 5, we will discuss two different
x-autonomous categories derived from the category of superoperators.

3.1 Signatures, linear maps, and the category V

Definition (Signature, matrix tuple). A signatureis a finite sequence = nq, ..., ng of
positive natural numbers, whese= 0. If n is a positive natural number, 18}, = C"*" be

the set of complex: x n-matrices, regarded as a complex vector space. More generally,
if 0 = mn1,...,n, IS asignature, leV, = V,,, x ... x V,,_ be the set omatrix tuples
(Aq,...,As), whered; € C™ixmi,

Definition (The category V). The category/ has signatures as objects, and a morphism
from o to 7 is a complex linear functiorf : V,, — V.

Note that the category is equivalent to the category of finite dimensional complex
vector spaces; we have defined the objects in a special way because we will equip them
with additional structure later.

Let 0 @ o’ denote concatenation of signatures. Them o’ is a biproduct in the
categoryV, with the obvious projection and injection maps. The neutral object for this
biproduct is the empty signature, which we denot@.as

The tensor product of two signatures= nq,...,ns andr = myq,...,m, is defined
as

ORQT =MN1M1, ..., N1 Mg, ooy NgMY, ..., NgMy.

Note that there is a canonical isomorphispy. = V, ® V., whereV,, ® V, denotes the
usual tensor product of vector spaces. With this identification, the operatisrseen to
give rise to a symmetric monoidal structure \dn The unit for this tensor product is the
signaturd = 1.

Moreover, there is a canonical natural isomorphismV(c ® 7,p) = V(0,7 ® p)
[8]. Therefore, the category, just like the category of finite dimensional vector spaces,
is compact closed with o7 = ¢ @ 7 and L = | = 1. As a matter of fact, the category
V is even strongly compact closed in the sense of Abramsky and Coecke [1].
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3.2 Completely positive maps and the category CPM

For a positive natural number, let P, C V,, be the set of hermitian positive x n-
matrices as in Example 2.1. More generally, for any sighatuteny, ..., ng, letP, =
P, X ... X P, CV, bethe set of hermitian positive matrix tuples.

Definition (Completely positive map). Let 0,0’ be signatures. A linear functiofi :
V, — V., is positiveif for all A € P,, one hasf(A) € P,.. Further, we say thaf is
completely positivé id, ® F' : V., — V-g, IS positive for all signatures.

Example3.1 The linear functionf : Vo — V5 defined byf(i Z) = (Z 2) is

positive, but not completely positive. To see this, note thahaps hermitian positive
matrices to hermitian positive matrices, buf @ f does not; for instance,

10‘01 10‘00
. 00/00 00/10
@ fl5ot0 0 |= |0 1[0 0

100 1 000 1

On the other hand, the functi@r( Z Z ) = ( g 2 ) is completely positive.

Definition (The category CPM). The categoryCPM of completely positive maps has
the same objects a5 and has the completely positive maps as morphisms.

Lemma 3.2. CPMis a subcategory of/, and it inherits the biproducts and (strongly)
compact closed structure frokh. O

Remark. The categorfCPM was calledV in [8].

3.3 Superoperators and the category Q

Leto = ny,...,ns be asignature, andlet = (A, ..., A,) € V, be a tuple of matrices.
We define thdraceof A to the sum of the traces ofy, . . ., A;:

trdA= Z tr A;.
Definition (Superoperator). Let o, ¢’ be signatures. A linear functioh: V, — V. is
called asuperoperatoif f is completely positive and for all € P,,, tr f(A4) < tr A.

Definition (The category Q). The categon@Q of superoperators has the same objects as
V andCPM, and has the superoperators as morphisms.

Lemma 3.3. Qis a subcategory o£PM. It inherits coproducts and the symmetric
monoidal structure fron€PM, but it fails to have products and it is not monoidal closed.
O
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The reason the catego€y fails to inherit the products frorf@PM is that the diagonal
mapf : o — o ® o with f(A) = (A, A) is trace increasing, and thus not a superoperator.
The fact thaQ is not monoidal closed follows from the characterization of superoperators
in [8, Thm. 6.7]; it is easily seen that the hom-&Hl, 7) is not in one-to-one correspon-
dence withQ(l, p) for any p.

However, the categor®) also has some additional structure which is not present in
CPM: it is dcpo-enriched, and consequently, it possesses a traced monoidal structure
for the coproductst (see [6, Ch. 7]). This structure can be used to interpret loops and
recursion in first-order functional quantum programming languages; for details, see [8,
Thm. 6.7].

4 Normed matrix spaces

Our goal is to find anonoidal closeatategory which contains the categ@y preferably

as a full subcategory. In this section, we will describe one approach to defining such a
category, which we cal’. The idea is very simple: in the definition of a superoperator,
replace the “trace” on each object by an arbitrary norm.

4.1 The category Q

Definition (Normed matrix space). A normed matrix spaces a pairV’ = (o, |—||v),
whereo is a signature angl—||, is a norm on the con®,. We sometimes also call
a normed matrix space @ncrete coneand we often identify it with the “underlying”
normed coné?P,, ||—||v). We also often writéPy for P,, and similarlyDy for the unit
ideal.

Definition (The category Q). The categonyQ’ has as its objects normed matrix spaces
V = (o, ||-|lv). Amorphism fromV = (o, |—||v) to W = (r,||—||lw) is a completely
positive mapf : V,, — V, which is norm-non-increasing, i.e., which satisfigg A) || <
||Al|v forall A € P,.

Remark. SinceP,, is a finite dimensional cone (i.e., embeddable in a finite dimensional
vector space) and satisfies certain other regularity conditions, one can shamytmatrm

|- in the sense of Section 2.3 is automatically Scott-continuous and riakeso a
continuous normed cone. Similarly, any linear map of cghe®, — P, is automatically
continuous. Thus, the results of Section 2, and in particular the Hahn-Banach theorem,
apply in this setting, even though continuity need not be stated explicitly as an axiom.
These observations tend to simplify proofs in the finite dimensional case.

4.2 Properties of the category Q

The categonQ’ containsQ as a full subcategory. Indeed, to each objecf Q, we can
associate an objeét, || —||«) of Q’, where||A||y; = tr A is thetrace norm It is then clear
that the morphisms between these objects are precisely thee of
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The categoryQ’ also inherits products, coproducts, and a symmetric monoidal closed
structure from the catego§PM, as we will now show. The structure is preserved by the
forgetful functorQ’ — CPM.

4.2.1 Coproducts and products.
Given two normed matrix spacés= (o, ||—||v) andW = (7, ||—||w ), we define

VeW = (e&r|-lvew),

V&W = <U DT, ||_||V&W>7
wherel|(4, B)|[lvew = [|Allv + [[Bllw and[|(A, B)|lvew = [[Allv U [|B]lw as in
Example 2.3. Recall that!” denotes the binary “maximum” operation on real numbers.
It is easy to verify that with these normig,® W is a coproduct and” & W is a product
in the categonyQ’. Further, the objedd, with the empty signature and the unique norm,
serves as the neutral object for the coproducts and products.

Remark. Just like the categor@, the categoryQ’ is also dcpo-enriched, and hence the
coproduct operatiors possesses a traced structure.

4.2.2 Symmetric monoidal structure.

Given normed matrix spacd$ = (o, ||—||v) andW = (7, |—|lw), we would like to
define their tensor product

VoW = (cor|-lvew).
The question is how to define the nofm || gw . By analogy with normed vector spaces,
it would seem that the following definition is an obvious candidateCfar Py gy :
ICllvew =inf> [ AillvIBillw | C = A ® B;, whered, € Py, B; € Py }.

(1)
However, there is a problem with this definition: the set over which the infimum is taken
may in general be empty. In other words, not every elemeRyqfy;, can be written of the
form ) . A; ® B;, whereA; € Py andB; € Py . This is best illustrated in an example,
wheres =7 = 2.

Example4.1 The matrix

cannot be written in the forth |, A; ® B;, for positive2 x 2-matricesA;, B;. To see why
this is not possible, suppose it could be written in this way. Then the blockwise transpose

1000

+ 00
ZAi@Bi— 01
i 0 0

OO =

0
0
1

would also have to be positive, which it is not. O
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Remark. The phenomenon described in the previous example is well-known in physics.
A density matrixC' € Py gy Of a bipartite quantum system can be written in the form
>, A; ® B; if and only if it is entanglement freavhich means that there are omlassical
probabilistic correlations between the two parts. Such a state can be prepared using only
classical communication.

In order to arrive at a useful definition of the tensor norm, equation (1) must be mod-
ified in some suitable way. One natural modification, which leads teaatonomous
structure, is to replace=" by “C" in the right-hand-side of the equation. We obtain the
following:

Definition (Tensor product, tensor norm). Given normed matrix spacés = (o, |—||v)
andW = (7, |—|lw), their tensor product is defined 8@ W = (¢ @ 7, ||—|lvew),
where for allC € P, 5,

ICllvew = inf{ > |Aillv|Billw | C £ A; © B, where4, € Py, B; € Pw}.
(2)

The definition of the tensor norm in terms of equation (2) is often impractical to work
with. The following is a more practical characterization of the tensor norm in terms of its
unit ideal.

Lemma 4.2. The unitidealDy g of V @ W is the smallest Scott-closed, down-closed,
convex set containin®y @ Dy = {A® B | A€ Dy,B € Dy }. O

With this characterization, it is easy to prove tlratdefines a symmetric monoidal
structure on the categofy'.

4.2.3 Monoidal closed structure

Recall from Section 3.2 that the categ@#?M is compact closed with o7 = c®7. We
can lift this to a monoidal closed structure @\. In the following definition, we identify
a completely positive map : V, — V.- with an element of/, s, in the standard way, see
[8, Sec. 6.7].

Definition (Monoidal closure). Given normed matrix spacés = (o, ||—||v) andW =
(1, lI-1lw), their function space is defined &—o W = (¢ @ 7, ||—||v—ow ), Where for
all f € Pogr,

[f1lv—w = sup{[lf(A)llw | [|Allv <1} ®)

This is the usual definition of an operator norm; note that boundedness (Lemma 2.10)
guarantees that the supremum in equation (3) always exists. The properties of a norm are
easily verified, so that’ —o W is a well-defined space. To prove that this indeed yields
the correct monoidal closed structure corresponding to the tensor pditcuffices to
prove the following, which is a consequence of Lemma 4.2:

Lemma 4.3. For normed matrix space¥, W, and U, a completely positive map :
V ® W — U is norm-non-increasing if and only if its adjoigtt : V. — W — U is
norm-non-increasing. O
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4.2.4 Thesx-autonomous structure

A x-autonomous category is a symmetric monoidal closed category with an dhjsath
that the canonical natural morphisrh— (V' — 1) —o L is an isomorphism [3, 4]. The
object L is called adualizing object It is common to write/’~ =V —o L.

Lemma 4.4. In the categonyQ’, the objectL := | is a dualizing object.

Proof. LetV = (o, ||—||v) be a normed matrix space. We already know that the canonical
morphismg : V — (V—_1)—o_L is anisomorphism in the category of completely positive
maps. It remains to be shown that its inverse is norm-non-increasing, or equivalently, that
d is norm-non-decreasing. So ldt € P, with ||A||yy > 1. It suffices to show that
[[6(A)|| > 1. By the Hahn-Banach theorem (Theorem 2.14) there exists a linear function
f:V — R, with f(B) < ||B||v for all B, and such thaf(A) > 1. Thenf € V —o L

and|| fllv . < 1, hence|s(A)[ > [8(A) ()L = IF(A)]L = f(A) > 1. O

Thus, we have:

Proposition 4.5. The categoryQ’ of normed matrix spaces isautonomous with finite
products and coproducts and a zero object.

4.3 Why @ is not a model of higher-order quantum computation

The construction of the catego®/ was motivated by the search for a semantics of higher-
order quantum computation, extending the semantics of first-order quantum computation
given in [8]. It almost seems like this goal has been accomplished: we have obtained a
categoryQ’ which is x-autonomous and which also contains the cate@of first-order
guantum computations as a full subcategory. However, there is a fatal problem: The full
embedding of) in Q' does not preserve the tensor product. We illustrate the problem in
an example:

Example4.6. Consider the normed matrix spate= W = (2, ||—||y) of 2 x 2-matrices
with the trace norm. This space lies within the image of the embedding of Q'.
Consider the spadé @ W with the norm||—||vgw, as defined by equation (2). We claim
that the norm orl/ @ W is not the trace norm, and thiis® W does not lie within the
image ofQ in Q'. Let

O:

_— o o
jenlen el an)
SO OO
_—o O

as in Example 4.1. We claim th&€||vgw = 4. Indeed, it is easy to see that

ce(59)e (o) (52)e (v 1)

hence||C|lvew < 4 by definition. To see thatC||vew > 4, consider the dual space
VL fora2 x 2-matrix B, || B||y/+ is the maximal eigenvalue d@8. Since this is bounded
by the trace of3, the “identity” functionf : V' — V' is norm-non-increasing. Therefore,
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by Lemma 4.3, its adjoing : V ® V' — _L is also norm-non-increasing; it maps & 4-
matrix (aij) to ago + ags + aso + ass. It follows that||C||V®W > ||g(C)||J_ = g(C) =4,
as claimed. On the other hand, the trace normPofould be2, and thereforé|C||¢y o tr
and||C||« do not coincide.

5 Quantum coherent spaces

Girard introduced quantum coherent spaces as a new model of linear logic, inspired by
guantum theory [5]. Quantum coherent spaces are closely related to spaces of density
matrices, and they also formxaautonomous category. Thus, one might ask whether they
are suitable as a model for higher-order quantum computation. We will briefly sketch
the definition of a version of quantum coherent spaces, adapted to the terminology of the
present paper. We will also point out why they do not form a model for higher-order
guantum computation.

The definitions given here differ from those of [5] in several details. For instance,
we view gquantum coherent spaces as certain normed cones, whereas Girard axiomatizes
them directly in terms of their unit ideals. Also, we work with strict cones, whereas Girard
allows non-strict cones, where the cone order is only a preorder and its induced equivalence
relation must be factored out. Finally, we work with spacesnatrix tuples whereas
Girard works with spaces of matrices only (expressing matrix tuples, in effect, as block
diagonal matrices). A formal proof of the equivalence of our definitions with Girard’s is
not within the scope of this paper, and will be given elsewhere.

5.1 Tensor product, revisited

To motivate the definition of quantum coherent spaces, reconsider the problem from Sec-
tion 4.3: if V, W are spaces i®, then the norm oV ® W in the categorie€ andQ’

does not coincide. Just like the problem with equation (1), this problem can be attributed
to the presence of elementslin® W which are not of the forn} . A; ® B;; indeed, it is

easy to check that for elements of the latter form, the two norms do indeed coincide.

It therefore seems natural to change the definition of the tensor product by simply
removing the troublesome elements. This is precisely what quantum coherent spaces
achieve. Informally, the tensor product®f and?P; is not taken to bé>, 5, but only a
certainsubsetk C P,s,, Namely, the subset consisting precisely of the elements of the
form )", A; ® B;. The setsRk propagate to higher types. Thus, a quantum coherent space
is a triple (o, R, |—||) of a signature, a con® C V,, and a norm which makeR into a
continuous normed cone. The formal definition follows in the next subsection.

One important feature of the category of quantum coherent spaces is that, unlike the
categoryQ’ of the previous section, it is not based on completely positive maps, but on
all positivemaps. Informally speaking, this is because one has “reduced” the size of the
tensor product, and thus one has to “increase” the size of the function spaces to keep the
symmetric monoidal closed structure.
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5.2 The category QCS

Definition (Quantum coherent space (adapted from [5])).A quantum coherent space
isatripleV = (o, Ry, |—|lv), whereo is a signatureRy C V, is a cone, ang|—||v is
a norm makingRy into a continuous normed cone.

Definition (The category QCS). The categoryQCS has quantum coherent spaces as
objects. A morphism fromV = (o, Ry, |—||v) to W = (1, Rw, ||—||lw) is any linear,
norm-non-increasing map of congs Ry — Ry .

The category of quantum coherent spaces possessesinomous structure with

finite coproducts and products, given as follows: For= (o, Ry, |—|v) andW =
<T’RW7||7HW>*

VeW = <U@7_7RV><RW7||_HV€BW>7

V&W = (0@, Ry x Rw,[—|vew),

VeW = (o0&, Ry ®Rw,|-[vew),

VoW = (0®&T, Ry = Rw,|—|v-ow).

Here,||—|lvew and||—||v ¢ w are defined as in Section 4.2.1. The tensor cone is defined
asR, ® Rw = {>_;c; Ai ® B; | A; € Ry, B; € Rw}, wherel ranges over possibly
infinite index sets such that the given sum converges. The tensor|roltingyy is defined

as in equation (2), except of course that we Bseand Ry in place of Py, andPy,. The
function space con®,, —o Ryy is the set of all continuous linear functions fraRy, to

Ry, and||—||v —w is the operator norm. The dualizing object is adaia R ..

Remark.Note that a morphism between quantum coherent spaces is precisely a morphism
between normed conésy, || —||v) and (R, ||—|w); thus, the forgetful functor from
QCSto the category of normed cones is full and faithful. On the other hand, every finite
dimensional cone can be embedded in sdmgethus, the category of quantum coherent
spaces is equivalent to a suitable category of finite dimensional continuous normed cones.

5.3 Why QCS is not a model of higher-order quantum computation

Like the category’, the categor®QCS of quantum coherent spacesisutonomous, and
therefore it has the required structure for modeling higher-order linear functions. There is
also a canonical embedding @finsideQCS, mapping each signatueeto (o, P,, ||—|lir)-
However, this embedding is not full, because of the presence of positive, non-completely
positive maps iMQCS. Since it was shown in [8] that the categdycaptures precisely

the feasible quantum functions at first-order types, it therefore followsQl& contains

some ground type morphisms, such as the morphisnam Example 3.1, which do not
correspond to physically computable functions. On the other hand, there are physically
feasible density matrices, such as the maffiirom Example 4.1, which do not have a
valid denotation in the categofyCS due to the restricted nature of its tensor cone.
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